
Entry Compression (EC)

original PDB
1 3 4 8 9 2 3 10

1 4 2 3

The minimum value is stored so that the
heuristic is still admissible (non-overesti-
mating).

Value Compression of
Pattern Databases

Pattern Database Compression
What is a Pattern Database (PDB)?

A PDB is a heuristic that estimates the dis-
tance to the goal for search algorithms such
as A*. It computes and stores the distances
in an abstract state space and stores them
in a table.

Entry Compression (Felner et al, 2007)
compresses the PDB by combining entries
and storing the minimum. Thus, there are
fewer entries in the compressed PDB.

Value Compression (VC) [new]

VC keeps all entries in the PDB, but reduces
the number of bits per entry. This reduces
the ranges of values that can be stored.

original PDB (≥4 bits)
1 3 4 8 9 2 3 10

1 3 4 7 7 2 3 7

Value Compression Details

• Value Compression (VC) divides the
heuristic values into ranges R1...Rn. Rang-
es are stored instead of values.

• The minimum value of the range is used
during search to maintain admissibility.

• Dynamic programming is used to opti-
mize the ranges and maximize the aver-
age h-value in the compressed PDB.

Example of EC vs VC in Top Spin

Experimental Setup

The paper contains experiments on many
domains and algorithms. We report on
18-4 Top Spin here.

We compare compression factors in IDA*
with BPMX as well as combinations of EC
and VC. Combinations with VC have the
best performance (bold).

Runtime Heuristic Distribution

General Observations

• Conventional wisdom says the low values
in the PDB are more important than the
high values. So, removing low values from
the PDB should hurt performance.

• In practice, the most common heuristic
values in the runtime distribution (looked
up during search) must be preserved.

• Bidirectional Pathmax (BPMX) is crucial
for local propagation of heuristic values and
recovery of lost information.

• VC is most effective when the number
of values in the PDB is just larger than the
nearest power of two.

• EC can be effectively combined with VC.

Nathan R. Sturtevant, University of Denver; Ariel Felner, BGU; Malte Helmert, University of Basel

Value Compression: No wasted bits

Experimental Results

2x compressed PDB

compressed PDB (3 bits)

1,760MB 880MB 440MB
D Total V C2 VC2h̄ EC2 VC4h̄ EC4
0 1 1 12 2 10,188,753 4
1 11 11 22 40
2 94 94 94 186 340
3 731 731 731 1,430 2,596
4 5,353 5,353 5,353 10,340 18,736
5 37,275 37,275 37,275 70,894 127,756
6 245,468 245,468 245,468 457,304 813,700
7 1,508,099 1,508,099 1,508,099 2,722,458 4,724,408
8 8,391,721 8,391,721 8,391,721 14,408,820 23,870,392
9 40,012,497 40,012,497 40,012,497 63,502,746 190,013,262 97,318,252

10 150,000,765 150,000,765 150,000,765 212,692,340 290,434,356
11 393,482,172 393,482,172 393,482,172 478,114,034 393,482,172 553,276,900
12 612,084,904 612,084,904 612,084,904 601,419,722 1,170,638,373 549,750,508
13 440,655,534 440,655,534 440,655,534 328,304,534 217,340,348
14 110,437,757 110,437,757 110,437,757 59,883,892 26,009,144
15 7,389,524 7,460,178 7,389,524 2,721,910 634,464
16 70,633 70,654 11,924 616
17 21 2

Avg. 11.90 11.90 11.90 11.59 11.38 11.27

Table 1: (18-4)-TopSpin. Distribution of values for different types of compression

3.1 General Description of Value Compression

Using b bits per PDB entry, we can store 2b different heuris-
tic values. The main idea in VC is to compress a range of
values together, storing the minimal value of each range to
preserve admissibility. In the V C2 example above, we com-
press the range {15, . . . , 17} to the value 15.

In general, let R be the range of distinct h values of a
memory-based heuristic such as a PDB. To store this, we
need �log2 |R|� bits per entry. VC partitions range R into
M disjoint contiguous subranges R = R1 ∪ · · · ∪ RM . By
“contiguous” we mean that no value of a given range falls
between the minimum and maximum value in another range.
In the compressed PDB we only store the identity of each
subrange for each entry, requiring �log2 M� bits. Of course
this loses some information: if the heuristic lookup deter-
mines that the heuristic value falls into range Ri, we have to
use the minimum value in Ri as an admissible heuristic. For
example, assume R = {0, . . . , 99}. Without compression,
we need at least 7 bits per entry. One possible value com-
pression groups any 10 consecutive values together: R1 =

{0, . . . , 9}, R2 = {10, . . . , 19}, . . . , R10 = {90, . . . , 99}.
This reduces space usage to 4 bits per entry at the loss of
some heuristic accuracy (e.g., all heuristic values between
30 and 39 are compressed to 30). We expect VC to be partic-
ularly effective when few bits can be used to capture the ma-
jority of the values in the PDB. Similar to EC, VC may cause
the heuristic to be inconsistent if two neighboring states are
mapped to different ranges.

VC can be seen as generalizing the idea of partial pattern
databases (PPDB) (Anderson, Holte, and Schaeffer 2007;
Edelkamp and Kissmann 2008), which only store heuristic
values up to a threshold V , assigning a heuristic value of
V + 1 to all other entries.

3.2 General Optimized Range Partitioning
VC is flexible regarding which values to group together.
There are (|R|−1)!

(|R|−M)!(M−1)! ways to partition a range R into
M nonempty contiguous subranges. (One range must start
at 0 to preserve admissibility.) Which one should be used?
We define an optimal partition as one that maximizes the
average heuristic value of the compressed heuristic among
all possible partitions into M subranges. This is equivalent
to the minimal average loss of information over all values in
the compressed PDB.

We now descibe how to compute an optimal partition,
which we denote by V Ch̄, in time polynomial in |R|
and M . Consider an arbitrary contiguous partition P =

{R1, . . . , RM} of the range R. For k ∈ R, Let N(k) de-
note the number of PDB entries with heuristic value k. The
quality (= cumulative heuristic value) under partition P is:

Quality(P) =

∑

Ri∈P

(
∑

k∈Ri

N(k) ·minRi

)
. (1)

In words, we sum over all subranges, and for each subrange
Ri we count how many PDB entries fall into Ri and mul-
tiply the total by the value stored for this range (minRi).
Optimizing quality is equivalent to optimizing the average
heuristic value, as the average is the quality divided by the
number of PDB entries. The quality metric is easier to work
with than the average because it is additive: if we divide a
partition into two parts P = P ′ ∪ P ′′, then we have

Quality(P) = Quality(P ′
) + Quality(P ′′

). (2)

This additivity property suggests a dynamic programming
approach for finding a partition into M subranges that max-
imizes quality. For any set X and value k ∈ X , we define
X≤k := {x ∈ X | x ≤ k} and X>k := {x ∈ X | x > k}.
Every contiguous partition P of R into M ≥ 2 subranges

Static Dist.
Dynamic Dist.
MM Dynamic Dist.
3 Bit VC Dist
2 Bit VC

Pe
rc

en
ta

ge
 o

f S
ta

te
s

0

0.2

0.4

0.6

Heuristic Value
0 5 10 15

Algorithm 1: Optimal Partitioning
1 OptPart(max h, M)
2 for s = 0 to max h do
3 Pivot[s, 1] = max h;
4 Qual[s, 1] = CalcQ(s, max h);
5 end
6 for m = 2 to M do
7 for s = 0 to max h + 1−m do
8 bestQ = −∞;
9 for p = s to max h + 1−m do

10 currQ = CalcQ(s, p) + Qual[p+ 1, m− 1];
11 if currQ > bestQ then
12 bestQ = currQ;
13 pivot = p;
14 end
15 end
16 Qual[s, m] = bestQ;
17 Pivot[s, m] = pivot;
18 end
19 end
20 end

can be written as P = {R≤p} ∪ P ′ where p is the largest
value of the smallest subrange of P (we call this the pivot of
P), and P ′ is a contiguous partition of R>p.

If P is an optimal partition (one that maximizes
Quality(P) over all partitions of R into M subranges), then
from Quality(P) = Quality({R≤p}) + Quality(P ′

), we get
that P ′ must be an optimal partition of R>p into M −1 sub-
ranges. Otherwise, the quality of P could be improved by
replacing this subpartition by another one of higher quality.

For a general range R and M ≥ 1, let OptPart(R,M)

denote an optimal partition of R into at most M sub-
ranges. Clearly, OptPart(R, 1) = {R} for all R. Another
base case is OptPart(∅,M) = ∅ for all M . For R �= ∅
and M > 1, we obtain OptPart(R,M) by computing
Quality({R≤p}) + Quality(OptPart(R>p,M − 1)) for all
possible p ∈ R. If p ∈ R maximizes this quantity, we can
set OptPart(R,M) = {R≤p}∪OptPart(R>p,M −1). That
is, an optimal solution can be obtained by trying out all pos-
sible pivots p, recursively computing an optimal partition
for each subproblem, and selecting the best partition among
these candidates.

It is easy to see that all subproblems generated when
computing OptPart(R,M) in this fashion are of the form
OptPart(R>p,M

′
) for some p ∈ R and some M

′ ∈
{1, . . . ,M}, and hence the total number of subproblems is
bounded by |R| ·M , giving rise to a dynamic programming
algorithm with runtime polynomial in |R| and M .

Algorithm 1 gives pseudo-code for this algorithm. We as-
sume R = {0, . . . ,max h} for some number max h, but
the algorithm can be easily adapted to arbitrary ranges.
Pivot[s,m] and Qual[s,m] store the pivot and quality of par-
titioning the range {s, . . . ,max h} into m subranges. Sub-
procedure CalcQ(s, u) calculates the quality for the subrange
{s, . . . , u}, which is

∑u
k=s N(k) · s. The optimal partition

is then obtained by collecting the pivots from the array.
Table 1 also shows the optimal value compression for

Static Dist.
Dynamic Dist.
MM Dynamic Dist.
3 Bit VC Dist
2 Bit VC

Pe
rc

en
ta

ge
 o

f S
ta

te
s

0

0.2

0.4

0.6

Heuristic Value
0 5 10 15

Figure 1: Distribution curves for (18-4)-TopSpin

Memory EC VC VC-bits Nodes Time
1 1 1 8 3.88M 15.29
0.5 (A) 1 2 4 3.88M 15.32
0.375 1 2.66 3 4.03M 15.44
0.25 (B) 1 4 2 10.39M 33.63
0.5 (A) 2 1 8 7.11M 27.70
0.25 (B) 2 2 4 7.11M 27.88
0.1875 2 2.66 3 7.37M 28.44
0.125 (C) 2 4 2 30.43M 80.04
0.25 (B) 4 1 8 13.75M 51.06
0.125 (C) 4 2 4 13.74M 50.97
0.094 4 2.66 3 14.31M 51.52
0.0625 4 4 2 30.48M 77.68

Table 2: Results for (18-4)-TopSpin

our 8-tile PDB. Column VC2h̄ represents compression by
a factor of 2, i.e., to 4 bits (M = 2

4
= 16), and col-

umn VC4h̄ is compression by a factor of 4, i.e., to 2 bits
(M = 2

2
= 4). We see that for VC2h̄, it is optimal to use

the subranges {0, 1}, {16, 17} and singleton ranges {2}, . . . ,
{15}, while for VC4h̄ the optimal subranges are {0, . . . , 8},
{9, 10}, {11} and {12, . . . , 17}. The average heuristic val-
ues for VC2h̄ and VC4h̄ are 11.90 and 11.38, both signifi-
cantly better than entry compression with the same amount
of memory (columns EC2 and EC4).

4 Heuristic Distributions
Two different types of heuristic distributions are described
in the literature (Holte et al. 2006; Felner et al. 2005). In
the context of PDBs the static distribution is the distribution
of values in the PDB, while the dynamic distribution is the
distribution of the heuristic values that are seen during the
process of solving a given problem instance.

For unidirectional searches such as A* or IDA*, the dy-
namic distribution may contain lower values than the static
distribution (see for example (Felner et al. 2011), figure 24,
pp 1592). Holte et al. (2006) explained that for a given f -
value, the search tree expanded by IDA* contains many
more nodes with large g-values and small h-values com-

Bidirectional Search: MM

• The MM algorithm guarantees that the
search frontiers meet in the middle.

• Small heuristic values aren’t used.

MEM EC VC-bits Nodes Time
1 1 8 367,225 0.44

0.5 1 4s 3,645,502 4.18
0.5 1 4d 684,846 0.94
0.5 1 4c 394,603 0.43
0.5 2 8 416,014 0.49

Table 3: Results for (18-2)-TopSpin

Static
Dynamic
4 Bit !VC

Pe
rc

en
ta

ge
 o

f S
ta

te
s

0

0.02

0.04

0.06

0.08

Heuristic Value
0 20 40 60 80 100

Figure 3: Distributions for the 16-peg Towers of Hanoi

with VC to 4 bits (a factor of 2). 4s/4d is V Ch̄ trained on the
static/dynamic distributions. As predicted 4d outperforms 4s
but they are both have worse performance than EC with the
same amount of memory (last line). Finally, 4c is a manually
tuned range selection which achieves slightly better perfor-
mance than EC.

6 VC on Top of Delta Heuristics
Recall that h∆ = h1 − h2 and that h1 can be recovered by
h1 = h2 + h∆. Here, we briefly study the question of using
h∆ when the distribution of values in h1 is large. The main
advantage of using h∆ is that it contains a smaller range of
values than h1. This may require fewer bits per entry and
thus reduce memory. In addition, smaller ranges reduce the
loss of information that occurs when performing EC or VC
on h∆ compared to a straight compression of the original
PDB. We have experimental evidence that shows this gen-
eral trend but focus here on applying VC to h∆.

An ideal domain for using h∆ is the 4-peg Towers of
Hanoi (TOH4) (Korf and Felner 2007). The aim is to move
all discs, one at a time, to the goal peg while never placing a
large disc on top of a small disc. TOH4 has very long solu-
tion lengths and the range of heuristic values is very large.2
We study the the 16-disk TOH4 problem.
h1 is set to be a 14-disk PDB. h2 is generated by an entry

compression of a 14-disk PDB by a factor of 8192. This is
equivalent to compressing the smallest 6.5 discs (Felner et
al. 2007). h2 is still very accurate because in TOH4 the loss-
of-information is still very small. Nevertheless, h1 has 113
values and its static distribution is shown in the black curve

2TOH4 has many cycles so IDA* will not be effective here; A*
with BPMX is required.

Memory EC VC VC-bits Nodes Time
1 1 1 8 2.07M 30.60

0.5 2 1 8 3.55M 55.61
0.5 1 2 4 2.07M 30.93
0.25 4 1 8 5.42M 83.87
0.25 2 2 4 3.55M 55.55
0.25 1 4 2 4.63M 66.46

0.125 4 2 4 5.42M 84.06
0.125 2 4 2 5.19M 79.17

Table 4: MM: (18,4)-TopSpin. EC vs. VC

Mem EC VC bits Nodes Time Nodes Time
(18-6) (18-10)

1 1 1 4 9.00M 163 9.11M 170
0.5 2 1 4 16.27M 316 17.30M 329
0.5 1 2 2 12.48M 224 9.31M 184
0.25 4 1 4 29.76M 636 31.93M 604
0.25 2 2 2 17.68M 330 28.14M 528
0.125 4 2 2 30.09M 626 37.62M 707

Table 5: MM: (18,6) and (18-10)-TopSpin. EC vs. VC

of Figure 3. By contrast, h∆ has only 26 values ranging from
0 to 25 (not shown in the figure). There is not necessarily
a correlation between large h∆ values and large h2 values.
Therefore, the static and dynamic distributions of h∆ are not
necessarily correlated to the original PDB.

The dynamic distribution of values when using h1 is
shown in the figure (thick blue curve) and is not close to the
static distribution. When we tried VC directly on h1, it could
not solve many instances within our time/memory limits be-
cause of the gap between the dynamic and static distribution.
However, performing VC on h∆ is very effective. The thin
orange curve shows that the distribution of values of VC of
h∆ with 4-bits per entry (then added to h2) matches with the
dynamic distribution of the original PDB. We observed this
trend in other domains as well including the 15 puzzle and
TopSpin but we omit the results here.

To summarize the unidirectional research section on
whether to use VC or RC we can provide the following gen-
eral rule: when the static and dynamic distribution correlate
V Ch̄ will be very effective and will tend to outperform EC,
especially when we compress small ranges and not too many
values are lost.

7 Experimental Results: VC for MM
Since MM meets in the middle, only heuristic values that are
larger than C

∗
/2 may prune nodes that would otherwise be

expanded. Nodes with h(n) ≤ C

∗
/2 fall into two cases. If

h(n) < g(n), then h(n) is dominated by g(n) in the priority
function and h(n) can be treated as 0. If g(n) ≤ h(n) ≤
C

∗
/2, then pr(n) = g(n)+h(n) ≤ C

∗. Such nodes will be
expanded at some point and their heuristic values can also
be treated as 0. Therefore, for MM low heuristic values may
be fully compressed away by VC without losing anything.

The green curve in Figure 1 shows the dynamic distribu-
tion of h-values that actually influenced the priority func-

Moving AI Lab

DANIEL FELIX RITCHIE SCHOOL OF
ENGINEERING & COMPUTER SCIENCE

Award 1551406

User
Comment on Text
merging

User
Comment on Text
Still hard to tell who are the authors. Maybe place the affiliation below the names or give it a smaller font or a darker color (Blue?)

User
Comment on Text
Swap. Say: VC can be....

User
Comment on Text
Since MM meets in the middle, small heuristic values are meaningless. VC can compress them away and preserve high values only.

If you need more space maybe move the logos to the top next to the title.

User
Comment on Text
Can you make it Ben-Gurion Univ?

