
Evaluating the Cyclic Landmark
Heuristic with a Logistics-specific

Landmark Generator
Bachelor thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artifical Intelligence Research Group

https://ai.dmi.unibas.ch/

Examiner: Prof. Dr. Malte Helmert

Supervisor: Clemens Büchner

Günes Aydin

guenes.aydin@unibas.ch

2018-058-636

September 12, 2021

Acknowledgments

I want to thank my supervisor Clemens Büchner for assisting me in my thesis, responding

to my questions, and always trying to help for any concerns. As his first student, he was

exceptionally helpful with spot-on feedback, which I appreciate greatly. Additionally, I

want to thank Prof. Dr. Malte Helmert for allowing me to write a bachelor thesis in

his research group artificial intelligence and also allowing me to contribute to something

valuable. Furthermore, I want to give a big thanks to Kevin Waldock for his general input

on implementation and design. I also want to thank my friends and family for supporting

me during these times and I am thankful for any advice and help.

Abstract

In this thesis, we generate landmarks for a logistics-specific task. Landmarks are actions

that need to occur at least once in every plan. A landmark graph denotes a structure with

landmarks and their edges called orderings. If there are cycles in a landmark graph, one

of those landmarks needs to be achieved at least twice for every cycle. The generation of

the logistics-specific landmarks and their orderings calculate the cyclic landmark heuristic.

The task is to pick up on related work, the evaluation of the cyclic landmark heuristic. We

compare the generation of landmark graphs from a domain-independent landmark generator

to a domain-specific landmark generator, the latter being the focus. We aim to bridge the gap

between domain-specific and domain-independent landmark generators. In this thesis, we

compare one domain-specific approach for the logistics domain with results from a domain-

independent landmark generator. We devise a unit to pre-process data for other domain-

specific tasks as well. We will show that specificity is better suited than independence.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3

2.1 Definitions . 3

2.2 Heuristic Search . 4

3 Logistics Domain 5

3.1 Logistics Tasks . 5

4 Landmarks 8

4.1 Landmarks and Ordering . 8

5 Cyclic Landmark Heuristic 12

6 Landmark Generator 14

6.1 Generating landmarks . 14

7 Experimental Evaluation 18

7.1 Initial heuristic value . 18

7.1.1 Logistics00 and additional benchmark 19

7.1.2 Logistics98 . 20

7.2 Total Time . 22

7.2.1 Logistics00 and additional benchmark 22

7.2.2 Logistics98 . 23

7.3 Expansions until last jump . 25

7.3.1 Logistics00 and additional benchmark 25

7.3.2 Logistics98 . 25

7.4 Memory . 27

7.4.1 Logistics00 and additional benchmark 27

7.4.2 Logistics98 . 28

7.5 Comparison to Paul et al. (2017) . 29

Table of Contents v

8 Conclusion 30

8.1 Future Work . 30

Appendix A Appendix 31

A.1 Benchmarks and their structure . 31

A.2 Information Assembling . 31

Bibliography 34

Declaration on Scientific Integrity 36

1
Introduction

How exciting! You just ordered something from the internet and your parcel/package is on

the way home to you. The post office identifies a plan to ship your package in no time.

Thinking about an optimal plan to efficiently deliver a package can be hard.

Classical planning is an approach to find optimal or satisfying solutions to a given problem.

Given a state of a specific problem, what is the most optimal way by applying different

actions to the goal, your home? A sequence of actions will be a plan for this specific state.

A cost-efficient plan or an optimal cost plan minimizes the cost to solve a problem. A

problem is for example the logistics task: your parcel that needs to be shipped to your

home. We use search algorithms to find the optimal path from the start location to the

goal state, your home. Search algorithms use heuristics as a guidance tool, a function that

maps a state to a real non-negative number and traverses a state space by applying several

actions until a goal is found or it can be shown that no such plan exists.

It is clear, that your home is the goal. You want your package at some point in time. This

idea is conceptualized as a landmark : an action that needs to happen in every planning task

plan. The delivery man has to pick up your package at the packing center before he can

deliver it to you. This dependency is called a landmark ordering. They provide a sequence,

which action has to be executed at which point.

Let’s consider the following scenario: You also want to ship a package back to the provider

and you await a package your own at the same time. The delivery man picks up your

parcel at the packing center, delivers it to you, picks up your package, and brings it back

to the packing center for further processing. Such an occurrence is called a cycle, which

will lead to an improvement of the heuristic estimate. The cyclic heuristic is based on the

findings of Paul and Helmert (2016) and elaborated further by Paul et al. (2017) as well

as from Büchner et al. (2021a). With the use of domain-independent landmark generators,

Büchner et al. (2021a) shared their results in these papers. They noticed that domain-

independent landmarks yield worse results than domain-specific. The focus of this thesis is

to generate landmarks and create a landmark graph, based on their checklists, and recreate

the logistics-specific landmark generator for the domain-independent heuristic. We provide

the theoretical basics and understanding of classical planning in chapter 2 and formalize the

logistics task in chapter 3, as well as the basics of landmarks in chapter 4. The calculation

Introduction 2

of the cyclic landmark heuristic is thematized in chapter 5, and the creation of the landmark

graph is covered in chapter 6. Lastly, we show in an experiment the advantages of domain-

specific landmark generators over domain-independent landmark generators and finish this

thesis with a conclusion.

2
Background

Before starting with the main topic, we want to briefly explain some relevant definitions to

get a conceptual background and understanding of what we will use during this thesis.

2.1 Definitions
We consider a SAS+ planning task as defined by Richter (2010):

Definition 1 (Planning Task) A SAS+ planning task is a 4-tuple 〈Vstate, s0, s?, A〉 with

the following components:

• Vstate is a finite set of state variables, each with an associated finite domain Dv. A

fact is a pair 〈v, d〉 (also written v 7→ d), where v ∈ Vstate and d ∈ Dv. A partial

variable assignment s is a set of facts, each with a different variable. A state is a

variable assignment defined on all variables Vstate.

• s0 is a state called the initial state.

• s? is a partial variable assignment called the goal.

• A is a finite set of actions (also referred to as operators), each associated with two

partial variable assignments pre(a) and eff(a). The facts in pre(a) and eff(a) are called

the preconditions and effects of action a ∈ A, respectively. Each action furthermore

has an associated non-negative cost cost(a).

An action is applicable in a state s if pre(a) ⊆ s. Applying an applicable action a will result

into state s′ = s[a], where eff(a) ⊆ s′. A sequence of actions π is applicable if all actions ai

are applicable in si for i = 1, . . . , n. If an action sequence includes an action which leads

to a goal state and s∗ ⊆ so[π], it is considered as a plan. The cost of π is the sum over all

costs(ai). A plan is called optimal, if its costs is minimal among all plans. A state space, a

full list of all states and their possible actions, is induced by the planning task.

Background 4

Definition 2 (State spaces) A state space is induced by the planning task and it is a

6-tuple S = 〈S,A, cost, T, s0, S?〉 with:

• S : a finite set of states.

• A : a finite set of actions.

• cost : A→ R+
0 , a cost function that maps an action to a non-negative real number.

• T ⊆ S ×A× S a transition relation.

• s0 ∈ S the initial state.

• S? ⊆ S a set of goal states.

The cost function is considered optimal if the path costs from state s to s? ∈ S? are minimal.

2.2 Heuristic Search
There are several possibilities to solve a planning task, but the most common one is the

heuristic search.

Definition 3 (Heuristic Search) A heuristic function or heuristic is a function that maps

a given state s ∈ S to a real non-negative number or infinity:

h : S → R+
0 ∪ {∞} (2.1)

Following are some important properties a heuristic can have:

• A perfect heuristic is called h? which maps all states to the optimal cost value, the

minimal path costs.

• A heuristic is called admissible, if all states share this property: h(s) ≤ h?(s).

• A heuristic is called safe, if h? =∞ for all states with h(s) =∞.

Search algorithms use this heuristic function to evaluate the next promising actions. In this

thesis, A? (Hart et al., 1968) will be the search algorithm of choice. The concept of A? is

to expand nodes based on their path cost and heuristic value. Since we are searching for

an optimal plan, it will always expand nodes with minimal cost until it either finds the first

goal state, or runs into a dead-end (where h(s) = ∞) when expanding all possible paths.

A? guarantees to find an optimal plan with an admissible heuristic.

3
Logistics Domain

Whilst all planning tasks are defined the same way, we differentiate between different classes

of problems. Tasks from the same domain are similar to each other. In this thesis, we focus

on the logistics domain (McDermott, 2000) and we will introduce it in this chapter.

3.1 Logistics Tasks
In a logistics task, we want to optimally transport packages from their origin to its desti-

nation. Therefore we have two transportation methods, trucks, and airplanes. Trucks are

used to deliver packages between locations in a city, so-called intra-city transportation. Air-

planes are inter-city transportation methods that can travel between airports. There may

be multiple cities with different locations.

From Paul et al. (2017) we get the following definition:

Definition 4 (Logistics Task) A logistics task is given as a tuple 〈L,C, P,A, city, airport, origin, dest〉,
where

• L is a finite set of locations,

• C is a finite set of cities,

• P is a finite set of packages,

• T is a finite set of trucks,

• A is a finite set of airplanes,

• city : L→ C assigns each location a city,

• airport : C → L assigns each city an airport location in this city, i.e. city(airport(c))

= c for all c ∈ C,

• origin : P ∪ T ∪ A → L specifies the origin location of each package, truck and

airplane, where the origin of an airplane is always an airport location, and

• dest : P → L defines a destination for each package.

Logistics Domain 6

A vehicle can either be a truck or airplane, therefore introducing a set vehicles Vvehicle =

T ∪A.

For a further description in this thesis, we use the following convention, to avoid more

formalities:

Figure 3.1: Description of the Logistics Task

Note that the airplane is not used in combination with the airport, it is a set on its own, as

defined above. Airports do not require to have an airplane waiting there.

Both vehicles v ∈ Vvehicle have the property to load or unload a package. To load a package

the truck or the airplane needs to be at the same position as the package, e.g. one can only

load a package into an airplane at an airport. The truck has the addition, that it can drive

to locations within the same city. The airplane however can only fly in-between cities. In

total four operators are applicable where three of them can be used by the truck and three

of them by the airplane:

• load(v,p,l), where v ∈ Vvehicle, p ∈ P and l ∈ L, means loading a package p at position

l in to vehicle v.

• drive(t,l), where t ∈ T and l ∈ L, driving the truck t from its current position to the

desired location l.

• unload(v,p,l) where v ∈ Vvehicle, p ∈ P and l ∈ L, means unloading a package p at

position p from vehicle v.

• fly(a,l), where a ∈ A and l ∈ L, flying with the airplane from its current position to

the desired location l.

Applying a sequence of these operators creates a plan for a logistics domain. An example

illustration with an example plan is found below:

Figure 3.2: An example of a simple plan

Logistics Domain 7

1. load(t,p,l1) the package p into the truck t at location l1

2. drive(t,l2) to the airport l2

3. unload(t,p,l2) the package p at the airport l2 from truck t

4. load(a,p,l2) the package p in to the airplane a at location/airport l2

5. fly(a,l3) to the destination city

6. unload(a,p,l3) the package p at the airport l3 from airplane a

The planning task for Fig. 3.2.

Since we need to transport packages from their origin to their destination, we will need to

use the given transportation tools. In Fig. 3.2, the truck needs to drive to the airport with

the package and the airplane flies to the destination city to deliver the package. These edges

are used to describe a delivery graph. We distinguish two different delivery graph, defined

in Paul et al. (2017):

Definition 5.1 (Truck Delivery Graph)

For a given state s of a logistics task 〈L,C, P, T,A, city, airport, origin, dest〉 and c ∈ C, the

truck delivery graph for c is the directed graph Dc
s = (Vgraph , E), where

• Vgraph = {l ∈ L | city(l) = c} are the locations in city c, and

• E contains the following edges for each package p with poss(p) 6= dest(p):

– If city(poss(p)) = city(dest(p)) = c, then there is an edge poss(p)→ dest(p).

– If city(poss(p)) = c, city(dest(p)) 6= c and poss(p) 6= airport(c) there is an edge

poss(p)→ airport(c).

– If city(poss(p)) 6= c, city(dest(p)) = c and dest(p) 6= airport(c) there is an edge

airport(c)→ dest(p)

Definition 5.2 (Airplane Delivery Graph) For the airplane delivery graph we have:

For state s of logistics 〈L,C, P, T,A, city, airport, origin, dest〉, the airplane delivery graph is

the directed graph DA
s = (C,E) where E = {(c, c′) | there is a p ∈ P s.t.c = city(poss(p)) 6=

city(dest(p)) = c′.

4
Landmarks

The main topic of this thesis is to generate landmarks for the cyclic landmark heuristic.

Landmarks are originally introduced as facts that need to occur at least once in every

planning task. For example, using the logistics domain, if a package needs to be delivered to

point B however its position is still at A, a truck or an airplane, if it’s intercity transportation,

has to be at the position of the package at some point in time. In this chapter, we want to

explain some fundamental definitions.

4.1 Landmarks and Ordering
As from Richter and Westphal (2010), we get the following definition for landmarks:

Definition 6 (Landmarks)

Let Π = 〈V, s0, s?, A〉 be a planning task in finite-domain representation, let π = 〈o1, . . . , on〉
be an operator sequence applicable in s0, and let i, j ∈ {0, . . . , n}.

• A propositional formula ϕ over the facts of Π is called a fact formula.

• A fact F is true at time i in π iff F ∈ s0[〈o1, . . . , on〉].

• A fact formula ϕ is true at time i in π iff ϕ holds given the truth value of all facts of

Π at time i. At any time i < 0, ϕ is not considered true.

• A fact formula ϕ is a landmark of Π iff in each plan for Π, ϕ is true at some time.

• A propositional formula ϕ over the facts of Π is added at time i in π iff ϕ is true at

time i in π. but not at time i-1 (it is considered added at time 0 if it is true in s0).

• A fact formula ϕ is first added at time i in π iff ϕ is true at time i in π, but not at

any time j < i.

An important thing to notice is, that everything in the initial state and the goal state are

considered landmarks since they are always true at some time. For example, if the truck

is at position B in the initial state or delivering the package at some time, are considered

landmarks.

Landmarks 9

As of right now, we only talked about single trucks in cities or single airplanes between cities

with illustration, not per definition. However, there is also the possibility that there is more

than just one truck in cities or one airplane between cities. Therefore the term disjunctive

fact landmarks is introduced. These are defined as sets of facts (note that a fact is a pair

〈v, d〉) where at least one holds at some time.

Figure 4.1: A small example with disjunctive fact landmarks. Package p can be delivered
by truck 1 or truck 2. The disjunctive landmark however would be the set of those two facts
combined.

In example 4.2 what can be seen is, if the dest(p) 6= poss(p) and s(t) = l 6= poss(p), the truck

has to pick up the package before it can deliver it at some point. This can be conceptualized

in a formal definition called orderings.

Figure 4.2: Minimal example

Definition 7 (Orderings)

Four different ordering types are defined originally by Hoffmann et al. (2004) and modified

by Richter and Westphal (2010):

• Reasonable Orderings: between ϕ and ψ, written as ϕ →r ψ, if in every s-plan π

where ψ is added at time i and ϕ is first added at time j, where i < j, means that ψ

cannot hold true at time m, where m ∈ {i+ 1, . . . , j} and is true at some time k with

j ≤ k.

Landmarks 10

• Natural Orderings: between ϕ and ψ, written as ϕ→n ψ, if in each plan ϕ is true

at time j before ψ time i. Meaning: j < i

• Greedy necessary Orderings: between ϕ and ψ, written ϕ→gn ψ, if in each plan

ϕ is true at time i-1 before ψ is first added at time i.

• Necessary Orderings: between ϕ and ψ, written ϕ→nec ψ, if in each plan ϕ is true

at time i-1 when ψ is added at time i.

A logistics task can have every type of orderings. However, we will explain two orderings

a bit more thoroughly: natural and reasonable. Every landmark in the initial state, where

the package is not at its destination, is true before the landmarks of the goal state, which

induces a natural ordering. Since we are concerned with the time at which a vehicle must

be at a certain position, but in principle, there are no restrictions on the order to which

they can travel, we are generally not dealing with natural orderings but with reasonable

orderings, if we consider each package separately.

Orderings have different restriction levels, which means, the more restrictive, the stronger

an ordering. The most restrictive ordering is the necessary ordering, followed by greedy

necessary orderings. Natural orderings are in between reasonable and greedy necessary

orderings. Reasonable orderings however are the least restrictive orderings, therefore also

the weakest.

All properties, that are not given in the initial state and need explicit load/unload actions,

are part of every s-plan and are called action landmarks. Not to be confused by a fact land-

mark, corresponding action landmarks are induced by fact landmarks: LMa =
⋃

f∈F {a ∈
A| f ∈ eff(a)} where F is the (disjunctive) fact landmark. In the example Fig. 4.3, we see

that the truck can drive from B to C or from A to C. This can lead to sub-optimal plans

because the action drive from A to C does not have to be an action landmark. However, we

still need to capture the move A to C, therefore introducing disjunctive action landmarks.

To be clear and avoid confusion, for the generation of landmarks we use fact landmarks for

the calculation of the heuristic, in chapter 5, we consider disjunctive action landmarks.

Figure 4.3: Example for action landmarks

Landmarks 11

Definition 8 (Disjunctive Action Landmarks) As described in Büchner (2020) a disjunc-

tive action landmark of a planning task Π = 〈V, s0, s?, O,C〉 is a non-empty set of actions

where at least one is part of the s-plan.

Whenever we talk about landmarks, we will refer to the action landmarks over the fact

landmarks.

Both definitions 6 and 7 can be used to induce a landmark graph, a representation of

landmarks and their orderings. Following the definition from Büchner (2020):

Definition 9 (Landmark Graph) Let Π be a planning task, s a state of Π. A landmark

graph G = 〈V,E〉 is a directed graph with a set of vertices V and a set of edges E. There is

a vertex in V for every landmark for s. The graph has an edge 〈l, l′〉 with label t between

two vertices l and l′ if

• there exists a landmark ordering l→t l
′ with ordering type t, and

• there is no landmark ordering l→t l
′ with t′ stronger than t.

Figure 4.4: A part of an example landmark graph from Fig. 3.2

In the example landmark graph 4.4, we see different landmarks and their orderings. Every

single landmark is reasonably connected. The importance of reasonable orderings will be

shown in the next chapter, the cyclic landmark heuristic.

5
Cyclic Landmark Heuristic

As we learned quite a lot about landmarks, we can now use them to actually calculate a

heuristic. The heuristic, that we want to calculate, is called the cyclic landmark heuristic. It

is based on the findings of Paul and Helmert (2016) in ”Optimal Solitaire Game Solutions”,

which was further elaborated to the logistics task (Paul et al., 2017), which is the domain

of focus in this thesis.

To explain the cycle heuristic, we will look at the following example:

Figure 5.1: A landmark graph with three locations and a truck, where the edges are reason-
able orderings

First and foremost we need to understand what a cycle is. In the example 5.1, all locations

are connected. A cycle in a graph is a sequence that repeats in our case actions. The truck

can drive from A to B or C. From A it can either drive to B, pick up package C and drive

to C or drive to C, pick up package B and drive to B. Driving from B to C and back would

Cyclic Landmark Heuristic 13

denote a cycle.

In our example, the packages B and C are not at their destination location as we defined in

Fig. 3.2. To deliver package B to its destination, the truck has to drive to its origin and pick

it up before driving to the destination. The same applies to package C. Noticeably there

are reasonable orderings in the shown graph: The truck does not have to be at position B

before being at position C, because there are two packages that need to be delivered. By

observation, we see that there is a cycle between location B and location C. Therefore the

truck has to drive to one of those locations at least twice. This results in an improvement

of the heuristic value.

In Büchner et al. (2021a), they define orderings as either weak or strong. A reasonable

ordering would correspond to a weak ordering if the special case with j ≤ k is strict,

meaning j < k. The cyclic landmark heuristic can be calculated using the operator-counting

framework (Pommerening et al., 2014), which solves an Integer Program (short IP) in every

state:

min
∑
a∈A

Ya cost(a) s.t. (5.1)

Ya ≥ 0 for all a ∈ A (5.2)∑
a∈L

Ya ≥ 1 for all L ∈ L and (5.3)∑
L∈L(c)

∑
a∈L

Ya ≥ |L(c)|+ 1 for all c ∈ C (5.4)

The L component of the IP denotes the landmark constraints, whereas C is a set of cycles

in a landmark graph G.

6
Landmark Generator

In this chapter, we want to clarify how to generate the logistic landmarks and the corre-

sponding landmark graph as defined in Paul et al. (2017).

6.1 Generating landmarks
Landmarks for the logistics task can be created very specifically. We distinguish between

two different cycle heuristics, the cycle heuristic hcycle and the integrated cycle heuristic hic.

The only difference is that we add more orderings to the integrated cycle heuristic than to

the cycle heuristic. To find the heuristic value of those, landmarks need to be created.

Definition 10 (Truck Landmark) For a logistics task 〈L,C, P, T,A, city, airport, origin, dest〉,
state s and city c ∈ C, the set Ltruck

c of truck landmarks consists of the locations l that have

an ingoing edge in the truck delivery graph Dc
s or that have an outgoing edge and there is

no t ∈ T with s(t) = l.

Definition 11 (Airplane landmark) For a logistics task 〈L,C, P, T,A, city, airport, origin, dest〉
and state s, the set Lairplane of airplane landmarks consists of the cities c that have an in-

going edge in the airplane delivery graph Da
s or that have an outgoing edge and there is no

a ∈ A with s(a) = airport(c).

In an optimal plan, packages should not be loaded and unloaded twice in the same city by

different trucks or even the same truck. This is unnecessary and will therefore be eliminated

from consideration. We have a list of load/unload actions if the packages are already in the

destination city:

• unloaded from an airplane, only if it is in an airplane,

• loaded into a truck if the current position is not the destination and it is not in a truck

already, and

• unloaded from a truck if its position is not the destination and it is in a truck.

Checklist: Package in destination city.

Landmark Generator 15

There are more actions to consider if the packages are not in the destination city:

• loaded into a truck iff its current position is not in the truck or at an airport,

• unloaded at an airport iff it is still in the wrong city and in a truck,

• loaded into an airplane iff it’s not in an airplane,

• unloaded from the airplane in the destination city,

• loaded into a truck if current position is not the destination and it is not in a truck

already, and

• unloaded from a truck if its position is not the destination and it is in a truck.

Checklist: Package not in destination city.

An important note is, that a package can only be, as already defined in the logistics domain

3.1, in three specific positions: at a location, in a truck, or in an airplane. Note that a

location can either be an airport or a position itself.

This can be represented in a landmark graph.

Definition 12 (Landmark Graph of City and Air Space)

For state s of task 〈L,C, P, T,A, city, airport, origin, dest〉 and city c ∈ C, the landmark

graph for c is the directed graph GLM
c,s = (Ltruck

c , E), where E contains an edge l→ l′ if the

delivery graph Dc
s contains such an edge and there is no t ∈ T with s(t) = l. The landmark

graph GLM
air,s for the air space is the directed graph (Lairplane, E) where E contains an edge

c → c′ if the airplane delivery graph DA
s contains such an edge and there is no a ∈ A with

city(s(a)) = c.

As already mentioned we distinguish two cyclic heuristics, one with integrated orderings and

one without. The above landmark graph corresponds to the normal cycle heuristic. Addi-

tionally to all orderings and landmarks above we find the following orderings and landmark

graph.

Definition 13 (Integrated Landmark Graph)

For state s of task 〈L,C, P, T,A, city, airport, origin, dest〉 the integrated landmark graph

GLM
s = (V,E) is the directed graph, where

• V = Lairplane ∪
⋃

c∈C L
truck
c consists of all truck and airplane landmarks, and

• E contains all edges from the landmark graphs for all cities and the air space plus the

following edges for each package p with city(poss(p)) = c and city(dest(p)) = d 6= c:

1. if there is no t ∈ T with s(t) = poss(p) and neither poss(p) nor dest(p) is an

airport, there is an edge poss(p)→ dest(p);

2. if there is no t ∈ T with s(t) = poss(p) and poss(p) is not an airport, there is an

edge poss(p)→ d;

Landmark Generator 16

3. if neither poss(p) nor dest(p) is an airport, there is an edge airport(c)→ dest(p);

4. if poss(p) is not an airport, there is an edge airport(c)→ d;

5. if there is no a ∈ A with s(a) = airport(c) and dest(p) is not an airport, there is

an edge c→ dest(p);

6. if dest(p) is not an airport, there is an edge d→ dest(p).

To clarify we consider the following example:

Figure 6.1: The integrated landmark graph 6.1 explained, with numbers 1-6 corresponding
to the edges that are added

All additions of landmarks, from the truck landmark, airplane landmark, and loading/un-

loading landmarks are easily added with a pre-processing unit, we devised.

Figure 6.2: Package in the destination city

Landmarks are added based on the current package position and city location. If the current

city is already the destination city of the package, we can use the checklist 6.1 to verify which

Landmark Generator 17

load/unload landmarks should be added. The drive operator should only be added if the

position of the truck does not correspond to the package position. In the example 6.2, the

following landmarks are added:

1. drive truck to the airport

2. load package A into a truck

3. drive truck to position A

4. unload package A from a truck

Consider another example where the package is not in the destination city. We need several

more landmarks to accomplish the successful transportation of the package to its destination.

We again verify load/unload landmarks with the provided checklist 6.1. The next example

6.3 shows a situation where the package is not in the destination city.

Figure 6.3: Package not in the destination city

Note that the airplane which is not clearly visible in this example is located at the left

airport. As defined in definitions 10 and 11, the delivery graph decides whether a landmark

is added for trucks and airplanes or not. For example 6.3, the following landmarks are

added:

1. load package A2 into truck 1.

2. drive truck 1 to the airport in origin city.

3. unload package A2.

4. load package A2 into an airplane.

5. fly to the destination city.

6. unload package A2 at the airport in destination city.

7. load package A2 into truck 2.

8. drive truck 2 to position A2.

9. unload package A2 from truck 2 at destination position.

7
Experimental Evaluation

In the experiments we consider the logistics domain logistics00, logistics98 from the IPC

benchmarks set, and additional logistical benchmarks. The difference between those bench-

mark sets is that logistics98 includes multiple trucks in one city, whereas the others are the

same. All experiments are conducted on the grid at the University of Basel with a 2 × 10

Core Intel Xeon Silver 4114 2.2 GHz Processor. Calculations are performed with the Down-

ward Lab (Seipp et al., 2017). The task may run up to 30 minutes before running out of

time and the memory limit is set to 3.5 GB. The heuristics need a linear program solver

which is provided by IBM CPLEX version 20.10 (IBM, 2021). We want to compare our

findings with the ones provided by Paul et al. (2017). However we did not include multiple

vehicle simplification, therefore this will be left out. The search algorithm will be A? with

an admissible heuristic, the cyclic landmark heuristic. In addition to the logistics-specific

landmark generator that we created, we will also add the domain-independent landmark gen-

erator LM-RHW (Richter et al., 2008). The planner of choice is the Fast Downward planner

(Helmert, 2006) which is implemented in C++. We pick up on previous work from Büchner

et al. (2021b) and generate landmarks based on the criteria, we are provided with from Paul

et al. (2017). Büchner et al. (2021a) wrote in his paper, that current landmark generators

are not finding sufficient landmarks with domain-independent approaches. Therefore, we

created a landmark generator for the logistics-specific task, as well as a foundation for more

domain-specific landmark generators. We want to share results on our findings and compare

values with Paul et al. (2017). They used a different planner than our planner of choice,

but we want still to compare key attributes in this chapter. Some plots that are shown

are logarithmic plots. Meaning, all values 10−1 are considered as zero, etc. We will divide

the benchmarks set in this chapter. Logistics00 and the additional benchmark set will be

plotted together since they are similar. In all plots, the diagonal denotes values that are

identical in the compared configurations.

7.1 Initial heuristic value
We distinguish between the integrated cyclic landmark heuristic and the cyclic landmark

heuristic, as well as for LM-RHW and the integrated cyclic landmark heuristic.

Experimental Evaluation 19

7.1.1 Logistics00 and additional benchmark
In Fig. 7.1, we see the difference between the initial heuristic value of the integrated cyclic

landmark heuristic, denoted as the y-axis, and the cyclic landmark heuristic, as the x-axis.

Figure 7.1: Initial heuristic value for cycle vs integrated cycle

The difference is mostly not visible because, in only 18 tasks, the integrated cyclic landmark

heuristic finds a better heuristic value for the problem. This can be explained by the

definition in chapter 6. The integrated landmark graph contains more orderings than the

non-integrated landmark graph. There might be a cyclic dependency, which would improve

the heuristic value.

Much more interesting is the comparison Fig. 7.2 between RHW and the integrated cyclic

landmark graph. We notice immediately that the latter finds more landmarks for the initial

state than RHW. This shows that domain-specific landmark generators yield better results

than domain-independent generators since the latter finds fewer landmarks. In the plot

Fig. 7.2, two lines emerge. There is an overlapping area with a gap of different initial

heuristic values. Since we did not have the time to experiment more and examine this area,

we will pick it up again in chapter 8.1, for future work.

Experimental Evaluation 20

Figure 7.2: Initial heuristic value for RHW vs integrated cycle

7.1.2 Logistics98
Different from logistics00 and the additional benchmark set, we see no difference in the initial

heuristic value. This is quite interesting since normally this would mean the orderings from

the integrated version are not accounted for, which would state that there are no more cyclic

dependencies for different packages.

Figure 7.3: Initial heuristic value for cycle vs integrated cycle logistics98

In comparison to RHW however, we yield much better results. Nearly all of the heuristic

values are higher with our implementation. We notice again that RHW loses some landmarks

which are essential and therefore possibly does not solve as many tasks as it should. Since

Experimental Evaluation 21

35 problem tasks are not that many to solve, when considering possibly more logistics98

problems, there might be again two lines in Fig. 7.4 and the overlapping area, which would

be interesting to look at.

Figure 7.4: Initial heuristic value for RHW vs integrated cycle logistics98

Experimental Evaluation 22

7.2 Total Time
In this section, we want to discuss the total time we used to solve a problem. All experiments

had a run time of 30 minutes. In all plots, measured in seconds, points in the top right corner

are tasks that are not solved due to them being well over the 1800s.

7.2.1 Logistics00 and additional benchmark
The search time is more or less the same for the integrated and the normal version. In 15

tasks the integrated version is faster than the non-integrated version. This may come from

the tasks which had a higher heuristic value, whereas the A? algorithm traverses the state

space differently. However, the non-integrated version is faster in 18 tasks. The cause of

this might be the extra checks we need to make where the better heuristic guidance doesn’t

compensate or the heuristic is equal for the integrated and normal version, making the

additional checks obsolete.

Figure 7.5: Total time for cycle vs integrated cycle

Again the comparison between RHW and the integrated landmark graph is more interesting.

In every single task, our implementation, which terminated, is faster and solves more tasks

than RHW. The specificity of the generation of landmarks has a visible impact on the search

algorithm.

Experimental Evaluation 23

Figure 7.6: Total time for RHW vs integrated cycle

7.2.2 Logistics98
The total run time for logistics98 is not much different from logistics00 and the additional

benchmark set. What might be the reason for this, is the noise on the grid. Since both the

normal and the integrated versions have the same heuristic value for these experiments, we

cannot make more assumptions.

Figure 7.7: Total time for cycle vs integrated cycle logistics98

The difference is seen however in the comparison between RHW and the integrated version.

Noticeably our implementation is faster for all tasks that terminate, RHW is running into

a search timeout faster than ours does. However, since the coverage of the tasks for the

Experimental Evaluation 24

logistics98 domain is quite low, there might be some issues to address.

Figure 7.8: Total time for RHW vs integrated cycle logistics98

Experimental Evaluation 25

7.3 Expansions until last jump
In this section, we want to discuss the expansions until last jump. If the value of the jumps

is 10−1, this means, that we found the perfect heuristic for these specific problem tasks.

7.3.1 Logistics00 and additional benchmark
Interestingly enough all expansions are the same in both integrated and cyclic landmark

graphs, but we cannot make any assumptions with these results.

On the other hand, we see a difference between RHW and the integrated cyclic landmark

heuristic. We find that the integrated cyclic landmark heuristic yields much better results

than RHW. Most of the tasks have zero jumps after the last expansion, meaning we receive

the perfect heuristic for these problem tasks. We notice that RHW expands more states

than we do before finding a solution. Most of the tasks we solve are close to the perfect

heuristic whereas RHW expands too many states, possibly meaning its heuristic values are

less accurate, it does not find as many landmarks and orderings as we do. There might be

cyclic dependencies in the graph, which are not detected by RHW, which leads to lower

heuristic estimates and ultimately requires more state expansions.

Figure 7.9: Expansions until last jump RHW vs integrated cycle

7.3.2 Logistics98
Again we notice no difference between the normal version and the integrated version, which is

again surprising. However, we cannot make any assumptions, since possibly both heuristics

are identical.

We can see in Fig. 7.11 that the integrated version expands fewer states than RHW again.

Even though achieving the perfect heuristic for the initial state sometimes, the expansions

until the last jump does not have to be zero. Since we need to consider all states with perfect

Experimental Evaluation 26

Figure 7.10: Expansions until last jump for cycle vs integrated cycle logistics98

heuristic value, this may lead to expansions, even with perfect heuristic in the initial state.

Correct

Figure 7.11: Expansions until last jump RHW vs integrated cycle logistics98

Experimental Evaluation 27

7.4 Memory
In this section, we want to talk about the memory usage of our implementation and RHW.

7.4.1 Logistics00 and additional benchmark
The comparison between the normal landmark graph and the integrated cycle landmark

graph does not show much. There are several tasks where the memory is lower on the

normal version than the integrated.

Figure 7.12: Memory comparison cycle vs integrated cycle

The comparison between the integrated landmark graph and RHW is more interesting. The

memory bound is for all tasks either the same or better for the integrated. RHW runs quite

quickly into the memory limit due to expanding more states, whereas tasks are still solved

in the integrated version. This can be seen in plot Fig. 7.13.

Experimental Evaluation 28

Figure 7.13: Memory comparison RHW vs integrated cycle

7.4.2 Logistics98
The memory comparison between the non-integrated and the integrated version is different

from the other benchmark sets, the latter being lower for only 3 tasks. Possibly due to

expanding fewer states than the normal version

Figure 7.14: Memory comparison cycle vs integrated cycle logistics98

Nonetheless, there is a difference in memory to RHW. For 5 tasks, the integrated version is

lower due to the expanded states.

Experimental Evaluation 29

Figure 7.15: Memory comparison RHW vs integrated cycle logistics98

7.5 Comparison to Paul et al. (2017)
When comparing our results to the one from the paper, we notice for logistics98 that some-

thing is not as expected. We expand too many states even though finding the perfect

heuristic sometimes. Both heuristics, the cyclic landmark heuristic, and the integrated ver-

sion, yield identical results for the initial heuristic value, which is not the case in the results

from Paul et al. (2017). In logistics00, we have no comparison to the paper. However,

for the additional benchmark sets, we do. In some problem files from our implementation,

the heuristic values are identical for both versions, however, in Paul et al. (2017) there are

differences. Sometimes we yield better results and sometimes worse than the results in the

paper. Since we do not know the cause, this could also be looked at as future work.

8
Conclusion

In this thesis, we generated landmarks for a domain-specific task, the logistics task. We

noticed that domain-specific landmark generators are better suited to solve domain-specific

tasks than domain-independent landmark generators. The number of landmarks found, and

the corresponding orderings between them, yield higher in our landmark generator.

We first looked at the representation of a logistics planning task and which vehicles we use

to transport a package to its given destination. We then discussed landmarks, actions that

need to occur at least once in every plan. We discussed that logistics tasks can include cycles

and used them for the cyclic landmark heuristic. We noticed that by introducing cycles,

a key location has to be visited at least twice which yields better results for the heuristic

estimate. We then looked at landmarks for the logistics tasks, how they are generated, and

the creation of the landmark graph.

8.1 Future Work
For future work, we have a few things to address. It would be exciting to see the difference

between the RHW landmarks and the domain-specific landmarks to improve the domain-

independent methods, ultimately also improving the results of other domains.

The overlapping area in Section 7.1 is very interesting to look at, as it is unknown why there

is such a jump in the plots. Addressing this in future work could be very interesting.

Also during the thesis and the implementation, we came to realize that landmarks in the

initial state, that are true and need further actions to reach the goal state, probably need

some more research. During the implementation, there were some issues to address with the

initial state landmarks, which should have been accounted for, however, they were not.

In the future state of this world, you should never worry about your package being efficiently

delivered to your home!

A
Appendix

We discovered ways to generate landmarks and their corresponding landmark graph. An

important step before assembling all the data and generating the landmark graph was pre-

processing. As the data can be hard to work with sometimes, this contribution is important

to remodel, redesign and rethink logistics-specific tasks or in general domain-specific land-

mark generators. Therefore we want to introduce an essential implementation part of the

thesis.

A.1 Benchmarks and their structure
We work with the IPC benchmarks logistics98 and logistics00, as well as an additional

benchmark that is similar to the logistics00. The difference between those two benchmark

sets is that logistics98 is more complex to solve than logistics00 since there are more than

two locations and there are more than a single truck in a city. The logistics00 set does only

have two locations and a single truck per city. What they have in common is the number of

airplanes. Not by actual amount but both sets use more than one airplane to fly between

cities.

A.2 Information Assembling
In the Fast Downward planner from Helmert (2006), information is stored in different kinds

of structures. These structures are used to assemble data and store the data in hash maps

for constant lookup times. From a task proxy or state, we can retrieve fact pairs as defined

in chapter 4. Every fact pair can be divided into atoms, which cannot be further divided.

As an example, a fact (truck at position 2) can be divided into truck or position 2. As this

data is not unique (variable → value), this bears some problems. For example, position 1

in city 1 and position 2 in city 2 have the same value, thus making it harder to code. To

ensure uniqueness, we introduce a structure to map various positions to a unique value.

MapperPair The MapperPair is quite intuitive. It maps one value to another. It is used

to ensure the uniqueness of the data and to easily create facts on the go. Facts are created

Appendix 32

by using the lookup maps. A way to create fact pairs is shown in the following algorithm:

Algorithm 1 Creating fact pairs from mapper pairs

1: function ToFactPair(MapperPair)
2: variable iterator ← locationToVariableIndex . Get the iterator of the hashmap
3: assert variable iterator 6= end of locationToVariableIndex
4: factVariable ← variable from variableIterator . Get fact variable
5: value iterator ← valueOfLocation.from(factVariable) . Get corresponding values
6: factValue ← -1
7: for i ∈ value iterator → locations do
8: if value is searched value then
9: factValue ← i

10: break
11: end if
12: assert factValue 6= -1 . Not found
13: return 〈 factVariable, factValue 〉 . This is the fact pair we searched for
14: end for
15: end function

This way we ensure to get the right fact pairs for the creation of the landmarks.

City Info We now have a foundation for the creation of fact pairs. However, we still

need information about the current city, their locations, and their trucks. We could use

the state and filter information from there. An easier approach to get information about

the current city was to parse all relevant data into a struct, which ultimately was called

CityInfo. CityInfo consists of four crucial elements:

• A list of positions

• An airport (since a city can only have one airport in these problem files)

• One truck or (if more trucks available) a list of trucks, and

• the city itself

All CityInfos will be stored in a vector, creating a ”map”. Note that an airplane can leave

cities and fly between different airports, and therefore will not be stored in the CityInfo.

To retrieve information, we will use the following method:

Appendix 33

Algorithm 2 Create the city information

1: function GetCityInfoPtr(Location)
2: if hasType City then
3: search the city in vector
4: assert city found
5: return copyOfCity
6: else if hasType Airport then
7: search the city with corresponding airport in vector
8: assert city found
9: return copyOfCity

10: else if hasType Truck then
11: search the city in vector and iterate through all trucks . In logistics00 we do not

have to iterate through all trucks since there is only one truck in each city
12: assert city found
13: return copyOfCity
14: else if hasType Position then
15: search the city in vector and iterate through all positions
16: assert city found
17: return copyOfCity
18: else
19: assert false
20: end if
21: end function
22: function GetCityInfo(Location) . This function will create a copy of the

information
23: cityInfo ← GetCityInfoPtr(Location)
24: if cityInfo 6= nullptr then
25: return cityInfo
26: end if
27: return wrongCity . this will lead into a crash
28: end function

This framework we provide is an important step to assemble data in a comfortable way. If

there is any need for further explanation, check the github repository.

Bibliography

Clemens Büchner. Generalization of cycle-covering heuristics, 2020.

Clemens Büchner, Thomas Keller, and Malte Helmert. Exploiting cyclic dependencies in

landmark heuristics. In Proceedings of the International Conference on Automated Plan-

ning and Scheduling, volume 31, pages 65–73, 2021a.

Clemens Büchner, Thomas Keller, and Malte Helmert. Code, benchmarks and experiment

data for the ICAPS 2021 paper ”Exploiting Cyclic Dependencies in Landmark Heuristics”,

2021b. URL https://doi.org/10.5281/zenodo.4604735.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic deter-

mination of minimum cost paths. IEEE transactions on Systems Science and Cybernetics,

4(2):100–107, 1968.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning. Journal

of Artificial Intelligence Research, 22:215–278, 2004.

IBM. Ibm cplex studio, 2021. URL https://www.ibm.com/products/

ilog-cplex-optimization-studio.

Drew M. McDermott. The 1998 ai planning systems competition. AI Magazine, 21(2):

35, Jun. 2000. doi: 10.1609/aimag.v21i2.1506. URL https://ojs.aaai.org/index.php/

aimagazine/article/view/1506.

Gerald Paul and Malte Helmert. Optimal solitaire game solutions using a search and dead-

lock analysis. Heuristics and Search for Domain-independent Planning (HSDIP), page 52,

2016.

Gerald Paul, Gabriele Röger, Thomas Keller, and Malte Helmert. Optimal solutions to

large logistics planning domain problems. In Tenth Annual Symposium on Combinatorial

Search, 2017.

Florian Pommerening, Gabriele Röger, Malte Helmert, and Blai Bonet. Lp-based heuristics

for cost-optimal planning. Proceedings of the International Conference on Automated

Planning and Scheduling, 24:226–234, 2014. URL https://ojs.aaai.org/index.php/ICAPS/

article/view/13621.

Bibliography 35

Silvia Richter. Landmark-Based Heuristics and Search Control for Automated Planning.

PhD thesis, Citeseer, 2010.

Silvia Richter and Matthias Westphal. The lama planner: Guiding cost-based anytime

planning with landmarks. Journal of Artificial Intelligence Research, 39:127–177, 2010.

Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks revisited. In AAAI,

volume 8, pages 975–982, 2008.

Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward lab,

2017. URL https://doi.org/10.5281/zenodo.790461.

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Günes Aydin

Matriculation number — Matrikelnummer

2018-058-636

Title of work — Titel der Arbeit

Evaluating the Cyclic Landmark Heuristic with a Logistics-specific Landmark Generator

Type of work — Typ der Arbeit

Bachelor thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged

the assistance received in completing this work and that it contains no material that has

not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognized scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene

Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln

verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, September 12, 2021

Signature — Unterschrift

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Definitions
	2.2 Heuristic Search

	3 Logistics Domain
	3.1 Logistics Tasks

	4 Landmarks
	4.1 Landmarks and Ordering

	5 Cyclic Landmark Heuristic
	6 Landmark Generator
	6.1 Generating landmarks

	7 Experimental Evaluation
	7.1 Initial heuristic value
	7.1.1 Logistics00 and additional benchmark
	7.1.2 Logistics98

	7.2 Total Time
	7.2.1 Logistics00 and additional benchmark
	7.2.2 Logistics98

	7.3 Expansions until last jump
	7.3.1 Logistics00 and additional benchmark
	7.3.2 Logistics98

	7.4 Memory
	7.4.1 Logistics00 and additional benchmark
	7.4.2 Logistics98

	7.5 Comparison to Paul et al. (2017)

	8 Conclusion
	8.1 Future Work

	A Appendix
	A.1 Benchmarks and their structure
	A.2 Information Assembling

	Bibliography
	Declaration on Scientific Integrity

