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INTRODUCTION objectives or maximize rewards in a complex and uncer-

tain environment. It encompasses both domain-dependent
Automated planning (Ghallab, Nau, and Traverso 2004) planning, which tailors its strategies to specific prob-
is dedicated to the development of systems that can rea-  lem domains, and domain-independent planning, which
son, strategize, and make decisions to accomplish specific ~ seeks to develop generalizable intelligent systems and
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algorithms. At its core, automated planning involves the
formulation of actions, their prerequisites, and effects
on the world, enabling machines to effectively address
real-world challenges. Since 1998, the International Plan-
ning Competition (IPC) (Coles et al. 2012; Long and Fox
2003; McDermott 2000; Vallati et al. 2015) has been orga-
nized on a biennial or triennial basis with the objectives
of promoting the advancement and evaluation of plan-
ning methodologies and coordinating the creation of new,
challenging benchmarks.

This article provides an overview of IPC-2023, which fea-
tured a record-breaking number of five tracks, illustrating
the rich diversity within the planning research community.
This installment of the IPC is a reflection of the ongo-
ing evolution within the field of planning, encompassing
long-established tracks like classical planning, while also
introducing new ones such as a numeric, and a prob-
abilistic and reinforcement learning track. These latter
instances underscore the significance of well-established
tracks coexisting with the emerging trends of collaboration
with the machine learning and reinforcement learning
communities alongside the necessity of having efficient
numeric reasoning in planners.

Portfolio submissions have been a hotly debated topic in
the IPC. Given that many planning techniques work well
in some domains but encounter difficulties with others,
distributing the available time between different compo-
nents or selecting components based on instance features
typically achieves higher performance than running only
the individual components. There are two main criti-
cisms of portfolios: one concerns the attribution of success
(running a portfolio of components A and B can surpass
component A, even if A does most of the heavy lifting
in the portfolio); the other pertains to scientific insight
(analyzing the success of a portfolio is more challenging
than that of its components). Some planners can clearly be
seen as portfolios, and some can be clearly seen as non-
portfolios. However, there is a large gray zone in between
with techniques that use multiple components in a more
integrated way. For example, LAMA (Richter, Westphal,
and Helmert 2011) is typically not regarded as a portfolio
but runs multiple different search algorithms and heuris-
tics. Any specific definition of portfolios would provide
an incentive to develop techniques that circumvent this
definition, whether they are useful or not. For instance,
if loose coupling of planning techniques were to define
a portfolio, search methods that interleave multiple tech-
niques in a sophisticated way would not be classified as
portfolios but would still benefit from running all of their
components. We decided not to draw this line and allowed
portfolio submissions.

The five IPC-2023 tracks were as follows: The Classical
Track is the oldest track and centers on fully observ-

able environments where actions are atomic and have
deterministic effects. In 1998, the Planning Domain Defini-
tion Language (PDDL) (McDermott 2000) was established
as the standard for this and other tracks, and it contin-
ues to be developed and used to this day. The Numeric
Track concentrates on deterministic planning problems
with numeric state variables, emphasizing quantitative
aspects of planning. Numeric planning problems can be
expressed in the 2.1 version of PDDL (Fox and Long
2002). The HTN Track is focused on planning tasks that
involve hierarchical structures. This is the second itera-
tion of this track (Behnke, Holler, and Bercher 2021). As
in the first iteration, this year’s competition also uses the
Hierarchical Domain Definition Language HDDL (Holler
et al. 2020). The Learning Track evaluates systems that
learn domain-specific knowledge and use it to assist a
general planner in solving unseen tasks from the same
planning domain. This track also uses PDDL as planner
input language (Fern, Khardon, and Tadepalli 2011). The
Probabilistic and RL Track is an advancement from the
earlier probabilistic tracks (Younes et al. 2005), encom-
passing probabilistic and reinforcement learning elements.
In the 2011 competition, the Relational Dynamic Influ-
ence Diagram Language (RDDL) (Sanner 2010b) has been
introduced as the standard language for this track. RDDL
was developed within the context of the competition, and
an extended version is used in this year’s competition
(Taitler et al. 2022).

In the following sections, we survey each of these
tracks in turn. A table summarizing the metadata of the
competition across the tracks is given in Table 1.

CLASSICAL TRACK
History and motivation

The classical track has been part of the IPC since the
inaugural competition in 1998, and this is the tenth IPC
featuring it. The classical track focuses on the core of the
planning problem without any of the extensions covered
by the other tracks.

In the first three IPCs, all planners competed on the
same playing field, but since 2004, there are subtracks
for optimal planners (that guarantee plans with mini-
mal costs) and satisficing planners (that have no such
guarantee). With optimal planners, the goal is to find
optimal plans for as many tasks as possible within some
given resource limitations, while a good satisficing plan-
ner should discover short plans as quickly as possible.
Historically, the satisficing track focused mostly on plan
quality and ignored solution time. In 2014, an agile track
was added that focused on solution time and ignored plan
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TABLE 1

Metadata of the competition, including the tracks how many editions each track previously held, when was the last time the

track took place, how many entries were submitted to each track in the 2023 event, the input language, and a link to each of the tracks

webpage for additional information.

Track Ed. Last Entries
Classical 9 2018 65
Numeric 0 - 6

HTN 1 2020 1
Learning 3 2014

Probabilistic 6 2018

quality. In 2023, we again offered an optimal, a satisficing,
and an agile subtrack.

Compared to previous iterations of the competition, we
emphasized PDDL features that make modeling a plan-
ning task easier. That is, we tried to promote the idea
that writing a PDDL specification of a domain should be
made as easy as possible, and planning systems should be
able to perform normalization and preprocessing of the
input planning task automatically. Our domains make full
use of conditional effects, negative preconditions, quan-
tifiers, disjunctions, imply conditions, and negative goal
conditions. While conditional effects, negative precondi-
tions, and to some degree quantifiers occur in previous IPC
domains, the use of disjunctions and negative goal condi-
tions is new and some planners did not support it yet. Our
hope is that by introducing these features, planner authors
will be pushed to add support for them. As an intermediate
solution, we offered a tool to compile these features away.
We also ran all planners on both the original domain, and
one with those features compiled away, counting the better
result in each domain.

New domains introduced

The classical track used seven new domains. In their selec-
tion, we focused on getting practically interesting domains
without having particular planning techniques in mind,
that is, the encoding or structure of the tasks is not
intentionally optimized such that a particular technique
works well.

Three domains, Folding, Ricochet Robots, and Slitherlink,
were based on the domains previously used in Answer
Set Programming competitions (e.g., Gebser, Maratea, and
Ricca 2016, 2020). The reformulations of these domains
used here contained zero-cost actions, disjunctions over
static predicates, and negative goal conditions. The vari-
ant of the Rubik’s Cube domain (modeling a well-known
puzzle) used this year was formulated with a large num-
ber of conditional effects that are impossible to compile
away without a significant blow-up of the planning tasks.
Another domain, Recharging Robots, models a cooperative
task of multiple robots that need to exchange a battery

Lang. Webpage

PDDL https://ipc2023-classical.github.io/
PDDL2.1 https://ipc2023-numeric.github.io/
HDDL https://ipc2023-htn.github.io/
PDDL https://ipc2023-learning.github.io/
RDDL https://ataitler.github.io/IPPC2023/

charge with each other in order to achieve the common
goal. This domain was formulated with disjunctive precon-
ditions, universal quantifiers, imply conditions, and con-
ditional effects, all of which are possible to compile away
without a significant blow-up of the final representation.

The Labyrinth domain was based on a board game
where the agent has to travel through a maze that changes
between the agent’s movements. This domain contains
auxiliary zero-cost actions, and it can be challenging for
the grounding process as the maze can be arbitrarily re-
configured and therefore the agent can eventually move
between almost all pairs of locations in one step. Finally,
the winner of the Outstanding Domain Submission Award,
Quantum Circuit Layout Synthesis (Shaik and van de Pol
2023), models a real-world problem of mapping a logi-
cal quantum circuit expressing a quantum algorithm to a
real-world quantum circuit hardware platform. The tasks
from this domain seem to be relatively easy to solve sub-
optimally, but getting optimal (or near optimal) solutions
remains challenging.

All domains, except one, come with a task generator pro-
viding an opportunity to generate a different set of tasks
possibly with a different scaling than the one used in the
IPC. The only exception is the Quantum Circuit Layout
Synthesis domain, which comes with PDDL formulations
of the problems from the standard benchmark set used in
the area of layout synthesis for quantum computing (Tan
and Cong 2020). Moreover, each domain (again, except
Quantum Circuit Layout Synthesis) is released with either
a solver, or its generator provides at least a suboptimal
solution alongside the output task.

Evaluation methodology

We used a submission framework very similar to the pre-
vious classical tracks at IPC 2018. Participants registered
by email and we created repositories for them. They then
pushed planner sources together with recipe scripts for
the container solution Apptainer (Kurtzer, Sochat, and
Bauer 2017). This way of handling submissions was tested
in 2018, and has proven useful for several reasons: first,
using repositories simplifies access management and code
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updates for possible bug fixes. Second, using a container
solution simplified the build process on our side, in partic-
ular, dealing with a diverse set of library dependencies of
the different planners. It also unifies the build setup and
makes reusing the planners in a reproducible environment
much easier.

Compared to 2018, we changed our bug-fixing policy:
where in 2018, much effort was spent in identifying and
catching bugs in the planners, we tried to outsource this
effort to the planner authors who are more familiar with
the behavior of their code. To that end, we had several
rounds of test runs planners were evaluated on a subset
of the competition instances. The results of these test runs
and our parsed results where then published to the planner
authors. They were then responsible for checking whether
their planner performed as expected and our scripts inter-
preted the results correctly. If this was not the case, the
authors could send pull requests with bug fixes both to
their planners and to our scripts. We reviewed these pull
request to ensure they did not tune the behavior of the
planner to the known instances. This was an experimental
step towards a potential full automation of the IPC similar
to the Grid-Based Path Planning Competition'.

After compiling the planner images, each image was run
on all instances of a track for 30 min (optimal and satisfic-
ing tracks) or 5 min (agile track) with 8 GiB of available
memory. In the optimal track, the score of an instance was
1if it was solved optimally, and 0 otherwise. In the satisfic-
ing track, the score of a solved task is the ratio C*/c where
C is the cost of the cheapest discovered plan and C* is the
cost of a reference plan. The score on an unsolved task is
0. It is important that the reference plan is independent of
the participants (Seipp 2019). We found optimal reference
plans for most instances and plans that are at least as good
as any plan found by a participant for most of the remain-
ing cases. In very few cases, we had to fall back to using
the best plan discovered by a participant as the reference
solution. In the agile track, the score of a task is 1 if the
task was solved within 1 s and 0 if the task was not solved
within the resource limits. If the task was solved in T sec-
onds (1 < T < 300) then its score is 1 — log(T)/10g(300). This
scoring accounts for the exponential growth in task dif-
ficulty while ignoring small differences in the subsecond
range. In all tracks, each task, thus, gets a score between
0 and 1. These scores are summed up to achieve the final
score of a planner. All domains have the same number of
tasks, so normalizing with the domain size is not necessary.

After the competition, all domains, tasks, reference
plans, and bounds were made available both through our
homepage as well as the general planning task collec-
tion http://planning.domains. All planners are available
as repositories on GitHub including their Apptainer recip-
ies. They also can be installed through planutils (Muise

et al. 2022). Planner abstracts for all planners are also avail-
able through the competition homepage. They include
post-competition analyses where the authors analyze their
performance retroactively.

Competition results and discussion

A total of 65 entries made by 23 teams participated across
all classical tracks. Out of the 65 entries 25 self-identify as
portfolios but as discussed earlier, the definition is not clear
cut and other entries that use fall-back components for
unsupported features could also classify as portfolios. We
accepted multiple submissions of a planner if the authors
suspected a strong difference in performance between two
variants of their planner. Additionally, most planners par-
ticipated in multiple subtracks. Thus, these 65 entries are
based on 24 code bases. As the line between a single plan-
ner being configured differently for two subtracks and
two different planners that share the same code base is
blurry, we asked planner authors to submit separate plan-
ner abstracts if they consider two of their entries to be
different planners. According to this metric, 34 distinct
planners participated in the classical tracks. The teams
consisted of 47 distinct authors from 19 affiliations where
many authors contributed to more than one entry. We were
happy to see that roughly half of the authors participated
in an IPC for the first time.

As in the previous iterations, the classical planners
submitted to the IPC 2023 utilized a wide range of
techniques stretching to almost all corners of the clas-
sical planning area: From explicit state-space search to
symbolic search to decoupled search, from partial order
reduction to symmetry breaking to dominance pruning,
from abstraction heuristics to delete-relaxation heuristics
to heuristics based on linear programming. Competitors
submitted lifted planners, ground planners, as well as
portfolios of various techniques, equipped with several
different grounders.

Overall, we think that IPCs have become a showcase
of the wealth of classical planning techniques. This also
means the final results should not be read and inter-
preted in a way where the winners represent the current
state of the art and other entries do not (anymore). All
techniques implemented in the submitted planners have
their strengths and weaknesses and should be considered
based on the structure of the task at hand. Moreover,
the set of competition domains selected this year (or any
other year) is by no means a representative of all possible
tasks, and so the overall scores of the competing planners
are necessarily biased. As discussed before, we tried to
steer this bias in the direction of practically interesting
domains rather than problems that are easily solved by
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TABLE 2 Coverage for the optimal classical track. Best results per domain highlighted in gray.
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folding 8 8 8 9 7 7 6 5 6 5 2 3 1 2 2 2 2 1 2 1
labyrinth 5 5 5 5 2 3 1 1 1 2 1 1 1 1 1 1 1 0 0
quantum. 13 14 13 13 13 13 13 13 13 13 7 12 12 12 12 9 12 12 9 9 12 9 n 4
recharg. 14 14 14 13 14 14 13 14 12 11 12 1 12 13 10 13 13 8 6 13 6 6 13
ricochet. 17 17 17 17 17 |9 12 9 15 9 n 8 3 4 5 4 1 4
rubiks 0 10 100 100 0 1T 9 10 7 10 0O 0 O 0O 0 10 O 7
slither. 7 |6 6 4 |7 6 4 6 4 |7 4 3 6 2 6 4
Sum 77 74 73 70 65 62 61 60 58 56 50 50 41 37 37 37 36 34 34 32 31 3 29 22

a particular technique. Nevertheless, the IPC should
encourage competitors to invest in their implementations,
it should nurture healthy level of competitiveness as well
as collaboration between researchers in the community,
and above all it should be fun.

In the optimal track (see Table 2), 11 out of 22 competitors
have a poor (or completely lack) support for conditional
effects, which incurred a serious penalty in the overall
scores because one of the domains (Rubik’s cube) can not
be solved without it. The structural variety among the
selected domains seemed to be able to successfully probe
various strengths and weaknesses of different planning
techniques: Even planners in the second half of the leader-
board were able to achieve the highest (or close to the
highest) score in some of the individual domains. The
performance in domains Folding, Labyrinth, and Rico-
chet Robots seems to be what differentiate the top-ranking
planners from the rest. The winner of the optimal track,
Ragnarok (Drexler et al. 2023), is a portfolio planner of
an explicit state-space search, decoupled search, symbolic
search, and a lifted planner with various heuristics. It
solved the highest number of tasks in four out of seven
domains and only one below the highest score in the rest.

In the satisficing and agile track (see Tables 3 and 4),
the planners performing best in individual domains were
spread more evenly across the leaderboard than in the opti-
mal track. Also, the support for conditional effects was
more common than in the optimal track. The winners of
the satisficing track, Scorpion Maidu (Corréa et al. 2023b)
and Levitron (Corréa et al. 2023a), scored highest in only
two domains. Both are portfolio planners that differ in
that Levitron incorporates a lifted planner whereas Scor-
pion Maidu does not. The DecStar (Gnad, Alvaro Torralba,
and Shleyfman 2023) planner was the winner of the agile
track which, surprisingly, did not perform best in any indi-

vidual domain but did well across all domains, especially
in Rubik’s Cube.

Our baseline planner, LAMA (winner of IPC 2011)
(Richter, Westphal, and Helmert 2011), surprisingly
achieved very high scores in the agile and satisficing track.
No planner scored higher in the agile track and only
three competing planners scored higher in the satisficing
track. However, as it was considered a baseline, not a
participant, it was not considered when determining the
tracks’ winners.

Overall, the biggest challenge across the board seemed
to be the support for PDDL features such as quantifiers,
disjunctions, imply conditions, and negative goal condi-
tions. Since for every domain, we provided an alternative
(automatically generated) formulation without these fea-
tures, planners were not penalized in their final scores for
not supporting them. However, it was often the case that
planners performed better on the alternative formulation
than on the original one. The most striking case was the
Slitherlink domain, which uses just negative preconditions
over static predicates (which is usually not problematic for
current planners) and negative goal conditions. Yet, very
few planners were able to solve any task in the original for-
mulation of this domain, but they did much better in the
alternative formulation where the negative goal conditions
were compiled away with our tool.

NUMERIC TRACK
History and motivation
Planning with resources and numeric state variables in

general has always been acknowledged as one of the most
important features to support. Numeric state variables and
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TABLE 3
is not shown.

[ng]
N
S ~
N
3 3 5 B
] ] Q Q
= a 4 g S
£ 3 § g = g N
= e s 8 T o s g
&8 § &8 § s 9 & B & =
S § 4 8 § 2 % g § K
2 & B 8 T A & & ;a =
folding 68 87 90 |97 87 86 64 58 54 67

labyrinth 0.0 0.0 0.0 1.0 39 0.0 00 00 0.0 0.0
quantum. 19.6 19.6 19.5 179 17.0 17.8 18.0 [19.7 17.3 16.7
recharg. 139 139 13.8 132 135 140 104 139 133 96
ricochet. 114 114 85 98 74 91 127 50 84 127
rubiks 142 142 141 122 11.2 11.8 109 139 124 10.0
slither. 6.0 40 60 50 60 50 60 60 60 6.0
Sum 71.9 71.8 709 68.8 67.7 66.2 645 644 629 61.7

TABLE 4
shown.

Baseline (LAMA)
DecStar 2023

FD Stone Soup 2023
Apx Novelty Tarski
DiSco

Scorpion Maidu
Levitron

Apx Novelty
Cerberus

DALAI 2023

folding 34 26 30 19 [34 25 25 14 27 3.0
labyrinth 0.0 0.0 1.0 27 0.0 03 03 0.0 0.0 03
quantum. 169 153 153 195 16.8 156 156 [19.6 13.5 13.6
recharg. 38 50 45 39 65 44 41 3.0 24 66
ricochet. 09 27 06 34 11 16 10 34 18 |35
rubiks 132 1130 11.0 31 63 96 95 40 78 27
slither. 22 1.7 24 18 19 19 26 1.8 26 10
Sum 40.3 40.3 37.8 36.4 36.0 359 356 333 30.8 30.8

relative constraints represent a very compact device to suc-
cinctly encode domains involving coordinates, resources
such as fuel or energy and every exotic thing one can
think of when it is necessary to reason quantitatively over
some aspect of the world the agent is operating. Yet, so
far, there has never been a competition that was specifi-
cally designed to study the behavior of planning systems
that have to deal with numeric reasoning. Indeed, since its
first introduction, numeric planning has appeared in the
competition only together with temporal planning (Long
and Fox 2003). This track has been motivated by a revived
interest in this specific setting (e.g., Bofill, Espasa, and
Villaret 2019; Kuroiwa et al. 2022; Leofante et al. 2020; Pia-
centini et al. 2018; Scala et al. 2020) and therefore, the
need to focus attention over numeric reasoning in plan-
ners, keeping other aspects such as temporal aspects aside.

Scores for the satisficing classical track. Best results per domain highlighted in gray. Hapori Greedy scored 0 due to a bug and

OpCount4Sat

TFTM2
Hapori Stone Soup

Hapori MIPlan
DALAI 2023

Apx Novelty

FB Novelty Search
Hapori epsdtl
Hapori Delfi
Powerlifted
Hapori epslr

FSM

67 56 48 50 77 10 20 74 38 30 97 10
00 39 40 00 39 00 38 (141 0.0 0.0 0.0 0.0
158 189 173 183 184 183 133 0.0 125 6.6 16.7 0.0
104 133 13.0 80 123 80 101 54 89 82 0.0 35
127 50 88 [153 42 138 62 06 24 30 0.0 0.0
101 100 50 50 40 50 00 6.0 40 6.0 0.0 1.0
60 40 30 40 40 40 40 00 10 3.0 20 50
61.7 60.7 56.0 55.6 54.5 50.1 39.3 33.6 32.5 29.8 28.4 205

Scores for the agile classical track. Best results per domain highlighted in gray. Hapori Greedy scored 0 due to a bug and is not
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Numeric planning, in a formal sense, does not represent a
substantial departure from classical planning. Both types
of planning still rely on a deterministic transition system
to model the world. However, there is a key distinction:
while classical planning problems typically induce finite
transition systems, numeric planning problems can result
in infinite state spaces. This characteristic makes numeric
planning problems undecidable in general, as discussed
by Helmert (2002); decidability can be recovered only if
variables are properly bounded (Gigante and Scala 2023).
Numeric planning allows the definition of numeric con-
ditions (e.g., (x +y > 10)) and effects (e.g., (x :=10+
z)). Albeit numeric planning can in its general form sup-
port nonlinear expressions both in the conditions and in
the effects, to lower the participation barrier, we only
consider two simpler fragments: simple numeric planning
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(SNP) (Scala et al. 2020) and linear numeric planning
(LNP). SNP is a simpler subset of numeric planning, where
numeric variables can only be increased or decreased by
a constant and numeric conditions are limited to linear
expressions. This subset is expressive enough to allow the
formalization of interesting problems. LNP extends SNP by
not only allowing numeric variables to be assigned directly,
but also allowing increases, decreases, and assignments to
linear combinations of variables.

Preconditions and goals in the evaluated problems were
arbitrary propositional formulas. That is, they included
quantifiers, negative preconditions, disjunctive precondi-
tions, and any number of numeric predicates. Conditional
effects were not considered. Terms were either literals as in
classical planning, or numeric terms of the form f(X) {>
,>,=} 0 where f(X) is a linear expression.

Similarly to the classical track, the numeric track also
featured three different subtracks: optimal, where plans
with minimal costs are guaranteed, agile, which only
focused on solution time and ignored plan quality, and sat-
isficing, which aimed to find the best possible plans in the
given time limit.

In the optimal track, the optimization functions were
always a minimization. Problems were either a mini-
mization of action costs, or a metric function that was
a weighted sum with positive coefficients where each
involved variable could only be increased by the actions.

New domains introduced

Given that resources and numeric state variables are a nat-
ural extension from classical planning problems, unless
the domains were chosen carefully, there was the risk of
evaluating numeric planners on solving mainly Boolean
structures. Therefore, there was an emphasis on selecting
domains that exhibited a notable numeric structure.

The origins of the domains used for the competition
were a mix of domains used in previous IPCs (such as
Zenotravel or Settlers from the IPC-5), interesting domains
introduced in various publications over the years (such as
FO-Sailing or Counters) and some new domains (such as
Drone or Ext-Plant-Watering). A total of 20 domains were
selected to be used in the competition, of which seven
were LNP domains and 13 SNP domains. In turn, each
domain had 20 instances selected with various degrees of
difficulty.

Evaluation methodology

We collected a grand total of six planners from two
different teams.

TABLE 5 Winners of the Numeric Planning Track by subtrack.
Track Winner

Opt SNP NLM-CutPlan Orbit
Opt LNP NLM-CutPlan

Opt SNP+LNP LM-CutPlan Orbit
Sat SNP NLM-CutPlan SAT2
Sat LNP NLM-CutPlan SAT
Sat SNP+LNP NLM-CutPlan SAT
Agile SNP NLM-CutPlan SAT2
Agile LNP NLM-CutPlan SAT
Agile SNP+LNP NLM-CutPlan SAT

The first team submitted the NLM-Plan system, which
exposed four different heuristic search planners. These
four planners are described in detail in an extended
abstract?. The second team submitted OMTPlan, which
exposed two different SMT-based planners. Those are
described in detail in a recent publication (Leofante 2023).
All participants have been given a GitHub account that
they used to upload the source code of the planners. We
then compiled all the source code and run all experiments
in the Cirrus HPC Service at EPCC. Each run used a Intel
Xeon E5-2695 (Broadwell) with a limit of 8-GiB memory
limit per process. The competition used exactly the same
scoring formulas as the classical planning track. All plan-
ners and benchmarks are available at https://github.com/
ipc2023-numeric.

Competition results and discussion

As not all submitted planners supported the LNP frag-
ment, we had different rankings for SNP, LNP, and for
both together. The NLM-based planners won all sub-
tracks. More precisely: NLM-CutPlan won the Optimal
LNP, NLM-CutPlan SAT2 won the Satisficing SNP and
the Agile SNP subtracks, NLM-CutPlan Orbit won the two
other optimal tracks, that is, Optimal SNP and Optimal
SNP + LNP, and NLM-CutPlan SAT won all the remaining
tracks, as summarized by Table 5.

As baselines, we used a well-known greedy best first
search algorithm with state of the art heuristics from the
literature (Scala et al. 2020) and A* with the numeric
extension of the h,,,,, heuristic (Scala et al. 2017) for the
satisficing and the optimal track, respectively. These are
implemented in the ENHSP planning system®. The com-
peting planners were not able to improve the baseline used
in the satisficing track, showing the strength of the current
heuristic there. On the other hand, NLM-Plan notably
improved the capacity of numeric planners on proving
optimality. Finally, considering the competitors, no
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planner had total dominance: OMTPlan was the best plan-
ner in 17% of the instances. When considering the number
of SNP + LNP instances solved per domain, OMTPlan tied
with NLM-Plan in five domains and won in two domains.

We envision a number of challenges for the community.
Where, in fact, there has been a substantial advance-
ment in the optimal setting, for the satisficing setting the
baseline proved to be even more competitive than the par-
ticipanting planners. By a closer look at the raw data, we
can, however, observe that this gap is only pronounced
in SNP problems. For linear planning problems, and in
particular over the linear version of the Sailing domain,
the baseline solved zero instances, while NLM-CutPlan
Sat solved up to the 14th instance. Therefore, it is possi-
ble that much more can be done for problems requiring
more advanced forms of reasoning, for instance, those
involving nonlinear dependencies. Another aspect worth
investigation is portfolio solutions. Indeed, as observed
before, no planner had total dominance. Properly char-
acterizing numeric planning problems would allow the
creation of portfolios, opening the possibility of combining
the best approaches into one single planner; this approach
has already proven to be useful into classical planning, and
is likely that the same applies to the numeric context, too.

HTN TRACK
History and motivation

Hierarchical Task Network (HTN) planning allows auto-
mated planning formalisms to be extended with complex
hierarchical expert knowledge, imposing additional struc-
tural constraints for valid plans (Bercher, Alford, and
Holler 2019). A planning task is represented not only by
a set of actions and an initial state but also a set of tasks to
be achieved. Primitive tasks can be achieved by executing
them as actions, whereas compound tasks are achieved by
recursively replacing them with subtasks, following certain
conditional decomposition methods. In Total Order (TO)
HTN planning, all sets of subtasks as well as the set of ini-
tial tasks are totally ordered, that is, they are sequences.
This restriction is popular and relevant since it renders the
formalism decidable, as opposed to semi-decidable Partial
Order (PO) HTN planning where arbitrary ordering con-
straints can be imposed between tasks (Erol, Hendler, and
Nau 1994). The high expressive power of HTN planning is
exploited by many applications, for example, cooperative
robotics (Bevacqua et al. 2015), Al in video games (Vellido,
Fdez-Olivares, and Pérez 2020), or assistance for complex
handicraft tasks (Behnke et al. 2019).

IPC-2023 featured the second iteration of an HTN plan-
ning track, following IPC-2020, which focused entirely on
HTN planning. As in 2020, all benchmark problems were

provided in the HDDL format (Héller et al. 2020), in its
adapted version for the IPC 2020.* We selected a total of
22 TO planning domains and 10 PO domains for evaluat-
ing planners. While the majority of planning domains were
already a part of IPC-2020 (namely 20 TO domains and
eight PO domains), four new domains were introduced.

#SAT (a.k.a. SharpSAT, TO domain) models a sim-
ple algorithm (Birnbaum and Lozinskii 1999) for exact
model counting, that is, counting the number of satisfy-
ing assignments for a given propositional formula. This
task is #P-complete and thus a challenging task even
for very small propositional formulas. Lamps (TO) mod-
els a variant of the game “Lights Out,” which is about
an n X m field with lamps that can either be on or off.
Switching a lamp forces all horizontally and vertically
connected lamps of the same status (on or off) to also
toggle. This reachability-based procedure can be easily
modeled with an HTN, but is hard to express using clas-
sical planning. Ultralight-Cockpit (PO) models emergency
procedures in ultralight aircraft. Given the current situa-
tion of the aircraft and the nature of the emergency, the
plan represents instructions to the pilot on how to handle
this emergency and how to recover the aircraft’s situa-
tion safely. Coloring (PO) encodes a version of the tiling
problem (van Emde Boas 1997), which is frequently used
for complexity reductions. Given a set of available tiles,
each having a color at one of its edges, the task is to fill
an n X n square with these tiles, s.t., touching edges have
the same color. The outer edge has no required color. This
problem is N[P-complete for unary encoded n. The encod-
ing uses the idea of proof encoding double-exponentially
time-bounded Turing Machine (Alford, Bercher, and Aha
2015).

Evaluation methodology

We offered two times three subtracks: TO and PO HTN
planning on the one hand, and agile, satisficing and opti-
mal scoring as in the classical and numeric tracks on the
other hand. We measure plan length in terms of the num-
ber of actions, that is, primitive tasks, that are executed in
the hierarchical solution.

Each submission was allowed up to three configura-
tions per track. Planning approaches submitted by the
same group were considered different submissions if the
approaches’ inner workings are sufficiently different. Plan-
ners were allowed to use up to 8 GiB of RAM and 30 min
of running time per instance.

As in the classical track, participants had to notify the
organizers via email of their intent and were then provided
with a git repository for their planner. The HTN track also
used Apptainer to automate compiling and running the
planners. After the feature-stop, we performed test runs
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of the planners on the IPC domains. The organizers then
searched for anomalies in the runs and notified the par-
ticipants, who were given the opportunity to propose a
pull-request to fix these issues, which were checked and
accepted by the organizers.

Competition results and discussion

We received a total of eleven distinct submissions. Only
a single submission, SIADEX (Fernandez-Olivares,
Vellido, and Castillo 2021), participated in IPC-2020
as well. IPC-2020 TO winner HyperTensioN (Mag-
naguagno, Meneguzzi, and de Silva 2021) and runner-up
Lilotane (Schreiber 2021) did not participate in 2023
(although two 2023 submissions, Lifted-Linear and LTP,
build upon Lilotane). Some HTN planning approaches did
not compete because they are (co-)authored by some of
the organizers (Alford et al. 2016; Behnke 2021; Behnke
et al. 2022; Behnke and Speck 2021; Schreiber 2021).

The submitted planners feature a good variety of differ-
ent algorithms and techniques. SIADEX (I. V. Expdsito, J.
Soler-Padial, J. F. Olivares, L. Castillo), PandaDealer (C.
Olz, D. Holler, P. Bercher), PANDApro (D. Héller), and
PANDA A (D. Holler) are progression search planners.
Aries (A. Bit-Monnot), LTP (Lifted Tree Path) (G. Que-
nard, D. Pellier, H. Fiorino), and OptiPlan (O. Firsov, D.
Pellier, H. Fiorino) perform planning via constraint pro-
gramming and/or SAT solving. TOAD Hbller (2021) uses
a translation to classical planning. Lastly, the submissions
Lifted-Linear, Linear-Simple, and Linear-Complex (Y. X.
Wu, C. Olz, S. Lin, P. Bercher) perform a preprocessing
which linearizes PO into TO problems and then use one
of several established TOHTN planners.

The submissions are roughly balanced in terms of
ground versus lifted planning: Linear-Simple, Linear-
Complex, OptiPlan, PandaDealer, PANDApro, and
PANDA A use a grounding procedure to simplify and
prune the problem before planning. Aries, SIADEX, LTP,
and Lifted-Linear do not perform grounding but rather
operate directly on the parametrized description.

Table 6 shows the top performing systems for each sub-
track. Across all TO tracks, PandaDealer was the most suc-
cessful planner. It was followed rather closely by PANDA 1
(agile, satisficing) and PANDApro (optimal). PandaDealer
builds upon PANDApro and features a look-ahead tech-
nique, which evaluates and prunes branches early by
checking state-related conditions that are propagated from
preconditions and effects of primitive tasks (Olz et al.
2021). In the PO tracks, Linear-Simple and Linear-Complex
dominated the satisficing and agile subtracks. Their win-
ning configurations use ground progression search via
PANDA,, or PandaDealer after linearizing the problem into
a TO problem—falling back to regular POHTN planning

TABLE 6 Winners and runner-ups of the HTN track. In case of
multiple top rankings of a single system, only the 1-2 best
configurations are shown.

Track Winner Runner-up
TO Sat PandaDealer-agile-
lama
PANDA A ao

Agl  PandaDealer-agile-
{Llama}
PANDA A lm-cut
Opt  PandaDealer-
optimal
PANDApro {lm-cut,dof}
PO Sat Linear-Complex-
satisficing-1
PANDA A
{ao,lm-cut}
Agl Linear-Simple-
agile-2
PANDA A {ao,lm-cut}
Opt  PANDApro Im-cut

Aries

in cases where the linearization proves to be unsolvable.
PANDApro and PANDA A were the best approaches, which
performed direct POHTN planning.

Since planners behave differently across domains, it
is important to also consider domain-dependent results.
For example, in the TO satisficing track, the best con-
figuration of TOAD was able to score the best in seven
domains—two more than the winner (a PandaDealer
configuration). It, however, performed poorly in several
domains (including three without any solved instance)—
TOAD had better peak performance, but was less reliable
than PandaDealer. Let us also consider a virtual planner
V which, for each TO domain, selects the planner which
solved most instances. Overall V' solves 590 instances—
45 more than any single planner (PandaDealer)—and, at
least, features PandaDealer, SIADEX, LTP, and TOAD.

The IPC 2020 was dominated by lifted planners—both
winners and the runner-up of the TO track were lifted
(HyperTensioN, SIADEX, and Lilotane). In both tracks,
there was a significant performance gap between the
lifted and grounded planners. Out of this year’s winners
and runner-ups, only Aries (runner-up PO optimal)
is lifted. Lifted planning did prove to remain worth-
while especially in the TO agile track: Four domains
were solved best by SIADEX alone and three domains
were solved best by LTP alone. All in all, the results,
however, emphasize the progress brought by the latest
progression search approaches with efficient and effective
grounding (Behnke et al. 2020), new pruning strate-
gies (Holler and Behnke 2021), and informed search
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decisions (Holler et al. 2019). These approaches out-
perform lifted and translation-based approaches on the
majority of domains but do not fully dominate them.
In terms of POHTN planning, this year’s results suggest
that many of the considered PO problems can be solved
effectively by TOHTN planners through careful transfor-
mation. It remains to be seen whether such compilations
continue to gain traction in future research to accelerate
POHTN planning.

LEARNING TRACK
History and motivation

The learning track was introduced 15 years ago and 2023
saw its fourth appearance at the IPC. The track consists
of two separate phases: one for learning some type of
domain knowledge given a set of training instances from
a planning domain; and the evaluation phase, in which a
solver uses the learned domain knowledge to solve unseen
instances from the same domain.

In the previous editions (2008, 2011, and 2014), the
domains, example instances and instance generators for
the training phase were made available to the partic-
ipants, so they could learn the domain knowledge on
their machines. Afterwards, the participants submitted the
learned domain knowledge and their solvers to the orga-
nizers, who ran them on the evaluation tasks. Although
the aim was to learn domain knowledge that allows to
scale up to larger and more complex instances, usually
the instances used in the first and second phase were of
similar difficulty.

In this year’s edition, we made three fundamental
changes to the learning track: first, we fully automated the
learning phase and let participants submit a learner that
computes domain knowledge for a set of approximately
100 easy instances per domain without user intervention.
Second, we evaluated the second part of their submission,
a planner that uses the domain knowledge, on 30 easy, 30
medium, and 30 hard instances from the same domain.
Third, we extended the traditional STRIPS fragment of the
Planning Domain Definition Language (PDDL) with typed
objects and negative preconditions.

Our main motivation for these changes is to (1) increase
reproducibility of research on the topic of learning for
planning, where currently it is very hard to set up fair
comparisons to baseline learning approaches, (2) encour-
age research on learning scalable domain knowledge
instead of simply learning how to tweak the configura-
tion of a planning system for a given domain, and (3) to
motivate the community to support a richer task input
language.

The IPC 2014 edition of the Learning Track featured a
“Best Learner Award” given to the system that maximizes
the difference in plan quality between system versions run-
ning without and with the learned domain knowledge. In
contrast, we only consider the latter, because for many sys-
tems, it is not clear what would constitute a nonlearning
version and how to ensure it has reasonable performance.

Domains

The competition used ten classical planning domains
from earlier IPCs: Blocksworld, Childsnack, Ferry, Floortile,
Miconic, Rovers, Satellite, Sokoban, Spanner, and Trans-
port. Their hardness ranges from being optimally solvable
in polynomial time (e.g., Spanner), to PSPACE-complete
domains like Sokoban (Culberson 1997). To obtain refer-
ence plans for the evaluation tasks, we developed domain-
dependent solvers for all ten domains and validated all
reference plans using the Unified Planning framework.’
All benchmarks, domain-dependent solvers, and reference
plans are available via the competition website, as well as
all code submitted by the participants.

Evaluation methodology

We originally envisioned both a single-core CPU-only envi-
ronment and a multi-core environment with GPU access.
Since only one planner, Muninn, opted for the latter, we
canceled the GPU variant. Thankfully, the Muninn authors
agreed to compete in the CPU environment even though
this heavily disfavors their approach. We limited the time
and memory for computing domain knowledge to 24 h
and 32 GiB, respectively. For the evaluation phase, we
allowed at most 30 min and 8 GiB of memory per task.
To evaluate the submissions, we used the same quality
and agile scores as in the classical tracks. Since there were
10 domains with 90 evaluation tasks each, the maximum
score was 900 points. Both the learners and the solvers
were allowed to generate improved domain knowledge
and plans as they progressed. Since the two metrics yielded
the same ranking, we only report the quality score in the
following.

Competition results and discussion

A total of six teams, each with one submission, partici-
pated in the learning track: ASNets 2023 (Hao et al. 2023)
ported Action Schema Networks (Toyer et al. 2020) to
Tensorflow 2. This neural network architecture can encode
a generalized reactive policy by learning a common set
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TABLE 7 Plan quality scores for the Learning Track. For the missing entries, no domain knowledge was learned.
Baselines Competitors
LAMA FDSS SMAC ASNets GOFAI HUZAR Muninn Vanir
Blocksworld 47.9 49.4 31.5 4.6 46.4 39.3 40.6 -
Childsnack 26.2 35.4 20.2 0.0 26.5 22.0 11.0 =
Ferry 64.0 61.5 64.4 - 58.5 58.7 42.1 76.3
Floortile 12.0 22.7 24.7 = 344 213 0.0 =
Miconic 84.4 89.6 52.3 7.2 81.4 72.4 30.0 75.2
Rovers 66.8 64.0 58.1 6.5 54.4 60.0 14.2 66.1
Satellite 87.3 88.7 71.0 - 74.0 79.9 16.0 87.3
Sokoban 37.7 39.0 30.8 0.0 38.4 28.1 24.3 37.7
Spanner 30.0 60.7 30.0 8.9 30.0 30.0 32.0 -
Transport 61.4 63.0 62.7 2.0 64.5 55.4 16.2 -
Sum 517.6 574.1 445.7 29.1 508.5 467.0 226.3 342.6

of weights for all tasks in a domain. GOFAI (Torralba and
Gnad 2023) learns which action schema instantiations
are likely part of a plan. Then it uses this information
to partially ground the given task (Gnad et al. 2019) and
solve it with a Fast Downward configuration optimized by
SMAC (Hutter, Hoos, and Leyton-Brown 2011). HUZAR
(Gzubicki, Lachowicz, and Torralba 2023) learns to dis-
tinguish between good and bad transitions by feeding
problem description graphs into a graph neural net-
work. Muninn (Stahlberg, Bonet, and Geffner 2023) uses
relational message-passing neural networks (Stéhlberg,
Bonet, and Geffner 2022) to learn a value function and
follows it first in a hill-climbing search and then (if unsuc-
cessful) within an A* search. NPGP (Lei, Lipovetzky, and
Ehinger 2023b) is a novelty-based generalized planner
(Lei, Lipovetzky, and Ehinger 2023a) that prunes a newly
generated planning program (Segovia-Aguas et al. 2022) if
its most frequent action repetition is greater than a given
bound. Vanir (Drexler 2023) learns width-based hierarchi-
cal policies for polynomial domains (Drexler, Seipp, and
Geffner 2023).

Table 7 shows the quality scores of the submitted sys-
tems. We omit NPGP from the table because it failed to
learn domain knowledge (DK) in the evaluation domains
due to the inherent limitations of the PGP learner it builds
upon, that is, it cannot handle domains with hierarchical
typing nor action schemas using constants.’ASNets 2023
also experienced difficulties, failing to learn DK in three
domains and producing weak DK in seven others, receiv-
ing a quality score of just 29.1 points. Even though Muninn
is optimized for GPUs, it was able to learn DK in all
domains and even surpassed all other competitors in the
Spanner domain. However, in total, it obtained only a score
of 226.3 points.

Vanir, which specifically targets polynomial domains,
only produced domain knowledge files for five domains,

but the quality was high, achieving the highest score
among competitors in three domains (Ferry, Rovers, and
Satellite). Overall, Vanir achieved an overall score of 342.6
points.” HUZAR is the runner-up winner of the compe-
tition with an overall quality score of 467.0 points, even
though it stops after finding the first plan.

The competition was won by GOFAI (508.5 points)
with its anytime approach to iteratively obtaining cheaper
plans. GOFAI managed to achieve scores as high or higher
than the Fast Downward SMAC baseline that participated
in the IPC 2014 Learning Track in eight out of 10 domains,
indicating significant progress since the last iteration of the
competition 9 years ago.

Despite the strides, the competition highlighted key
areas for improvement, especially since GOFAI scored
lower than the nonlearning baselines LAMA 2023 (Richter
and Westphal 2010) and FDSS 2023 (Biichner et al. 2023)
in five and eight domains, respectively. Future challenges
are to develop robust learning systems that can handle
more PDDL features, new domains and task distributions,
to create learning algorithms that scale to harder domains,
and planning systems using DK that outperform domain-
independent classical planners on very large instances.

PROBABILISTIC AND RL TRACK
History and motivation

The probabilistic and RL track of IPC-2023 represents a
significant departure from the probabilistic tracks held
under the IPC umbrella in previous years. Since 2011, the
probabilistic track presented problems described using the
Relational Dynamic Influence Diagram Language (RDDL)
Sanner (2010b). This year, the track continued this tradi-
tion but introduced a single track with problems described
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in an extended version of RDDL. While previous itera-
tions of the track focused on discrete MDPs and PODMPs,
this year, the emphasis shifted entirely to continuous
and mixed discrete-continuous MDPs, including a single
industry-contributed discrete problem among the eight
problems featured in the track.

There were two main goals in this year’s track: (Goal 1)
This goal aimed to redirect the community’s focus toward
realistic problems that showcase state exogenous noise,
the effects of stochastic actions, concurrency, and critically
mixed discrete-continuous transition dynamics. (Goal 2)
Motivated by the observation that both the reinforcement
learning and planning communities are interested in the
types of domains outlined in the first goal, the second goal
aimed to unite the probabilistic planning and reinforce-
ment learning communities under a common competition
and software framework. This aim also resulted in the
name change of the track.

To enable the seamless integration of both reinforce-
ment learning (RL) and planning methods, the original
Java-based RDDLSim (Sanner 2010a) simulation frame-
work has been replaced with a Python-based framework
called pyRDDLGym (Taitler et al. 2022) that includes a
fast vectorized simulator. This framework serves as an
auto-generation toolkit for OpenAl Gym environments
(Brockman et al. 2016), directly generated from raw RDDL
files. As a result, pyRDDLGym is fully compatible with
the standard interaction model and framework of the RL
community. Additionally, it accommodates model-based
planning methods by providing the RDDL domain and
instance files that describe the model along with compi-
lations both to Jax computation graphs (Bradbury et al.
2018) as well as an extended Algebraic Decision Diagram
(XADD) (Sanner, Delgado, and de Barros 2011) format
to represent the dynamic Bayesian network and influ-
ence graphs for the factored MDP underlying a ground
RDDL instance.

JaxPlan, a model-based back-propagation planner,
Taitler et al. (2022), is included out-of-the-box with pyRD-
DLGym. It is provided to assist competitors in getting
started, and used as an evaluation baseline, as explained
in the Evaluation Methodology section.

Participants in the current year’s probabilistic and RL
track engaged in competitions spanning eight distinct
domains. The track achieved an all-time high in regis-
tration numbers, with 29 competitors showing interest
and signing up during the initial phase. In the second
stage, which took place a month and a half prior to the
competition, all participants were tasked with submit-
ting a working planner. This stage served as a dry-run
to assess the infrastructure and procedures, resulting
in only four competitors successfully advancing to the
competition.

New domains introduced

As part of the comprehensive overhaul of this year’s track,
all eight domains offered were entirely new. The prob-
lems exhibited a diverse range of properties; some were
goal-oriented, while others involved steady-state control.
One notable challenge this year was an oversubscribed
multi-agent version of the Mars-Rover problem, inspired
by (Yliniemi, Agogino, and Tumer 2014). An interesting
addition was the RecSim domain—a Recommender Sys-
tems domain contributed by Google (Mladenov et al. 2020).
Although it was the only discrete domain in the compe-
tition, it featured a vast number of enumerable state and
action spaces, reaching up to 40,000 actions per time step
in the largest instance of the competition.

Furthermore, a UAV problem with multiple drones was
introduced based on a simplified version of the dynamics
described in Hull (2007). The UAV problem incorpo-
rated both controllable and uncontrollable dynamic-model
UAVs, with uncontrollable UAVs not contributing to the
reward. This aspect called for model reasoning to deter-
mine which parts of the space were worth ignoring.

The domains were also categorized by problem type,
ranging from classical control problems like Mountain-
Car and RaceCar to operations research (OR) problems
such as Reservoir control and Power Generation, and even
extending to e-commerce.

Evaluation methodology

The online phase of this track took place in early June
2023, spanning a week. At the beginning of the week,
three instances of each domain, gradually increasing in
difficulty, were released to competitors. These instances
were generated using prereleased instance generators, and
their generation parameters were also provided. Competi-
tors had 1 week to fine-tune their methods, and at the
week’s end, they submitted their planners. These submit-
ted planners were evaluated on the three instances that
had already been released, as well as on two additional
instances that had not been seen before. The difficulty level
of these new instances was designed to be more challeng-
ing than the easiest instance but less difficult than the
hardest. The objective was to maximize the reward within
a finite time horizon.

The scores for each instance were precisely normalized
within the [0,1] range. Any episode’s reward that fell
below the maximum reward achievable through a random
policy or a no-operation policy (default unperturbed
behavior) was set to zero. Conversely, the method with the
highest accumulated reward, including the organizers’
baseline planner, set the upper boundary at 1, and all other
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scores were normalized accordingly. JaxPlan served as a
baseline and was executed in two modes, functioning as
two separate baselines: straight-line planning (SLP) mode
and deep reactive policy (DRP) mode (Bueno et al. 2019).
The average reward for each instance was computed as
the mean of 50 independent trials. Each trial had a four-
minute allocation, with an additional 60 min provided
before the trials for automatic hyper-parameter tuning.

The overall winner of the competition was the method
that achieved the highest accumulated score across all
instances, totaling five instances over eight domains for a
total of 40 instances. Consequently, the score ranged from
0 to 40.

Competition results and discussion

Four teams successfully qualified for the online stage of
the competition by meeting all the requirements, which
included submitting an abstract and passing a dry-run
evaluation. These approaches were categorized into one
planning approach and three model-free RL approaches.
One of the RL teams and the planning team repre-
sented academia, while the other two RL teams were
from industry.

Only the planning approach managed to complete a
successful final submission that could be evaluated. This
winning team of DiSProD (P. Chatterjee, A. Chapagain, R.
Khardon) built upon their previous DiSProD work (Chat-
terjee et al. 2023), a gradient-based search approach capa-
ble of propagating distributions between time steps. To
accommodate the time constraints of the competition (4
min per trial), a more time-efficient variant was employed.

This year’s competition provided a fascinating perspec-
tive on the field of probabilistic planning and learning,
particularly in terms of the problem types offered. The
initial registration numbers set an all-time record, and
the contributions of domains and code from the commu-
nity suggest a strong interest within both the research
and industry communities in the types of challenges pre-
sented in this year’s competition. However, the significant
drop in the number of competitors at each stage of the
competition, and the fact that only one team successfully
crossed the finish line, with that team opting for a planning
approach, adds complexity to the overall picture.

The most apparent challenges include the necessity for
methods capable of solving both continuous and discrete
problems and the requirement to tackle tasks encom-
passing control, operations research (OR), navigation, and
more, without domain-specific adjustments. We would
like to emphasize two notable challenges:

Instance size: One of the major factors affecting the
difficulty level of the instances is the size of the state and

TABLE 8 Summary of results for the Probabilistic Track for
the two baselines JaxPlan-SLP and JaxPlan-DRP and the winning
planner DiSProD. Each entry counts the number of tasks won per

domain.

Domain SLP DRP DiSProD
HVAC 1 0 4
MarsRover 0 4 1
MountainCar 4 1 3
UAV 0 0 5
PowerGen 1 2 2
Reservoir 3 2 0
RaceCar 5 0 0
RecSim 1 1 3
Total 15 10 18

action spaces. While differentiable planning approaches
such as DiSProD scale relatively well versus instance
size (and are mostly limited by memory constraints), RL
methods are significantly impacted by instance size since
increases in the number of state and action variables of
the underlying MDP typically lead to challenges with
effective exploration and an explosion of the sample com-
plexity (and therefore learning time) required to obtain a
reasonably performing policy.

Exploiting structure: This year’s track placed con-
siderable emphasis on problems with inherent sparse
transition structure that can be leveraged for efficiency.
For example, consider an HVAC problem with one heater
and two rooms. In the first instance, the rooms can be iso-
lated, while in the next, they can be adjacent and allow
for heat transfer. Model-free RL methods have no knowl-
edge of this underlying transition structure and are unable
to exploit any knowledge of the independence that occurs
in the first instance. In contrast, model-based planning
methodologies are able to exploit this independence, for
example, DiSProD’s gradient-based optimization method
would exploit the fact that one room’s temperature does
not depend on the other room since such a dependence
would not arise in the calculated derivatives (Table 8).

In summary, this year’s track drew participants from
academia and industry, showcasing interest in complex
challenges. The competition highlighted the need for
versatile methods to handle diverse tasks, ultimately favor-
ing a differentiation-based planning approach. Integrating
model-based planning and model-free RL approaches
remains a challenge in this evolving field. Equally impor-
tantly, we were not aware that any methods attempted to
leverage generalized planning and RL approaches (Sanner
and Boutilier 2009; Sharma et al. 2023) that could exploit
domain structure to generalize learning over instances,
which we see as a key to improving the efficiency of
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RL methods while providing broad generalization abil-
ities to new instances with little (or no) need for per-
instance adaptation.

CONCLUDING REMARKS

As in previous iterations, the International Planning Com-
petition has been instrumental in advancing the field of
automated planning, bringing together researchers from
various domains to push the boundaries of planning
methodologies. IPC-2023 was notable for its diverse set
of tracks, reflecting the diversity within the planning
research community.

The classical track continued to evolve, emphasizing
features to facilitate modeling while maintaining opti-
mal, satisficing, and agile subtracks. The numeric track
explored the capabilities of state-of-the-art planners in
dealing with numeric reasoning; an effective numeric
reasoning is a crucial building block to handle plan-
ning models that are closer to reality. The HTN track
highlighted the significance of efficient grounding and
domain-specific approaches in handling complex hier-
archical tasks. The learning track addressed the fully
automatic acquisition and application of domain-specific
knowledge, showcasing advancements while revealing
areas for further development. Lastly, the probabilistic
and reinforcement learning track introduced new com-
plexities and challenges to the field, paving the way for
hybrid methods, combining tools from the planning and
learning communities.

IPC-2023 demonstrates the advances within the plan-
ning community, embracing new trends, and coexisting
with traditional methodologies. With recent advances in
AT blurring the historical barriers between Al fields,
future planning competitions might consider opportuni-
ties for the cross-pollination and integration of planning
in novel application-focused tracks to further showcase
the capabilities of planning methodologies in the presently
burgeoning Al ecosystem.
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ENDNOTES

Thttps://gppc.search-conference.org/
Zhttps://ipc2023-numeric.github.io/abstracts/NLM_CutPlan_
Abstract.pdf
3https://gitlab.com/enricos83/ENHSP-Public/-/tags/enhsp20-0.9.9
4Clarifications and changes are explained in https://github.com/
panda-planner-dev/ipc2020-domains/blob/master/hddl.pdf.
Shttps://github.com/aiplandeu/unified-planning
These and other issues are being addressed in the BFGP++ solver
(https://github.com/jsego/bfgp-pp), an extended version of PGP.
"Due to a bug, Vanir failed to run its backup planner (LAMA) when
no hierarchical policy could be learned.
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