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Abstract

Traditional symbolic search algorithms for classical planning
can incur exponential overhead compared to explicit blind
search in the presence of complex conditions and effects.
To address this problem, we explore conjunctive partitioning
and propose fully automated, domain-independent methods
for representing actions and goal conditions in a partitioned
form. One of our methods, based on the Tseitin transforma-
tion, yields a symbolic search algorithm that in the worst case
incurs only a polynomial overhead and in the best case can be
exponentially more efficient than its explicit counterpart. An
empirical evaluation shows that our theoretical findings carry
over into practice: our algorithms solve planning problems
previously intractable for symbolic search and perform favor-
ably overall compared to traditional symbolic search, explicit
blind search, and other state-of-the-art planners.

Introduction
Symbolic search is an established method for classical
cost-optimal planning. It is known to have complemen-
tary strengths to explicit heuristic search and is often as-
sumed to be superior to explicit blind search. While this
is often true for planning problems with simple conditions
and effects, such as STRIPS (Fikes and Nilsson 1971) or
SAS+ (Bäckström and Nebel 1995), symbolic search algo-
rithms face severe performance problems in the presence of
complex conditions and effects (Speck, Seipp, and Torralba
2025). This can be seen, for example, in the 2023 edition of
the International Planning Competition (Taitler et al. 2024).
In domains like Rubik’s Cube, all planners based on sym-
bolic search were not able to solve a single task, although
some of them were solvable with only a few actions, and
explicit blind search easily solved those. The reason for this
is that it is infeasible to represent the actions as logical for-
mulas, as so-called transition relations, in the form of mono-
lithic binary decision diagrams (BDDs) (Bryant 1986).

We propose a conjunctive partitioned representation of
complex formulas to address the representation challenges
encountered by modern planners based on symbolic search.
While the conjunctive partitioning of transition relations has
long been standard in model checking (Burch, Clarke, and
Long 1991), the planning community has largely neglected
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it, considering disjunctive partitioning to be a more appro-
priate approach for representing actions. On the theoreti-
cal side, we describe a method that can effectively derive
a variable-based conjunctive form (Burch, Clarke, and Long
1991) of complex actions. Furthermore, we propose an ap-
proach based on the Tseitin transformation (Tseitin 1968)
which has a polynomial performance guarantee over explicit
blind search. On the practical side, symbolic search with the
proposed partitioned representations can for the first time
effectively solve problems from domains with complex ef-
fects such as Rubik’s Cube. This establishes a novel sym-
bolic search approach that compares favorably to traditional
symbolic search and other explicit search approaches.

Conjunctive Representations
In symbolic search, the formulas of a planning task must be
represented as BDDs. The critical components are the ac-
tions (as transition relations) and the goal formula. In tradi-
tional symbolic search for planning, each action and the goal
is represented by a single, monolithic BDD (e.g., Edelkamp
and Helmert 2001; Torralba et al. 2017). This is not to be
confused with having a single monolithic transition relation
for all actions by disjunctive merging. We refer to this per-
action representation as the action-monolithic form.

We propose to conjunctively partition these formulas: we
use a tuple of formulas ⟨ϕ1, . . . , ϕn⟩ to represent the formula
ϕ = ϕ1 ∧ · · · ∧ϕn. More precisely, the transition relation τa
of an action a or the goal formula γ are represented as tuples
of BDDs, whose conjunction represents the function τa or γ.

In the variable-monolithic form, we represent the transi-
tion relation of each action as a tuple with 1 + |V | BDDs,
one for the precondition and one for each variable. More
precisely, we create a formula that encodes for each variable
v the condition under which v is true after applying action
a. This representation was originally proposed by Burch,
Clarke, and Long (1991) in the context of model checking.

Our final approach to representing formulas of a planning
task is what we call the Tseitin form. It is based on the
Tseitin transformation (Tseitin 1968), which converts a for-
mula into conjunctive normal form in linear time and space
by introducing auxiliary variables. In this form, we apply
the Tseitin transformation to each transition relation and the
goal formula, representing every resulting clause as an indi-
vidual BDD. Moreover, we impose an order on the clauses,
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Figure 1: Sizes of BDDs required to represent planning tasks with complex effects along the y-axis. Tasks that cannot be
represented as BDDs within the resource limits are marked with ∅. Newly introduced representations are highlighted in bold.

induced by the partial order of the subformulas, to sequen-
tially determine the values of the auxiliary variables.

Consider the successor computation in symbolic search.
We compute all successor states succ of a given set of
states states for a transition relation τa representing action
a. In the action-monolithic case, we compute the standard
image operation on BDDs, (∃V (states ∧ τa))[V

′ → V ]
(Burch, Clarke, and Long 1991; Torralba et al. 2017). For the
variable-monolithic and Tseitin forms, we exploit the parti-
tioned form of the transition relation τa. Consider a transi-
tion relation τa = t1 ∧ t2 ∧ t3. In the variable-monolithic
and Tseitin cases we compute (((states ∧ t1) ∧ t2) ∧ t3),
while in the action-monolithic case we have the computa-
tion (states ∧ τa) = (states ∧ (t1 ∧ t2 ∧ t3)). Thus, instead
of computing the complete predecessor-successor relation of
an action as a monolithic BDD, we reorder the conjunction
to place the state BDD states first. This allows us to compute
only those successors that are relevant with respect to states.
Note that in Tseitin form, a quasi-equivalent formula is com-
puted, which is equivalent after forgetting auxiliary variables
(Tseitin 1968; Kuiter et al. 2022). Similarly, we can exploit
the partitioned representation of the goal formula for check-
ing if a goal state is found.

All such representations can be exponentially more ef-
ficient than explicit blind search, i.e., Dijkstra’s algorithm
(Dijkstra 1959). For the Tseitin form, we can derive a per-
formance guarantee relative to its explicit counterpart: in
the worst case, it requires only polynomially more time and
memory, whereas all previous approaches may incur expo-
nential overhead.

Experiments
We implemented symbolic search with conjunctive parti-
tioning in the SymK planner (Speck, Mattmüller, and Nebel
2020), which is based on Fast Downward 23.06 (Helmert
2006). We additionally consider a variant that first tries for
five seconds to construct the formula in variable-monolithic
form, and then switches to the Tseitin form.

Fig. 1 shows the cumulative size of BDDs required to rep-
resent the initial state, goal, and transition relations for each

Explicit Forward Bidirectional + M

Blind Scorp. AM VM T VM+T AM VM T VM+T
379 513 432 448 431 474 557 585 645 653

Table 1: Number of tasks solved out of 1227 tasks from
18 domains for explicit and symbolic forward/bidirectional
search with or without transition relation merging (M).

task of 18 domains with complex conditional effects. We
see that the action-monolithic form fails to create these data
structures in multiple domains, among them the IPC 2023
Rubik’s Cube domain. The variable-monolithic and Tseitin
forms both perform significantly better, although each out-
performs the other in different domains. Our hybrid variant
combines the best of all approaches for these domains.

Tab. 1 shows the overall coverage of symbolic search
compared to explicit blind search and explicit heuristic
search in the form of Scorpion (Seipp, Keller, and Helmert
2020; Seipp 2023). In addition to “vanilla” forward sym-
bolic search, we report results for bidirectional search that
merges the conjunctively or disjunctively partitioned transi-
tion relations (M), up to 100k BDD nodes (Torralba et al.
2017). The new representations perform domainwise favor-
ably compared to the action-monolithic form and can in-
crease the overall number of solved tasks (see Speck and
Helmert (2025) for details). By combining the variable-
monolithic and Tseitin forms with transition-relation merg-
ing and bidirectional search, we introduce a novel symbolic
search approach that outperforms the state of the art in both
symbolic and explicit search, solving 140 more tasks than
Scorpion, the top non-portfolio planner at IPC 2023.

Conclusions
We presented new methods to advance symbolic search for
classical planning using conjunctive partitioning. As future
work, we aim to conduct similar investigations for symbolic
search with heuristics (Edelkamp and Reffel 1998; Fišer,
Torralba, and Hoffmann 2024), with the goal of establishing
performance guarantees relative to explicit heuristic search.
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