
SAT Modeling and SAT Solver
Implementation for Nonograms

Bachelor Thesis

Natural Science Faculty of the University of Basel
Department of Mathematics and Computer Science

Artificial Intelligence Group
https://ai.dmi.unibas.ch/

Examiner: Prof. Malte Helmert
Supervisor: Claudia Grundke

Aldris Arslani
aldris.arslani@unibas.ch

21-051-842

August 20, 2025

Abstract

This thesis investigates automated Nonogram solving through propositional sat-
isfiability (SAT). Nonograms are logic puzzles defined by numerical row and column
clues that specify consecutive blocks of black cells in a grid. We present two en-
codings of Nonograms as conjunctive normal form (CNF) formulas: the Sequence
Enumeration encoding, which models each valid coloring of a line as a variable, and
the Block-Based encoding, which models each block of a valid coloring as a vari-
able. To evaluate these encodings, we implemented a conflict-driven clause learning
(CDCL) solver with specialized decision heuristics for Nonograms. Comparative ex-
periments demonstrate that the Block-Based encoding yields smaller formulas and
faster solving times than Sequence Enumeration. Furthermore, heuristics exploit-
ing structural properties of Nonograms can outperform general-purpose heuristics.
A comparison with MiniSat indicates that overall performance remains largely de-
termined by the efficiency of the implementation.

1

Contents

1 Introduction 3

2 Background 4
2.1 CNF Formulas . 4
2.2 SAT Solvers . 5
2.3 DIMACS Format . 7

3 Nonogram Encodings 8
3.1 Nonograms . 8
3.2 Encodings . 8
3.3 Approach . 9

4 Sequence Enumeration 10
4.1 Prerequisites . 10
4.2 Encoding . 11
4.3 Comparison to the CSP Approach . 12
4.4 Proof of Correctness . 13
4.5 Variable and Clause Counts . 14

5 Block-Based Encoding 15
5.1 Encoding . 15
5.2 Comparison to the CSP Approach . 16
5.3 Proof of Correctness . 17
5.4 Variable and Clause Counts . 18

6 CDCL Solver 20
6.1 Overview . 20
6.2 Unit Propagation . 21
6.3 Conflict Analysis . 24
6.4 Decision Heuristics . 25
6.5 Restarts . 26
6.6 Clause Deletion . 27

7 Experimental Evaluation 28
7.1 Methodology . 28
7.2 Encodings Evaluation . 28
7.3 Decision Heuristics and Restart Strategies Evaluation 30
7.4 Evaluation against MiniSat . 32

8 Conclusion 33

2

1 Introduction

Nonograms are logic puzzles in which a hidden black-and-white image is reconstructed
on a grid using numerical clues. Each clue specifies the lengths of consecutive black cells
in a row or column, while all other cells remain white. By combining the information
from all clues, the complete image can be determined. An example puzzle together with
its solution is shown in Figure 1.

Figure 1: A Nonogram puzzle (left) and its unique solution (right).

Nonograms can be described formally and encoded as instances of the Satisfiability
Problem (SAT). Different encodings have been explored, ranging from straightforward
formulations that directly model each cell to approaches based on deterministic finite
automata that capture whole line descriptions [7]. In this thesis we present two SAT
encodings of Nonograms that are both based on recent Constraint Satisfaction Problem
(CSP) approaches introduced by Aramian and Yeghiazaryan [2]. Our encodings retain
the structural ideas of those CSP approaches but translate them into Conjunctive Normal
Form (CNF) formulas suitable for SAT solvers.

To solve these formulas we require a SAT solver. For this purpose we implemented
our own solver from scratch. The implementation follows the basic design of modern
conflict-driven clause learning (CDCL) solvers, taking the SAT solver MiniSat [6] as a
minimal reference point and relying on the description of CDCL in [11]. This solver
provides us with full control over the internals, which allows us to implement specialized
decision heuristics for our Nonogram encodings. This gives us the opportunity to not
only evaluate the encodings themselves, but also to study whether heuristics that exploit
the structure of Nonograms can accelerate the solving process.

3

2 Background

In order to present the methods and implementation used in this thesis, we first give an
introduction to propositional logic, focusing on CNF formulas and their evaluation under
partial assignments. We then describe the central techniques of modern SAT solvers,
in particular unit propagation and CDCL. Lastly, we present the DIMACS format, the
standard representation of CNF formulas used as input for SAT solvers.

2.1 CNF Formulas

We introduce the basic notation and terminology of propositional logic used in this thesis,
based on [11, 9]. The presentation is tailored to the purpose of CNF encodings and SAT
solvers, and should be understood in that context.

We always assume a finite set of Boolean variables X = {x1, x2, . . . , xn}. We use the
terms variable and Boolean variable interchangeably in this thesis.

A literal is either a variable xi ∈ X or its negation ¬xi. A clause is a disjunction
of one or more literals, for example (x1 ∨ ¬x3 ∨ x4). A formula is a conjunction of such
clauses, for example (x1) ∧ (x2 ∨ ¬x3). We also use the terms formula and CNF formula
interchangeably.

A formula can equivalently be written in set notation. Each clause is viewed as a
finite set of literals, and the formula as a finite set of such clauses. For example, the
formula (x1 ∨¬x2)∧ (¬x1 ∨ x3 ∨ x4) can be written as the set {{x1,¬x2}, {¬x1, x3, x4}}.
The notation used will be clear from context.

An assignment is a function τ : X → {0, u, 1}, where u denotes an undefined value. If
all variables are assigned either 0 or 1 under τ , the assignment is called a total assignment.
If at least one variable is assigned u, the assignment is partial.

In this thesis, extending an assignment refers to creating a new assignment τ ′ from
an existing assignment τ by setting τ ′(xi) := v for some variable xi with τ(xi) = u and
v ∈ {0, 1}, such that τ ′(xj) = τ(xj) for all xj ̸= xi. For simplicity, we refer to the
extended assignment again as τ .

Assignments are used to evaluate literals, clauses, and formulas. We define 0 < u < 1
and 1− u = u. Then, given an assignment τ , the value of a literal l under τ is defined as

lτ =

{
τ(xi) if l = xi

1− τ(xi) if l = ¬xi.

The value of a clause ω under τ is defined as the maximum of the values of its literals:

ωτ = max{lτ | l ∈ ω}.

The value of a formula φ under τ is defined as the minimum of the values of its clauses:

φτ = min{ωτ | ω ∈ φ}.

We call a clause ω satisfied by an assignment τ if lτ = 1 for some l ∈ ω, and falsified
if lτ = 0 for all l ∈ ω. A formula φ is satisfiable if there exists a assignment τ such
that ωτ = 1 for all ω ∈ φ, and unsatisfiable otherwise. We note that an assignment τ
for which φτ = 1 can be partial, since every clause ω requires only one of its literals to
evaluate to 1 for ωτ = 1 to hold.

4

2.2 SAT Solvers

The propositional satisfiability problem is the task of deciding whether a CNF formula φ
is satisfiable. A tool that solves this problem is called a SAT solver. It takes φ as input
and either reports that φ is satisfiable and returns an assignment τ such that φτ = 1, or
reports that φ is unsatisfiable.

One approach to solving the SAT problem is based on the CDCL algorithm. While
representations of its components may vary, we use a representation based of [11, 9].

The CDCL algorithm uses a technique known as unit propagation. Given a CNF
formula φ and an assignment τ , a clause ω = (l1 ∨ · · · ∨ lk) in φ is said to be unit under
τ if lτj = u for exactly one literal lj with 1 ≤ j ≤ k, and lτi = 0 for all i = 1, . . . , k with
i ̸= j. In this case, lj is said to be implied by ω under τ , and τ is extended by setting
τ(xj) := 1 if lj = xj, or τ(xj) := 0 if lj = ¬xj, assuming lj ∈ {xj,¬xj}. This step is
referred to as a unit propagation step.

A single unit propagation step can cause other clauses in the formula to become unit,
allowing further unit propagation steps, or cause a clause to become falsified. In the
latter case, we say that a conflict has occurred. The process of repeatedly applying unit
propagation steps until either a clause is falsified or no unit clause remains is called
unit propagation. We note that if no clause is unit under the assignment, then no unit
propagation step can be performed.

Example. Let φ = {{x1, x2}, {¬x2, x3}, {¬x3}} and let τ be an assignment such that
τ(x1) = 0, τ(x2) = u, and τ(x3) = u. We now perform unit propagation, considering the
clauses from left to right.

The first clause {x1, x2} is unit under τ because xτ
1 = 0 and xτ

2 = u. Thus, x2 is
implied and τ is extended with τ(x2) := 1, making xτ

2 = 1.
The second clause {¬x2, x3} is now unit because (¬x2)

τ = 0 and xτ
3 = u. Therefore,

x3 is implied and τ is extended with τ(x3) := 1, giving xτ
3 = 1.

The third clause {¬x3} is now falsified since (¬x3)
τ = 0. A conflict therefore occurs.

A decision is an extension of an assignment made without a clause implying it, where
a variable x whose assigned value is undefined is assigned a value such that the literal
l ∈ {x,¬x} evaluates to 1.

A trail is a sequence of annotated literals (l∗1, . . . , l
∗
n), where l

∗
i ∈ {ldec, lω}, that records

the order of extensions, together with the reason for each extension, either as a decision
or as a clause. Each entry in the trail is of the form ldec if the literal l evaluates to 1 due
to a decision, or lω if l evaluates to 1 due to a unit propagation step from a clause ω.

The value assigned to each variable can be obtained by following the trail, since for
each annotated literal l∗ ∈ {ldec, lω} the variable x such that l ∈ {x,¬x} is assigned a
value so that lτ = 1 holds. The decision level of an annotated literal is defined as the
number of decision literals ldec that appear before or at that point in the trail.

Example. Let φ = {{¬x1,¬x2}, {x2, x3}, {¬x3}}, and let τ be an assignment such that
τ(x1) = τ(x2) = τ(x3) = u.

Since no clause is unit under τ , we cannot perform unit propagation. We make the
decision to extend τ with τ(x1) := 1. Now we can perform unit propagation, considering
the clauses from left to right.

5

The first clause {¬x1,¬x2} becomes unit, since (¬x1)
τ = 0 and (¬x2)

τ = u. Thus, x2

is implied and τ is extended with τ(x2) := 0.
Next, the clause {x2, x3} becomes unit because xτ

2 = 0 and xτ
3 = u. Therefore, x3 is

implied and τ is extended with τ(x3) := 1.
Finally, the clause {¬x3} is falsified, since (¬x3)

τ = 0, and a conflict occurs.
The resulting trail is

xdec
1 , ¬x{¬x1,¬x2}

2 , x
{x2,x3}
3 .

The corresponding assignment is τ = {x1 7→ 1, x2 7→ 0, x3 7→ 1}, and the decision level
of all literals is 1.

Trails can be represented as acyclic directed graphs, called implication graphs. A
directed graph is a pair (V,E), where V is a set of vertices and E ⊆ V × V is a set of
directed edges. A path in a directed graph is a sequence of vertices (v1, v2, . . . , vk) such
that (vi, vi+1) ∈ E for all i = 1, . . . , k − 1. The graph is acyclic if there is no non-empty
path from any vertex back to itself.

Given a trail π, the corresponding implication graph Gπ = (V,E) is constructed as
follows. Each vertex in V corresponds to a literal that appears in π. For each entry
of π in the form of lω, where ω = {l1, . . . , lk, l} is the clause that implied l, the graph
contains directed edges (¬l1, l), . . . , (¬lk, l). If the assignment falsifies a clause {l1, . . . , lk},
a special vertex ⊥ is added to V , and the edges (¬l1,⊥), . . . , (¬lk,⊥) are included in E.
By construction, Gπ is acyclic.

Example. Let φ = {{¬x1,¬x2}, {x2, x3}, {¬x3}} and suppose the trail after unit
propagation is

xdec
1 , ¬x{¬x1,¬x2}

2 , x
{x2,x3}
3 .

The first entry xdec
1 has no incoming edges. The second entry ¬x{¬x1,¬x2}

2 adds an edge

(x1,¬x2). The third entry x
{x2,x3}
3 adds an edge (¬x2, x3).

Now the clause {¬x3} is falsified, so it becomes the conflict clause. We add a special
vertex ⊥ and an edge (x3,⊥). The resulting implication graph has V = {x1,¬x2, x3,⊥}
and E = {(x1,¬x2), (¬x2, x3), (x3,⊥)}.

In the CDCL algorithm, conflict analysis examines a conflict and derives a new clause,
called a learned clause, that prevents it from reoccurring. This process is best described
using the implication graph. A partition of the vertex set V of Gπ is a pair of disjoint
sets (A,B) such that A ∪ B = V . From an implication graph Gπ obtained from a trail
that falsifies at least one clause, we can identify the reason for the conflict by selecting
a partition (A,B) in which all decision literal vertices belong to A and ⊥ belongs to B.
Such a partition is called a conflict cut. Let

R = {l ∈ A | ∃ l′ ∈ B : (l, l′) ∈ E}

be the reason set of the cut, consisting of the vertices in A with edges to B. The learned
clause corresponding to the cut is ∨

l∈R

¬l.

If all literals in R evaluate to 1 under an assignment, the learned clause is falsified and
the same conflict occurs. Adding the learned clause to the formula preserves all satisfying
assignments and prevents the same conflict from arising again.

6

Example. Let φ = {{¬x1,¬x2}, {x2, x3}, {¬x3, x4}, {¬x4}} and suppose the trail is

xdec
1 , ¬x{¬x1,¬x2}

2 , x
{x2,x3}
3 , x

{¬x3,x4}
4

with conflict clause {¬x4}. The implication graph contains vertices x1, ¬x2, x3, x4, and
⊥, and edges (x1,¬x2), (¬x2, x3), (¬x3, x4), (x4,⊥).

One possible conflict cut is

A = {x1,¬x2, x3}, B = {x4,⊥},

giving
R = {x3}.

The learned clause corresponding to this conflict cut is {¬x3}. If x3 is assigned 1, unit
propagation implies x4 and immediately falsifies the clause {¬x4}, reproducing the con-
flict.

A vertex l in an implication graph Gπ obtained from a trail that falsifies at least
one clause is called a unique implication point (UIP) if all paths from the most recent
decision literal to ⊥ go through l. The most recent decision literal is always a UIP by
definition. Among all UIPs, the first UIP is the one closest to the conflict vertex along
any path from the latest decision literal. A UIP cut is a conflict cut where B consists
of the UIP and all vertices reachable from it, and A contains the rest. The conflict cut
in the previous example is, for example, such a first UIP cut. The learned clause from a
first UIP cut contains exactly one literal from the most recent decision level.

After learning a clause ω from a first UIP cut, the CDCL algorithm backjumps to
the highest decision level m among the literals of ω that is strictly less than the current
decision level. A backjump is the removal of all literals from the trail whose decision level
is greater than m, thereby discarding every assignment that depended on more recent
decisions. Because ω contains exactly one literal from the latest decision level, after
backjumping it becomes unit under the assignment and immediately implies that literal.

2.3 DIMACS Format

SAT solvers commonly take input in the DIMACS format, which represents a CNF for-
mula as plain text. The file may begin with comment lines starting with the letter c.
These are followed by a problem line of the form p cnf v c, where v is the number of
variables and c is the number of clauses.

Each clause is written as a sequence of non-zero integers followed by 0. A positive
integer i represents the literal xi, and a negative integer −i represents the literal ¬xi.
Clauses may span multiple lines. The order of literals within a clause and the order of
clauses in the file do not matter.

For example, the CNF formula (x1∨¬x2)∧ (x3∨x4∨¬x1) is represented in DIMACS
format as

c Example CNF

p cnf 4 2

1 -2 0

3 4 -1 0

7

3 Nonogram Encodings

In order to apply SAT solvers to Nonogram puzzles, we require encodings that translate
the puzzle constraints into a formula. We first introduce Nonograms formally. We then
describe how such puzzles can be represented as CNF formulas by introducing Boolean
variables and clauses that capture the constraints given by the clues.

3.1 Nonograms

A Nonogram is a puzzle defined on a grid of n×m cells, where each cell must be colored
either black or white. A line Li refers to either the i-th row Ri or the i-th column Ci

of the grid. The length l ∈ {n,m} of line Li is given by the number of cells in it. A
coloring of a line Li of length l is a sequence p ∈ {0, 1}l, where 0 denotes a white cell and
1 denotes a black cell.

The puzzle is specified by n row clues and m column clues. Each line Li is associated
with a clue (g1, g2, . . . , gt), where gj ∈ N+ for j = 1, . . . , t, and each gj specifies a block
of gj consecutive black cells in the line. The blocks must appear in the given order and
be separated by at least one white cell. Additional white cells may occur before the first
block and after the last block. A coloring satisfies a clue (g1, . . . , gt) if its black cells form
exactly t maximal consecutive blocks, and the lengths of these blocks are g1, . . . , gt in this
order.

We consider only Nonograms that have a unique solution. A solution for a Nonogram
is a coloring of all lines such that every clue is satisfied. A solution for a line is a coloring
that satisfies its clue. We note that a single line may have multiple solutions.

3.2 Encodings

An encoding is a representation of the Nonogram as a CNF formula φ such that any
assignment found by a SAT solver corresponds exactly to a solution of the puzzle.

The construction of the encoding starts with an empty set of Boolean variables X and
an empty formula φ. Variables are added to represent structural properties of the puzzle,
such as a specific cell being black or a block starting at a certain position. Assigning the
value 1 to a variable means that the property it represents holds in the grid.

Each clause in φ represents part of the conditions that together enforce the clues of
the puzzle. If every clause in φ evaluates to 1, then all clues are satisfied.

Many clauses arise from the fact that in a solution exactly one of several structural
properties can hold. This is typically encoded by combining an at-least-one clause with
multiple at-most-one clauses.

Let L = {l1, . . . , lk} be a finite set of literals. The at-least-one clause is

(l1 ∨ l2 ∨ · · · ∨ lk),

ensuring that at least one literal evaluates to 1.
The at-most-one clauses are ∧

1≤i<j≤k

(¬li ∨ ¬lj) ,

ensuring that at most one literal evaluates to 1. This encoding introduces
(
k
2

)
clauses

[4]. An encoding that introduces less clauses uses auxiliary variables s1, . . . , sk−1 and the

8

sequential counter construction. The clauses are

k−1∧
i=1

(¬li ∨ si) ∧ (¬si ∨ si+1) ∧ (¬si ∨ ¬li+1),

which ensure that if li evaluates to 1, then all lj with j > i do not evaluate to 1. This
encoding requires k − 1 auxiliary variables and 3k − 4 clauses [4].

3.3 Approach

In this thesis we introduce two SAT encodings for Nonograms: the Sequence Enumeration
encoding and the Block-Based encoding. Both encodings are translations of the CSP-
based approaches of Aramian and Yeghiazaryan [2] into CNF formulas.

In the following sections we first describe each encoding in detail. We then com-
pare how they relate to the CSP approaches on which they are based. Then, in the
experimental evaluation, we will compare the two SAT encodings against each other.

9

4 Sequence Enumeration

In this section we introduce the Sequence Enumeration encoding. For each line we define
the set of all of its solutions. We then represent each solution by a Boolean variable. Based
on these variables we then describe how to construct an encoding of the Nonogram.

4.1 Prerequisites

We assume an n ×m Nonogram, an empty formula φ, and an empty variable set X. A
solution of a line Li of length l is a coloring that satisfies the clue of Li. The set of all
such solutions for Li is

SLi
1 = { s ∈ {0, 1}l | s satisfies the clue of Li}.

We distinguish between two types of lines. Either all rows are of the first and all
columns are of the second type, or all columns are of the first and all rows are of the

second type. For a line of the first type L1
i , every solution in S

L1
i

1 is represented by a
Boolean variable. For a line of the second type L2

j , only those solutions are represented
that are consistent with the solutions of the first type. Two solutions are consistent if
they belong to intersecting lines and assign the same color to the intersecting cell. The
set of represented solutions of L2

j is

S
L2
j

2 = { s ∈ S
L2
j

1 | s is consistent with some t ∈ S
L1
i

1 , i = 1, . . . , l}.

We aim to generate as few solutions as possible. Therefore, we must consider whether
it is more efficient to generate S

Cj

2 from SRi
1 or SRi

2 from S
Cj

1 . We assume that the ratios

|SCj

2 |
|SCj

1 |
and

|SRi
2 |

|SRi
1 |

are similar. It is then advantageous to start with the type of lines that have fewer solutions
in S1, since this excludes more solutions when generating S2 for the other type of line.

To count the sizes of the sets SR1
1 , . . . , SRn

1 , SC1
1 , . . . , SCm

1 without explicitly generating
the solutions, we use the following result.

Theorem (Stars and Bars) [15, Section 1.2]. For positive integers n and k, the
number of k-tuples of non-negative integers whose sum is n is(

n+ k − 1

k − 1

)
.

Consider a line Li of length l with clue (g1, g2, . . . , gt). Let b = g1 + g2 + · · · + gt be
the total number of black cells, so the number of white cells is l − b. The clue requires
that t blocks are placed in the line with at least one white cell between blocks.

We introduce a (t+1)-tuple (x1, x2, . . . , xt+1) of non-negative integers, where x1 is the
number of white cells before the first block, xt+1 after the last block, and xi represents
the number of white cells between the i − 1-th and i-th block for i ∈ {2, . . . , t}. Since
t− 1 white cells are reserved as mandatory separators, the remaining l− b− (t− 1) white

10

cells can be freely distributed among the t+ 1 positions. By the stars and bars theorem,
with n = l − b− (t− 1) and k = t+ 1, the number of possible tuples is(

l − b+ 1

t

)
.

Each tuple corresponds to exactly one solution for the line, so

|SLi
1 | =

(
l − b+ 1

t

)
.

4.2 Encoding

The construction of the encoding starts by adding, for each line L1
i and each solution

s ∈ S
L1
i

1 , the Boolean variable xL1

i,s to X. For each line L2
j and each solution t ∈ S

L2
j

2 , we

add the Boolean variable xL2

j,t to X. We call these solution variables. Assigning the value
1 to a solution variable means that the line takes the corresponding solution.

Example. Consider the first row of the Nonogram in Figure 1:

1 2

For this row, there are three solutions. Thus, we add the solution variables:

xR1,(1,0,0,1,1)

xR1,(0,1,0,1,1)

xR1,(1,0,1,1,0)

To enforce that each line has exactly one solution, we first add at-least-one clauses
and then at-most-one clauses to φ. The at-least-one clauses are∨

s∈S
L1
i

1

xL1

i,s for each line L1
i ,

∨
t∈S

L2
j

2

xL2

j,t for each line L2
j .

Let k = |SL1
i

1 | be the number of solutions for line L1
i and p = |SL2

j

2 | the number of
solutions for line L2

j . We add to X the auxiliary Boolean variables uL1

i,1, . . . , u
L1

i,k−1 for L1
i

and uL2

j,1, . . . , u
L2

j,p−1 for L2
j . The at-most-one clauses are

k−1∧
r=1

(¬xL1

i,sr ∨ uL1

i,r) ∧ (¬uL1

i,r ∨ uL1

i,r+1) ∧ (¬uL1

i,r ∨ ¬xL1

i,sr+1
) for each line L1

i ,

11

p−1∧
r=1

(¬xL2

j,tr ∨ uL2

j,r) ∧ (¬uL2

j,r ∨ uL2

j,r+1) ∧ (¬uL2

j,r ∨ ¬xL2

j,tr+1
) for each line L2

j .

The coloring of two intersecting lines must have the same color in their intersection
cell for it to be a solution for the Nonogram. To encode this, we add consistency clauses
to φ. First, we add the Boolean variables bi,j for every cell (i, j) to X. We call them
cell variables. Assigning 1 to a cell variable means that the corresponding cell in the
Nonogram is colored black. Without loss of generality, we assume that all rows are of the
first type and all columns are of the second type.

Then, for each solution s ∈ SRi
1 the consistency clauses are

¬xR
i,s ∨ bi,j if the j-th entry of s is 1,

¬xR
i,s ∨ ¬bi,j if the j-th entry of s is 0.

For each solution t ∈ S
Cj

2 the consistency clauses are

¬xC
j,t ∨ bi,j if the i-th entry of t is 1,

¬xC
j,t ∨ ¬bi,j if the i-th entry of t is 0.

Example. Suppose s ∈ SRi
1 represents a solution in which cell (i, j) is black and t ∈ S

Cj

2

represents a solution in which the same cell is white. Then we add

¬xR
i,s ∨ bi,j, ¬xC

j,t ∨ ¬bi,j.

If both xR
i,s and xC

j,t are assigned the value 1, the first clause enforces bi,j = 1 while the
second enforces bi,j = 0, which is impossible. Therefore xR

i,s and xC
j,t cannot both be

assigned the value 1.

4.3 Comparison to the CSP Approach

In the CSP approach of Aramian and Yeghiazaryan [2], each row and column is modeled
as a non-Boolean variable whose domain is the set of all solutions for that line. Solv-
ing proceeds by constraint propagation, where the domains are iteratively reduced by
eliminating solutions that are inconsistent with the domains of intersecting lines, until a
complete solution is obtained.

In our SAT encoding the role of these domains is taken by the solution set of each
line. Each element of a solution set is represented by a Boolean variable, and when
constructing the solution sets of the second type of lines we restrict them to only those
solutions that are consistent with the already generated first type. This corresponds to
the solving method of the CSP approach, but in our case it is applied only once during
preprocessing. From that point onward the solution sets remain fixed, and the Boolean
variables together with the corresponding constraints are turned into a CNF formula that
is then given to the SAT solver.

12

4.4 Proof of Correctness

Theorem (Sequence Enumeration). The Sequence Enumeration Encoding is satis-
fiable if and only if the Nonogram has a solution.

Proof. ”⇒” Assume that the CNF formula φ constructed by the Sequence Enumeration
encoding is satisfiable. Then there exists an assignment τ that satisfies all clauses in φ.

For each line L1
i , the at-least-one clause∨

s∈S
L1
i

1

xL1

i,s

ensures that at least one solution variable xL1

i,s is assigned the value 1, and the at-most-one
clauses enforce that no two such variables are assigned the value 1. Similarly, for each
line L2

j , the at-least-one clause ∨
t∈S

L2
j

2

xL2

j,t

together with its at-most-one clauses ensures that exactly one solution variable xL2

j,t is
assigned the value 1. Therefore, τ assigns exactly one solution variable the value 1 for
every line in the Nonogram.

For each cell (i, j), the consistency clauses

¬xL1

i,s ∨ bi,j, ¬xL1

i,s ∨ ¬bi,j, ¬xL2

j,t ∨ bi,j, ¬xL2

j,t ∨ ¬bi,j

ensure that, without loss of generality, if xL1

i,s represents the selected solution of row i

and xL2

j,t represents the selected solution of column j, and both are assigned the value
1, then the coloring of cell (i, j) in s and t must agree. Since τ satisfies all consistency
clauses, the colors represented by the selected row and column solutions agree on every
cell variable bi,j.

By construction, every solution s ∈ S
L1
i

1 and t ∈ S
L2
j

2 represents a coloring that satisfies
the clue of its corresponding line. Therefore, τ represents a coloring of the entire grid in
which every clue is satisfied and all cells are consistent. Thus, τ corresponds to a solution
of the Nonogram.

”⇐” Assume the Nonogram has a solution. Then there exists a coloring of the n×m
grid that satisfies all row and column clues.

For each line L1
i , let s ∈ S

L1
i

1 be the solution of L1
i . Assign the value 1 to xL1

i,s and

assign the value 0 to xL1

i,s′ for all s′ ∈ S
L1
i

1 , s′ ̸= s. For each line L2
j , let t ∈ S

L2
j

2 be the

solution of L2
j . Assign the value 1 to xL2

j,t and assign the value 0 to xL2

j,t′ for all t
′ ̸= t.

For each cell (i, j), assign the value 1 to bi,j if the cell is black in the solution and
assign the value 0 otherwise.

Under this assignment, each line has exactly one solution variable assigned the value
1, satisfying all at-least-one and at-most-one clauses. The consistency clauses are satisfied
because the selected row and column solutions agree on the color of every cell. Hence, τ
satisfies all clauses in φ.

13

4.5 Variable and Clause Counts

Let

L1 =
n∑

i=1

|SL1
i

1 |, L2 =
m∑
j=1

|SL2
j

2 |.

We introduce L1+L2 solution variables and nm cell variables. The at-most-one encoding

for each line L1
i with k = |SL1

i
1 | adds k − 1 auxiliary variables, and for each line L2

j with

p = |SL2
j

2 | adds p − 1 auxiliary variables. In total, this is (L1 − n) + (L2 −m) auxiliary
variables. Hence, the total number of variables is

(L1 + L2) + nm+ (L1 − n) + (L2 −m) = 2L1 + 2L2 + nm− (n+m).

The total number of clauses is the sum of n+m at-least-one clauses,
(
3(L1 + L2)−

4(n+m)
)
at-most-one clauses, and mL1 + nL2 consistency clauses. Therefore, the total

number of clauses is

(n+m)+
(
3(L1+L2)− 4(n+m)

)
+(mL1+nL2) = mL1+nL2+3(L1+L2)− 3(n+m).

Using the result

|SLi
1 | =

(
l − b+ 1

k

)
,

where l is the line length, b is the number of black cells in the line, and k is the number
of blocks, |SLi

1 | is the largest when all blocks have length 1 [2], giving b = k and

|SLi
1 | =

(
l − k + 1

k

)
.

This binomial coefficient is maximized when k = ⌊l/3⌋, giving

|SLi
1 |max =

(
l − ⌊l/3⌋+ 1

⌊l/3⌋

)
.

Then in the worst case

L1 = n

(
m− ⌊m/3⌋+ 1

⌊m/3⌋

)
, L2 = m

(
n− ⌊n/3⌋+ 1

⌊n/3⌋

)
.

Assuming a 10× 10 Nonogram, the worst case has k = ⌊10/3⌋ = 3 and

|SLi
1 |max =

(
10− 3 + 1

3

)
=

(
8

3

)
= 56,

so L1 = L2 = 10 · 56 = 560. Then the total number of variables is

2L1 + 2L2 + nm− (n+m) = 2 · 560 + 2 · 560 + 100− 20 = 2320,

and the total number of clauses is

mL1 + nL2 + 3(L1 + L2)− 3(n+m) = 10 · 560 + 10 · 560 + 3(560 + 560)− 30 = 14500.

14

5 Block-Based Encoding

In this section we introduce the Block-Based encoding. For each block in a line, we define
the set of all start positions that this block can take based on the solutions of that line.
We then represent each start position by a Boolean variable. Based on these variables
we then describe how to construct an encoding of the Nonogram.

5.1 Encoding

We assume an n×m Nonogram with an empty formula φ and an empty set of variables
X. Consider a line Li of length l with clue (g1, . . . , gk). For each block b ∈ {1, . . . , k}
and each start position s ∈ {1, . . . , l}, if there exists a solution of Li in which block b
begins at position s, we add a Boolean variable xLi

b,s to X. We call these variables block

variables. Assigning 1 to xLi
b,s means that block b begins at position s in line Li. The set

of all such start positions for block b is

SLi
b = { s ∈ {1, . . . , l} | there is a solution of Li in which block b begins at s}.

Example. Consider the first row of the Nonogram in Figure 1

1 2

Block 1 and 2 both have two start positions that satisfy the clue. Therefore we add four
block variables

xR1
1,1

xR1
1,2

xR1
2,3

xR1
2,4

We encode that in a solution for the Nonogram each block in each line has exactly
one start position by first adding at-least-one clauses and then at-most-one clauses to φ.
The at-least-one clauses are∨

s∈SLi
b

xLi
b,s for each line Li and block b.

Let t = |SLi
b | be the number of start positions for block b in line Li. We add to X the

auxiliary Boolean variables uLi
b,1, . . . , u

Li
b,t−1 for each line Li and block b. The at-most-one

clauses are

t−1∧
j=1

(¬xLi

b,s
Li
b,j

∨ uLi
b,j) ∧ (¬uLi

b,j ∨ uLi
b,j+1) ∧ (¬uLi

b,j ∨ ¬xLi

b,s
Li
b,j+1

) for each line Li and block b.

15

Two consecutive blocks in the same line must have at least one white cell between
them. To encode this, for each line Li, each pair of consecutive blocks b and b + 1, and
each pair of start positions s ∈ SLi

b and t ∈ SLi
b+1 such that s + gb ≥ t we add a block

consistency clause. The block consistency clause is

¬xLi
b,s ∨ ¬xLi

b+1,t.

In a solution for a Nonogram, a cell (i, j) must have the same coloring in both of its
intersecting lines. To encode this, we add cell consistency clauses.

For line Li and a cell index p, we define

BLi
p = {xLi

b,s ∈ X | s ≤ p < s+ gb}

as the set of block variables whose start positions represent that cell p in line Li is black.
For each x ∈ BRi

j and each y ∈ B
Cj

i , the cell consistency clauses are

¬x ∨
∨

y′∈B
Cj
i

y′, ¬y ∨
∨

x′∈BRi
j

x′.

Example. Suppose BRi
j = {x1, x2} and B

Cj

i = {y1}. The cell consistency clauses are

¬x1 ∨ y1, ¬x2 ∨ y1, ¬y1 ∨ x1 ∨ x2.

If x1 is assigned the value 1, then ¬x1∨y1 implies y1. Similarly, if y1 is assigned the value
1, then ¬y1 ∨ x1 ∨ x2 implies that at least one of x1 or x2 is assigned the value 1. Thus
the row and column agree on the cell being black.

5.2 Comparison to the CSP Approach

In the CSP approach of Aramian and Yeghiazaryan [2], each row and column is repre-
sented as a CSP whose variables are the start positions of the blocks. The domain of
a variable is the set of all possible start positions for that block, and constraints ensure
that consecutive blocks are separated by at least one white cell. Solving proceeds by
systematically enumerating all line solutions using backtracking.

In our Block-Based SAT encoding, the same domains are instead represented as so-
lution sets containing only those start positions that occur in at least one line solution.
Each start position is turned into a Boolean variable, and clauses enforce that consec-
utive blocks are separated. Unlike the CSP approach, where consistency between rows
and columns is maintained by the solving procedure, in our encoding we must explicitly
add consistency clauses to ensure that intersecting rows and columns agree on cells. For
solving, the Boolean variables and constraints are encoded into a CNF formula, which is
then passed to the SAT solver.

16

5.3 Proof of Correctness

Theorem (Block-Based Encoding). The Block-Based Encoding is satisfiable if and
only if the Nonogram has a solution.

Proof. ”⇒” Assume that the CNF formula φ constructed by the Block-Based encoding
is satisfiable. Then there exists an assignment τ that satisfies all clauses in φ.

For each line Li and each block b ∈ {1, . . . , k}, the at-least-one clause∨
s∈SLi

b

xLi
b,s

ensures that at least one block variable xLi
b,s is assigned the value 1. The at-most-one

clauses enforce that no two distinct block variables for the same block are assigned the
value 1. Therefore, exactly one start position is chosen for each block in every line.

For each line Li, each pair of consecutive blocks b and b + 1, and each pair of start
positions s ∈ SLi

b and t ∈ SLi
b+1 such that s+ gb ≥ t, the block consistency clause

¬xLi
b,s ∨ ¬xLi

b+1,t

prevents the two blocks from overlapping or touching, ensuring that there is at least one
white cell between them.

For each cell (i, j), the cell consistency clauses

¬x ∨
∨

y∈B
Cj
i

y, ¬y ∨
∨

x∈BRi
j

x

where x ∈ BRi
j and y ∈ B

Cj

i , ensure that if a row block variable implies that cell (i, j) is
black, then at least one column block variable does as well, and vice versa. Since τ satisfies
all cell consistency clauses, every cell is assigned the same color in both orientations.

By construction, every start position s ∈ SLi
b is derived from a solution of Li. There-

fore, τ corresponds to a solution of the Nonogram.

”⇐” Assume the Nonogram has a solution. Then there exists a coloring of the n×m
grid that satisfies all row and column clues.

For each line Li and each block b ∈ {1, . . . , k}, let s ∈ SLi
b be the start position of

block b in the solution. Assign the value 1 to xLi
b,s and assign the value 0 to xLi

b,s′ for all

s′ ∈ SLi
b with s′ ̸= s.

Under this assignment, the at-least-one clauses are satisfied because each block has
exactly one chosen start position, and the at-most-one clauses are satisfied because no
two start positions for the same block are chosen. The block consistency clauses are
satisfied because the blocks in the solution have at least one white cell between them.
The cell consistency clauses are satisfied because the solution colors each cell identically
from the row and column perspectives.

Hence, the assignment τ satisfies all clauses in φ, so φ is satisfiable.

17

5.4 Variable and Clause Counts

Let

B =
n+m∑
i=1

ki∑
b=1

|SLi
b |

be the total number of block variables, where ki is the number of blocks in line Li, and
let

T =
n+m∑
i=1

ki

be the total number of blocks across all lines. The at-most-one encoding for each SLi
b of

size t adds t − 1 auxiliary variables, giving a total of B − T auxiliary variables. Hence,
the total number of variables is

B + (B − T) = 2B − T.

The total number of clauses is the sum of T at-least-one clauses, 3B−4T at-most-one
clauses from the sequential counter encoding, Q block consistency clauses, and C cell
consistency clauses, where

Q =
n+m∑
i=1

ki−1∑
b=1

∣∣{(s, t) ∈ SLi
b × SLi

b+1 | s+ gLi
b ≥ t}

∣∣,
C =

n∑
i=1

m∑
j=1

(
|BRi

j |+ |BCj

i |
)
.

Therefore, the total number of clauses is

T + (3B − 4T) +Q+ C = 3B − 3T +Q+ C.

A line Li of length li has at most ⌈ li
2
⌉ blocks, since any larger number would leave no

space for the mandatory white cells separating consecutive blocks. Hence

ki ≤ ⌈ li
2
⌉.

Furthermore, a single block can have at most li start positions, so

|SLi
b | ≤ li.

With this we can give upper bounds for T,B,Q and C. The total number of blocks
is bounded by

T =
n+m∑
i=1

ki ≤
1

2

n+m∑
i=1

li =
1

2
(nm+ nm) = nm.

The total number of block variables is bounded by

B =
n+m∑
i=1

ki∑
b=1

|SLi
b | ≤

n+m∑
i=1

ki li ≤
n+m∑
i=1

li
2
li =

1

2

n+m∑
i=1

l2i =
1

2

(
nm2 +mn2

)
=

1

2
nm (m+ n).

18

For the number of block consistency clauses Q, each pair of consecutive blocks in Li

satisfies ∣∣{(s, t) ∈ SLi
b × SLi

b+1}
∣∣ ≤ l2i ,

since each set of start positions has size at most li. Li can contain at most ki ≤ ⌈ li
2
⌉

blocks, and thus at most li/2 consecutive block pairs. Therefore

Q ≤
n+m∑
i=1

li
2
l2i =

1

2

n+m∑
i=1

l3i =
1

2

(
nm3 +mn3

)
=

1

2
nm (m2 + n2).

For the number of cell consistency clauses C, we have |BRi
j | ≤ kRi

and |BCj

i | ≤ kCj

for each cell (i, j). Therefore

C ≤
n∑

i=1

m∑
j=1

(
kRi

+ kCj

)
= m

n∑
i=1

kRi
+ n

m∑
j=1

kCj
≤ m · nm

2
+ n · mn

2
=

1

2
nm (m+ n).

Assuming a 10× 10 Nonogram, we have the bounds

T ≤ nm = 100, B ≤ 1
2
nm(m+ n) = 1000,

Q ≤ 1
2
nm(m2 + n2) = 10000, C ≤ 1

2
nm(m+ n) = 1000.

Then the total number of variables is

2B − T ≤ 2 · 1000− 100 = 1900,

and the total number of clauses is

3B − 3T +Q+ C ≤ 3 · 1000− 3 · 100 + 10000 + 1000 = 13700.

19

6 CDCL Solver

In this section we describe the implementation of our CDCL solver. The design follows
the general descriptions of the CDCL algorithm given in [11, 9], with unit propagation
and conflict analysis based on the minimal reference implementation in [5]. We extend
this baseline by modifying unit propagation to improve efficiency on binary clauses and by
adding decision heuristics, restart strategies aimed at improving performance on Nono-
grams.

6.1 Overview

Our CDCL solver does not take as input a DIMACS file but instead directly works with
an instance of our encodings. The instance provides the solver with all clauses and
variables. The solver relies on three main structures: the trail, the propagation queue,
and the phase array.

The trail records variables in the order they are assigned. Each entry stores the
assigned value, the reason clause that implied the assignment or empty if it was chosen
by the heuristic, and the decision level at which it occurred. From this information the
current assignment can be reconstructed, and the decision level of any literal can be
determined.

The propagation queue, as used in [5], stores the negated literal of each freshly assigned
variable. The assignment is extended by the enqueue operation, where a variable together
with its assigned value and reason is appended to the trail.

The phase array stores for each variable the polarity to be used when the solver makes
a decision. We set it initially to 1, since such an assignment structurally corresponds to
a coloring of the Nonogram. Whenever a variable is assigned, its value is stored in the
phase array so that the same polarity can be reused if the variable is decided again later
in the search. Remembering the last assignment in this way is based on Rsat [13].

Before the main loop begins, the literals of all unit clauses generated by the encoding
are enqueued and their negations pushed to the propagation queue. During clause gen-
eration, such unit clauses are collected separately so they can be passed directly to the
solver at this stage. They correspond to lines that have only one solution.

After these initial assignments, the solver alternates between unit propagation and
variable picking. If the propagation queue is not empty, unit propagation is performed. If
a conflict is detected, conflict analysis produces a learned clause and the solver performs
backjumping according to it before continuing the search. If no conflict occurs and
unassigned variables remain, a new variable is picked according to the decision heuristic
and enqueued with the polarity given by the phase array. The process terminates with
UNSAT if a conflict occurs at decision level 0, or SAT if all variables are eventually
assigned without conflict. The corresponding algorithm can be seen in Figure 2.

20

CDCL(encoding)
initialise trail τ, propagation queue Q, phase array A
for each unit clause {l}
enqueue(l, no reason)
Q.push(¬other)

while true :
if Q not empty :
ω := unitPropagation(τ,Q)
if ω is a conflict :
if decision level = 0 : return UNSAT
ωlearned := analyzeConflict(ω)
add ωlearned to the formula
backjump to an earlier decision level according to ωlearned

enqueue the implied literal from ωlearned with ωlearned as the reason
add its negation to Q
continue

if all variables are assigned : return SAT
v := pick unassigned variable
l := literal of v according to A[v]
enqueue(l,no reason)
Q.push(¬other)

Figure 2: Main loop of our CDCL solver.

6.2 Unit Propagation

One way of implementing unit propagation is to repeatedly scan the entire formula. In
each step, every clause is examined and the numbers of literals that evaluate to 0 or to u
are counted. If all literals evaluate to 0, the clause is falsified and a conflict is detected.
If exactly one literal evaluates to u and all others to 0, the clause is unit and the variable
of that literal is assigned so that the literal evaluates to 1, with the clause recorded as
its reason. The search then restarts from the beginning of the clause list. This continues
until no further unit clauses are found. Although simple to implement, this approach is
inefficient because it inspects all clauses on every unit propagation step, even when most
are unaffected by recent assignments. The corresponding algorithm is shown in Figure 3.

21

unitPropagation(formula φ, trail τ)
while true :
changed := false
for each clause ω ∈ φ :
count literals in ω evaluating to 0 and u
if all literals evaluate to 0 :

return conflict ω
if exactly one literal evaluates to u :

assign its variable so that it evaluates to 1
changed := true

if not changed :
break

return no conflict

Figure 3: Unit propagation by clause scanning.

Our solver uses a more efficient variant based on the two-watched-literals [12]. Each
clause maintains exactly two watched literals. The clause only needs to be inspected
when one of its watched literals evaluates to 0, since only then can it become unit or
be falsified. If both watched literals evaluate to 1, the clause is already satisfied. If one
watched literal evaluates to u and the other does not evaluate to 0, then at least two
literals in the clause do not evaluate to 0, and so the clause cannot be unit.

When a watched literal evaluates to 0, the clause is examined to find another literal
that does not evaluate to 0. If such a literal exists, it replaces the watched literal that
became 0, and the watch lists are updated accordingly. This preserves the invariant that
at least one watched literal does not evaluate to 0, which means the clause is neither unit
nor falsified. If no replacement exists, then all non-watched literals evaluate to 0, and the
status of the clause is determined by the remaining watched literal. If it evaluates to u,
the clause is unit and the remaining watched literal is implied by assigning its variable
with the clause as reason so that the literal evaluates to 1. If it evaluates to 0, then both
watched literals are 0 and every non-watched literal is 0 as well, and the clause is falsified,
yielding a conflict.

The watch list is indexed by literal and stores the clauses currently watching that
literal. Moving a watch removes the clause from the list of the old watched literal and
adds it to the list of the new watched literal.

Our solver also implements a binary fast path based on a description by Ryan [14].
Since our formulas contain a large number of binary at-most-one clauses, these are handled
separately from the general two-watched-literals scheme. Each literal lmaintains two lists:
one containing literals and one containing their reason clauses. For every binary clause
ω = (l ∨ r) we store two entries. In the list of ¬l we store the literal r together with the
clause, and in the list of ¬r we store the literal l together with the clause. During unit
propagation, whenever a literal l evaluates to 1, we traverse the list of ¬l. If a stored
literal r evaluates to 1 nothing is done. If r evaluates to 0 we report a conflict with the
stored clause as reason. If r evaluates to u we assign its variable so that r becomes 1,
record the clause as its reason, and push ¬r to the propagation queue.

Additionally, we added a simplified version of the blocking literals described in [3]. A
blocked literal is a cached literal per clause that, if it evaluates to 1, allows the solver to
skip inspecting the clause. In our simplified version the blocked literal is always one of
the two watched literals. On clause creation it is set to the second watch. During unit

22

propagation, if the other watch evaluates to 1 we update the blocker to that watch and
stop inspecting the clause. When we move a watch to a literal that evaluates to not 0 we
set the blocker to that literal, which then becomes a watch. During unit propagation we
first check the blocker. If it evaluates to 1 the clause is already satisfied and we skip any
further inspection.

During unit propagation we repeatedly pop a literal l from the propagation queue,
corresponding to the negated literal of a newly assigned variable. If binary lists exist for
¬l, we traverse them: if the stored literal evaluates to 1 we skip, if it evaluates to 0 we
return a conflict, and if it evaluates to u we enqueue it with the clause as reason and
push its negation to the queue. After processing the binary lists we handle the clauses
that watch l. For each clause we first check its blocked literal. If it evaluates to 1 we
skip the clause. If the other watched literal evaluates to 1 we update the blocker and
skip. Otherwise we attempt to move the watch on l to a literal that evaluates to not 0.
If no replacement is found the other watched literal decides the clause: if it evaluates to
0 we return a conflict, and if it evaluates to u we enqueue it and push its negation to the
queue. The corresponding algorithm is shown in Figure 4.

23

unitPropagation(trail τ, propagation queue Q)
while Q is not empty :

l := Q.pop()
if binary lists exist for ¬l :
for each entry (r, ω) in lists[¬l] :
if τ.contains(r) :
if τ.evaluate(r) = 1 : continue
return conflict ω

τ.enqueue(r, ω)
Q.push(¬r)

for each clause ω ∈ watches[l] :
w0 := ω.watch1, w1 := ω.watch2
other := the watched literal different from l
if τ.contains(ω.blocker) and τ.evaluate(ω.blocker) = 1 :

continue
if τ.contains(other) and τ.evaluate(other) = 1 :
ω.blocker := other
continue

moved := false
for each literal a in ω except w0, w1 :
if τ.contains(a) and τ.evaluate(a) = 0 : continue
move the watch on l to a in ω
ω.blocker := a
update watch lists to watch a
moved := true
break

if not moved :
if τ.contains(other) :
if τ.evaluate(other) = 0 : return conflict ω
else :
τ.enqueue(other, ω)
Q.push(¬other)

return no conflict

Figure 4: Unit propagation with two watched literals.

6.3 Conflict Analysis

Our conflict analysis follows the first UIP scheme and works directly on the trail and the
reason clauses without constructing an implication graph. When a conflict clause ωconf

is found, we make it the working clause and initialize a boolean array seen, indexed by
variables, to false. We scan the working clause to mark its variables as seen and count
how many of its literals were assigned at the current decision level. We then walk the
trail backwards to the most recently assigned literal at the current level whose variable
is marked as seen. If that literal has a reason clause, we add the literals of that reason
clause to the working clause, mark any newly seen variables, increase the count for literals
at the current level, and collect literals from lower levels while tracking the maximum of
their decision levels as the future backjump level. If the literal has no reason we skip it.
We repeat the backward walk, each time extending the working clause with the reason
clause of the most recent seen literal at the current level, until the counter of current–level

24

literals becomes zero, so only one literal from the current level remains in the working
clause.

At this point the working clause contains only one literal from the current decision
level, which is the unique implication point (UIP). This literal is kept in the clause, and
the backjump level is determined as the maximum decision level among the other literals.
The resulting clause is the learned clause in first UIP form, and the function returns it
together with the backjump level. The corresponding algorithm can be seen in Figure 2.

analyzeConflict(conflict clause ωconf, trail τ)
initialize empty list learned
initialize boolean array seen to false
counter := 0, backLevel := 0, ω := ωconf, idx := τ.size− 1
do :
for each literal l ∈ ω :
v := |l|, lvl := τ.decLevel(v)
if not seen[v] :
seen[v] := true
if lvl = τ.level :
counter := counter + 1

else if lvl > 0 :
append l to learned
if lvl > backLevel : backLevel := lvl

do :
p := τ.trail[idx]
idx := idx− 1

while not seen[|p|]
ω := τ.reason(|p|)
counter := counter− 1

while counter > 0
append ¬τ.trail[idx + 1] to learned
return (backLevel, clause built from learned)

Figure 5: Conflict analysis.

6.4 Decision Heuristics

A decision heuristic determines which unassigned variable the solver selects when it needs
to make a decision. We implemented five heuristics: two general-purpose and three tai-
lored to Nonograms. Among the general-purpose heuristics, Variable State Independent
Decaying Sum (VSIDS) is widely used in modern SAT solvers. In contrast, our Line-
Aware, Block-Length-Aware, and Sequential Order heuristics are designed to exploit
structural properties of the Nonogram encodings. Including all five allows us to evaluate
which approach is most effective for Nonogram solving.

Random. The Random heuristic selects a variable uniformly at random from the set
of variables. If the chosen variable is already assigned, a new variable is drawn until a
unassigned one is found.

25

VSIDS. In VSIDS [12] each variable is associated with an activity score, initially set to
zero. Whenever the literal of a variable appears in a newly learned clause, the variable’s
activity score is increased, and all scores are periodically decayed so that recent conflicts
are weighted more strongly. At each decision point, the unassigned variable with the
highest activity score is selected.

In our implementation we avoid explicitly decaying all scores. Instead, we maintain a
global increment value that is multiplied by a constant factor after each conflict. Increas-
ing a variable’s activity then means adding this increment, which implicitly incorporates
the decay over time. This ensures that recent activity is emphasized while keeping the
update efficient. This approach is based on [1].

Line-Aware. The Line-Aware heuristic uses the fact that each variable belongs to
exactly one row or one column of the Nonogram. Whenever a variable is assigned, the
corresponding row or column index is added to a queue. When a new decision is required,
the solver selects the next unassigned variable from the most recently added line. If the
queue is empty, the heuristic falls back to random selection. For each variable the encoder
stores in maps its corresponding line and orientation. These maps are then given to the
solver, which uses them to enqueue the correct line whenever a variable is assigned.

Block-Length-Aware. The Block-Length-Aware heuristic is specific to the Block-
Based encoding. The heuristic always selects a currently unassigned variable that belongs
to the block with the greatest length. For each block variable the encoder stores in a
map its length. This map is then given to the solver.

Sequential Order. The Sequential Order heuristic selects unassigned variables in as-
cending numerical order. In the encoder, variables are numbered consecutively starting
from 1. In the Block-Based encoding, all variables of a block are created consecutively,
and this order is preserved within each line. Row block variables are generated before
column block variables, so decisions proceed line by line from the top left to the bottom
right of the grid, and then continue similarly for the columns. In the Sequence Enumera-
tion encoding, either all row sequence variables are generated first or all column sequence
variables are generated first. Within each group the variables are ordered line by line,
with all sequence variables of one line appearing before those of the next.

6.5 Restarts

Restarts in CDCL are a mechanism that interrupts the current search and returns the
solver to decision level 0. All assignments on the trail are cleared, except the assignments
implied by the initial unit clauses, and the learned clauses remain part of the formula. As
shown in [8], this can significantly increase solver performance. For our solver we decided
to include two restart strategies, one that produces relatively frequent restarts and one
that produces progressively less frequent restarts, in order to test how different restart
strategies affect Nonogram solving.

The first is the Luby restart strategy [10]. We define restart intervals according to a
recursive sequence L(i), with the interval given by u · L(i). Here u is a fixed unit, which

26

we set to 32. The Luby sequence is defined for i ≥ 1 as

L(i) =

{
2k−1, if i = 2k − 1,

L(i− 2k−1 + 1), if 2k−1 ≤ i < 2k − 1.

The first values are
1, 1, 2, 1, 1, 2, 4, 1, . . .

With u = 32, this means the solver restarts after 32 conflicts, then again after another
32, then after 64, then 32, then 32, then 64, then 128, and so on.

The second is the geometric restart strategy used in [5]. We start with a fixed restart
interval of 100 conflicts and increase this interval by a constant factor of 1.5 after each
restart. This means the solver restarts after 100 conflicts, then again after 150, then after
225, and so on.

6.6 Clause Deletion

The CDCL algorithm learns a new clause after every conflict. If all learned clauses were
kept, their number could grow exponentially in the number of variables, which quickly
becomes impractical. To address this, we follow a clause deletion strategy described in
[11]. Our solver maintains a separate database for learned clauses and performs a garbage
collection step every 2000 conflicts. Clauses of size at most 8 are always kept, while larger
clauses are retained only if they contain at most one unassigned literal under the current
assignment. We chose an interval of 2000 conflicts so that the solver incurs less overhead
on most smaller puzzles. The threshold of 8 was selected because it proved effective in
practice, while the condition of at most one unassigned literal is used because such clauses
are unit and thus immediately useful for unit propagation.

27

7 Experimental Evaluation

The evaluation focuses on time-based performance across a wide range of Nonogram
puzzles, comparing the two encodings, different configurations of our solver, and our
solver against another solver.

7.1 Methodology

The evaluation is structured in three parts. First, we compare the two encodings in
terms of their formula sizes, their encoding performance, and their solving performance.
Second, we compare the different decision heuristics and restart strategies within our
CDCL solver. Lastly, we compare the performance of our solver against MiniSat 1.14,
whose source code is available at [6]. The choice of an older and less competitive solver is
deliberate, as MiniSat 1.14 is based on the framework presented in [5], which also serves
as the foundation for our own implementation.

The experiments are based on the dataset from the Survey of Paint-by-Number Puzzle
Solvers [16], in which the performance of solvers of that time are compared on 2491 black-
and-white puzzles. From this collection, we restrict ourselves to 1166 small- to medium-
sized puzzles that have a unique solution, as these instances are representative of common
Nonogram sizes and a large number of them is still computationally feasible for testing.
The uniqueness of the solution is important because the Nonogram files provide only one
reference solution, even if a puzzle has multiple solutions. Since we verify our results
against these files, puzzles with more than one solution were excluded to ensure reliable
correctness checking. The size distribution of the included puzzles is shown in Table 1.

Puzzle size range Number of puzzles
0x0–10x10 110
10x10–20x20 582
20x20–30x30 474

Table 1: The size distribution based on the number of cells of the 2242 puzzles.

All experiments were carried out on a desktop machine running Windows 11, equipped
with an AMD Ryzen 7 3700X processor and 16 GB of RAM. The solver and encodings
were implemented in Java and executed on the Java Virtual Machine (JVM) with the
default HotSpot JIT compilation. MiniSat 1.14 was written in C++ and was compiled
and executed under the Windows Subsystem for Linux (WSL), with no additional opti-
mization flags set.

7.2 Encodings Evaluation

We compare the Sequence Enumeration (SE) and Block-Based (BB) encodings on a
restricted subset of our dataset containing only puzzles with at most 20 rows or 20
columns. This subset consists of 239 puzzles in total. We chose this restriction because
the Sequence Enumeration encoding runs out of Java heap space on larger puzzles, and its
encoding and solving times also become prohibitively long on such instances. Therefore,
we opted to compare the encodings on this smaller subset.

The encodings are compared on the number of variables and clauses they produce,
as shown in Table 2, and on the time required to generate the encoding and to solve the

28

encoded formula with our solver using the random decision heuristic and no restarts, as
shown in Table 3. Encoding and solving were executed only once for each puzzle. For
each puzzle, the solution returned by the solver was verified against the provided solution
file. This verification step was not included in the time measurements, and in all cases
the solutions were correct.

Variable count Clause count
Size range SE BB SE BB
1–9 3 3 3 3
10–99 20 26 4 8
100–999 92 164 28 80
1000–9999 119 46 91 148
10000–99999 5 0 111 0
100000–999999 0 0 2 0

Table 2: The distribution of variable and clause sizes for Sequence Enumeration (SE)
and Block-Based (BB) encodings on the 239-puzzle subset.

Encoding time Solving time
Time range (s) SE BB SE BB
0.00000–0.00009 20 22 43 48
0.00010–0.00099 75 137 86 114
0.00100–0.00999 112 80 50 70
0.01000–0.09999 32 0 36 7
0.10000–0.19999 0 0 9 0
0.20000–0.49999 0 0 10 0
0.50000–0.99999 0 0 1 0
1.00000–3.99999 0 0 3 0
4.00000–9.99999 0 0 1 0

Table 3: The distribution of encoding and solving times for Sequence Enumeration (SE)
and Block-Based (BB) encodings on the 239-puzzle subset. Solving was performed using
the Random decision heuristic and no restarts.

The Block-Based encoding produces smaller formulas, has fewer variables, is faster
to encode, and is faster to solve on the same set of puzzles, even for smaller instances.
The higher encoding time of the Sequence Enumeration encoding can be explained by
its larger number of variables, which correspond to the number line solutions that need
to be generated for each row or column. Computationally, this is more demanding than
generating the block start positions for the Block-Based encoding. The higher solving
time of Sequence Enumeration is likewise explained by its larger number of clauses. Most
of the solver’s runtime is spent in unit propagation, and although we use watched literals,
the propagation still needs to process more clauses than in the Block-Based encoding.
Consequently, the smaller formulas of the Block-Based encoding result in both faster
encoding and faster solving. Based on these results, we will use the Block-Based encoding
for all subsequent experiments.

To complement these results, we also measured the encoding times for the Block-Based
encoding on the entire dataset. Each puzzle was encoded only once. The distribution is
shown in Table 4, and demonstrates that all puzzles can be encoded in under one second.

29

Time range (s) Block-Based encoding time
0.00000–0.00009 30
0.00010–0.00099 171
0.00100–0.00999 886
0.01000–0.09999 79

Table 4: The distribution of encoding times in seconds for the Block-Based encoding on
the full 1166 puzzles.

7.3 Decision Heuristics and Restart Strategies Evaluation

We compare the effect of decision heuristics and restart strategies for our solver on the
full 1166 puzzles using the Block-Based encoding. We first solved all puzzles using our
five decision heuristics without restarts. The heuristics are denoted as follows: Random
(R), Line-Aware (L), Block-Length-Aware (B), VSIDS (V), and Sequential Order (O).
After identifying Sequential Order as the best-performing heuristic, we combined it with
Geometric restarts (OG) and Luby restarts (OL) and solved the puzzles again using these
configurations. We define the best-performing heuristic as the one that solves the largest
proportion of puzzles in under 0.01 seconds, following the approach of [16] and [2]. The
full distribution of solving times is shown in Table 5, and the corresponding percentages
of puzzles solved under 0.01 seconds are summarized in Table 6.

For all puzzles we verified that the solution returned by the solver matched the pro-
vided solution file. This verification step was not included in the measurements. Each
puzzle was executed once with a timeout of 30 seconds. For all puzzles, the solutions
produced by the solver matched the provided solutions.

Time range (s) R L B V O OL OG
0.00000–0.00009 74 70 61 69 73 79 67
0.00010–0.00099 257 248 291 293 337 340 328
0.00100–0.00999 448 488 339 375 479 468 479
0.01000–0.09999 324 325 283 303 194 209 208
0.10000–0.19999 40 25 64 59 28 22 31
0.20000–0.49999 17 7 53 39 23 23 22
0.50000–0.99999 2 2 32 16 9 7 9
1.00000–3.99999 3 1 30 9 13 10 13
4.00000–9.99999 0 0 7 1 4 4 3
10.00000–29.99999 1 0 4 1 5 3 5
≥30 0 0 2 1 1 1 1

Table 5: Distribution of solving times in seconds for the Block-Based encoding on the
full 1166 puzzles using different decision heuristics and restart strategies. The decision
heuristics are Random (R), Line-Aware (L), Block-Length-Aware (B), VSIDS (V), and
Sequential Order (O). The restart strategies are Line-Aware with Luby restarts (OL) and
Line-Aware with Geometric restarts (OG).

30

Heuristic R L B V O OL OG
Solved <0.01s (%) 66.8 69.1 59.3 63.2 76.2 76.0 74.5

Table 6: Percentage of the 1166 puzzles solved under 0.01 seconds for the Block-Based
encoding using different configurations, derived from Table 5.

Based on our results, the heuristics can be ranked in the following order with respect
to the proportion of puzzles solved under 0.01 seconds: Sequential Order performs best,
followed by Line-Aware, Random, VSIDS, and Block-Length-Aware. When combined
with restart strategies, Sequential Order with either Luby or Geometric restarts achieves
almost identical performance to Sequential Order alone. The fact that the more frequent
Luby restarts perform slightly better than the less frequent Geometric restarts suggests
that the limited effect of restarts is not caused by the overhead of clearing the trail.

In terms of overall performance, only Line-Aware and Random succeed in solving all
puzzles within the time limit. To further improve the performance of Line-Aware, we
introduce a combined heuristic (C), which retains the Line-Aware strategy but, instead
of selecting variables randomly when the line queue is empty, falls back to Sequential
Order. We evaluated it under the same circumstances as the other heuristics, and the
results can be found in Table 7. For all puzzles, the solutions produced by the solver
matched the provided solutions.

Time range (s) C
0.00000–0.00009 71
0.00010–0.00099 355
0.00100–0.00999 494
0.01000–0.09999 214
0.10000–0.19999 24
0.20000–0.49999 3
0.50000–0.99999 4
1.00000–3.99999 1
4.00000–9.99999 0
10.00000–29.99999 0
≥30 0

Table 7: Distribution of solving times in seconds for the Block-Based encoding on the
full 1166 puzzles using the combined heuristic (C).

This combined heuristic achieves the best overall performance. It solves 78.9% of
the puzzles in under 0.01 seconds, outperforming all other heuristics, and completes
99.9% of the puzzles in under one second. This is significantly better than both Random
and VSIDS, which are general-purpose decision heuristics. Therefore, we conclude that
considering structural properties of the Nonogram during solving can lead to an increase
in performance compared to heuristics that do not exploit such structure.

Specifically for the Line-Aware and Sequential Order heuristics, the reason for the in-
creased performance is likely that in the Block-Based encoding each variable corresponds
to the placement of a block within a line. By prioritizing all block variables of a single
line, the heuristic effectively fixes the coloring of that line before moving on. This directly
restricts the possible block placements in all intersecting lines.

31

7.4 Evaluation against MiniSat

We compare our solver with MiniSat 1.14 on the full 1166 puzzles using the Block-
Based encoding. As a reference for our solver, we use its fastest configuration from
Section 7.3, namely the combined heuristic (C). For MiniSat 1.14, the encoding was
written to DIMACS format, and solving times exclude parsing and file I/O. Each puzzle
was run once with a timeout of 30 seconds. The results are shown in Table 8.

Time range (s) C MiniSat 1.14
0.00000–0.00009 71 331
0.00010–0.00099 355 328
0.00100–0.00999 494 338
0.01000–0.09999 214 111
0.10000–0.19999 24 2
0.20000–0.49999 3 3
0.50000–0.99999 4 3
1.00000–3.99999 1 3
4.00000–9.99999 0 0
10.00000–29.99999 0 0
≥30 0 7

Table 8: Distribution of solving times in seconds for our solver with the combined heuristic
(C) and MiniSat 1.14 on the full 1166 puzzles.

MiniSat performs better than our solver, solving 85.5% of the puzzles under 0.01
seconds. But it has 7 instances that are over the time limit. This is likely not due to its
heuristic, since MiniSat employs VSIDS. As seen in Section 7.3, our solver with VSIDS
has only 1 instance that goes over the time limit. Because our solver with VSIDS is also
significantly slower than MiniSat, the likely reason for the performance difference is that
our implementation is less optimized.

32

8 Conclusion

In this thesis we presented two novel SAT encodings for Nonograms. The Sequence
Enumeration encoding represents each solution of a line by a variable, while the Block-
Based encoding represents each block in a solution by a variable. To evaluate these
encodings we built a CDCL solver from scratch. The goal was not only to compare
the encodings, but also to investigate whether specific solver modifications can improve
performance on Nonograms. For this purpose we integrated a binary fast path in the
unit propagation, introduced four decision heuristics tailored to Nonograms, and tested
two restart strategies with the aim of enhancing solving power.

The evaluation showed that the Block-Based encoding performs better than the Se-
quence Enumeration encoding in terms of formula size, encoding time, and solving time.
It further demonstrated that decision heuristics exploiting structural properties of Nono-
grams can achieve clear performance improvements over general-purpose heuristics such
as VSIDS. The best-performing heuristic is the combined Line-Aware and Sequential Or-
der heuristic, which assigns all variables of a line before considering another variable for
decision.

When compared with MiniSat, our solver is overall slower, which can be attributed
to its less optimized implementation. Overall, the results show that both the choice of
encoding and the design of heuristics have a strong influence on solver performance for
Nonograms.

33

References

[1] Ishan Akhouri. Variable State Independent Decaying Sum (VSIDS) in SAT Solving.
Accessed: 2025-08-19. Mar. 2025. url: https://medium.com/@theoreticalcs/
building-a-smarter-sat-solver-integrating-vsids-7523473958fb.

[2] Abik Aramian and Varduhi Yeghiazaryan. “Solving Nonograms: A Constraint Sat-
isfaction Approach”. In: Computers and Games. CG 2024. 12th International Con-
ference, Virtual Event, November 25–29, 2024, Revised Selected Papers. Ed. by
Michael Hartisch, Chu-Hsuan Hsueh, and Jonathan Schaeffer. Vol. 15550. Lecture
Notes in Computer Science. Springer, 2025. doi: 10.1007/978-3-031-86585-5_11.

[3] Geoffrey Chu, Aaron Harwood, and Peter J. Stuckey. “Cache Conscious Data Struc-
tures for Boolean Satisfiability Solvers”. In: Journal on Satisfiability, Boolean Mod-
eling and Computation 6.1-3 (2009), pp. 99–120.

[4] Cayden R. Codel, Jeremy Avigad, and Marijn J. H. Heule. “Verified Encodings
for SAT Solvers”. In: 2023 Formal Methods in Computer-Aided Design (FMCAD).
IEEE, 2023, pp. 141–151. doi: 10.34727/2023/isbn.978-3-85448-060-0_22.

[5] Niklas Een and Niklas Sörensson. “An Extensible SAT-solver”. In: Theory and
Applications of Satisfiability Testing, SAT 2003. Ed. by Enrico Giunchiglia and
Armando Tacchella. Vol. 2919. Lecture Notes in Computer Science. Springer, 2004,
pp. 502–518. doi: 10.1007/978-3-540-24605-3_37.

[6] Niklas Eén and Niklas Sörensson. MiniSat. Accessed: 2025-08-16. 2025. url: http:
//minisat.se/MiniSat.html.

[7] Aaron S. Foote. On the Complexity and Threshold Behavior of Playing Nono-
gram Puzzles. Middletown, CT, Apr. 2024. doi: 10.14418/wes01.1.2902. url:
https://digitalcollections.wesleyan.edu/islandora/complexity- and-

threshold-behavior-playing-nonogram-puzzles.

[8] Jinbo Huang. “The effect of restarts on the efficiency of clause learning”. In: Proceed-
ings of the 20th International Joint Conference on Artificial Intelligence. IJCAI’07.
Hyderabad, India: Morgan Kaufmann, 2007, pp. 2318–2323.

[9] Tommi Junttila. Overview – Propositional satisfiability and SAT solvers. Online
course notes, CS-E3220, Aalto University. Accessed: 2025-08-07. 2020. url: https:
//users.aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/overview.html.

[10] Michael Luby, Alistair Sinclair, and David Zuckerman. “Optimal speedup of Las
Vegas algorithms”. In: Information Processing Letters 47.4 (1993), pp. 173–180.
doi: 10.1016/0020-0190(93)90029-9.

[11] Joao Marques-Silva, Inês Lynce, and Sharad Malik. “Conflict-Driven Clause Learn-
ing SAT Solvers”. In: Handbook of Satisfiability. Ed. by Armin Biere et al. Vol. 185.
Frontiers in Artificial Intelligence and Applications. IOS Press, 2009, pp. 131–153.

[12] MatthewW. Moskewicz et al. “Chaff: Engineering an Efficient SAT Solver”. In: Pro-
ceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).
IEEE, 2001, pp. 530–535.

[13] Knot Pipatsrisawat and Adnan Darwiche. Rsat 1.03: SAT Solver Description. Tech.
rep. D–152. Automated Reasoning Group. Los Angeles, CA: Computer Science
Department, UCLA, 2006.

34

[14] Lawrence Ryan. “Efficient Algorithms for Clause-Learning SAT Solvers”. MA the-
sis. Simon Fraser University, Feb. 2004.

[15] Richard P. Stanley. Enumerative Combinatorics, Volume 1. 2nd ed. Vol. 49. Cam-
bridge Studies in Advanced Mathematics. Section 1.2. Cambridge: Cambridge Uni-
versity Press, 2012. isbn: 978-1-107-01542-5.

[16] Jan Wolter. Survey of Paint-by-Number Puzzle Solvers. Accessed: 2025-08-16. 2025.
url: https://webpbn.com/survey/.

35

