
On Performance Guarantees for Symbolic Search
in Classical Planning

David Speck and Malte Helmert

University of Basel, Switzerland
⟨davidjakob.speck, malte.helmert⟩@unibas.ch

Abstract. We show that standard symbolic search algorithms for
classical planning can incur exponential overhead compared to ex-
plicit blind search in the presence of complex conditions and ef-
fects. To address this problem, we explore conjunctive partitioning in
classical planning and present fully automated, domain-independent
methods for representing actions and goal conditions in a partitioned
form. We show that one of our methods, based on the Tseitin trans-
formation, yields a symbolic search algorithm that in the worst case
incurs only a polynomial overhead and in the best case can be ex-
ponentially more efficient than its explicit counterpart. Finally, our
empirical evaluation shows that our theoretical findings carry over
into practice: our algorithms solve planning problems previously in-
tractable for symbolic search, and perform favorably overall com-
pared to traditional symbolic search, explicit blind search, and other
state-of-the-art planners.

1 Introduction
Symbolic search is an established method for classical cost-optimal
planning. It is known to have complementary strengths to explicit
heuristic search and is often assumed to be superior to explicit blind
search. While this is often true for planning problems with simple
conditions and effects, such as STRIPS [13] or SAS+ [1], symbolic
search algorithms face severe performance problems in the presence
of complex conditions and effects [43]. This can be seen, for exam-
ple, in the 2023 edition of the International Planning Competition
[44]. In domains like Rubik’s Cube, all planners based on symbolic
search [37, 46, 17] were not able to solve a single task, although some
of them were solvable with only a few actions, and explicit blind
search easily solved those. The reason for this is that it is infeasible
to represent the actions as logical formulas, as so-called transition re-
lations, in the form of monolithic binary decision diagrams (BDDs)
[2]. In this paper, we consider a conjunctive partitioned representa-
tion of these formulas to address this issue.

While the conjunctive partitioning of transition relations has long
been standard in model checking [4], disjunctive partitioning has
been considered the more appropriate approach in planning [47, 45].
However, this assumption is based on simple normalized forms of ac-
tions and goals. An exception is the work of Jensen and Veloso [22]
on non-deterministic planning. It considers conjunctive partitioning
of transition relations. However, it is based on a specialized model-
ing language tailored for this purpose called NADL. In addition, the
preconditions of actions and the goal conditions are still represented
as a monolithic BDD, which can lead to an exponentially large BDD
representation and thus offers no performance guarantees compared

to explicit blind search. There is a long history of studies on the per-
formance guarantees of symbolic search and the sizes of the BDDs
involved. Domain-specific analyses show that the state space or goal
condition of planning problems, such as Gripper or the Connect-Four
game, can be represented with polynomial or exponential time and
size [9, 10]. Speck et al. [40] analyzed symbolic heuristic search [11]
and showed that even the perfect heuristic can impose an exponen-
tial overhead over symbolic blind search. Using state-set branching
[23], Fišer et al. [16, 14, 15] presented operator-potential heuristics
for symbolic search with a concise heuristic representation that im-
proves search but has no general performance guarantees compared
to explicit or symbolic blind search. While all these approaches con-
sider normalized goals and effects, Speck et al. [39, 43] investigated
symbolic search for planning with axioms that allow the modeling of
complex conditions. This approach relies on creating a monolithic
BDD for each action that contains all complex effect conditions.
If the formulas become too complex, this can lead to exponentially
large BDD representations.

Contributions For decades, the state-of-the-art approach to plan-
ning as symbolic search has neglected conjunctive partitioning to
represent goals and actions. On modern benchmark domains, how-
ever, this approach fails drastically due to the complexity of actions
and the large representation size. In this paper, we present the first
fully automated and domain-independent methods for the conjunc-
tive representation of complex conditions and effects in planning. On
the theoretical side, we propose a method that can effectively derive
a variable-based conjunctive form [4] of complex actions. In contrast
to previous work [22], this no longer requires manual modeling ef-
fort to partition the effects of actions. Furthermore, we propose an
approach based on the Tseitin transformation [49] and show that it
has a polynomial performance guarantee over explicit blind search.
On the practical side, symbolic search with the proposed partitioned
representations can for the first time effectively solve problems from
domains with complex effects such as Rubik’s Cube. This establishes
a novel symbolic search approach that compares favorably to tradi-
tional symbolic search and other explicit search approaches.

2 Background
We provide the necessary background for our work.

2.1 Propositional Logic

A literal ℓ is either a Boolean variable v or its negation ¬v. A propo-
sitional formula ϕ is defined recursively as a truth value ⊤ (true) or

⊥ (false), a Boolean variable, the negation ¬ϕ of a formula ϕ, or the
binary connection (ϕ • ψ) of two formulas ϕ and ψ with a conjunc-
tion connector (ϕ ∧ ψ), disjunction connector (ϕ ∨ ψ), implication
connector (ϕ → ψ), or biimplication connector (ϕ ↔ ψ). Implica-
tion (ϕ → ψ) and biimplication (ϕ ↔ ψ) are equivalent to ¬ϕ ∨ ψ
and (¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ). The size of a formula ϕ, i.e., the number
of symbols, is denoted by ∥ϕ∥. With Vars(ϕ) we refer to the set of
variables in a formula ϕ. With ϕ[v/⊤] and ϕ[v/⊥] we refer to re-
stricting a variable v in a formula ϕ to a particular value by replacing
each occurrence of v in the formula with ⊤ or ⊥. We write ∃v ϕ as
a shorthand for ϕ[v/⊤] ∨ ϕ[v/⊥], known as forgetting or existen-
tially quantifying the variable v. Intuitively, by ∃v ϕ we remove the
dependence of the formula ϕ on the variable v. When forgetting mul-
tiple variables V = {v1, . . . , vn} of a formula ϕ, we write ∃V ϕ as
shorthand for ∃v1 · · · ∃vn ϕ. Renaming the variable v1 to v2 in the
formula ϕ, written ϕ[v1 → v2], means replacing all occurrences of
v1 to v2 in ϕ. We require that v2 does not already occur in ϕ before
the renaming. For a set of variables V = {v1, . . . , vn} and a set
of primed versions of those variables V ′ = {v′1, . . . , v′n}, we write
ϕ[V → V ′] to rename all vi to v′i in ϕ, and ϕ[V ′ → V] to rename
all v′i to vi.

An assignment s : V 7→ {⊤,⊥} maps each variable of V to ⊤
or ⊥. Given an assignment s to the variables of a formula ϕ, the
evaluation ϕ(s) yields ⊤ or ⊥ for the formula using the usual rules
of Boolean algebra [25]. If for an assignment s and a formula ϕ we
have ϕ(s) = ⊤, we say that s is a model for ϕ, written s |= ϕ.

We use tuples to represent sequences of objects in any order.
We write tup({v1, . . . , vn}) = ⟨v1, . . . , vn⟩ for the tuple func-
tion, which transforms a set {v1, . . . vn} into a tuple in an arbi-
trary order. Also, ⊕ refers to the concatenation of two tuples, e.g.,
⟨v1⟩ ⊕ ⟨v2, v3⟩ = ⟨v1, v2, v3⟩.

2.2 Conjunctive Normal Form

A formula is in conjunctive normal form (CNF) if it is a conjunction
of one or more clauses, where a clause is a disjunction of literals.
The naive approach to transform a formula ϕ into CNF applies stan-
dard laws of propositional logic [25], which however can lead to an
exponential increase in the size of the formula [26]. We denote the
naive transformation of a formula ϕ into CNF as cnf(ϕ).

An alternative CNF transformation is the Tseitin transformation
[49]. To define it, we first introduce the notion of subformulas. If
ϕ is a formula, the immediate subformulas of ϕ are defined as fol-
lows: 1) truth constants and variables have no immediate subformu-
las, 2) the only immediate subformula of ϕ = ¬ψ is ψ, and 3) the
formula ϕ = ψ1 •ψ2 with • ∈ {∨,∧,→,↔} has immediate subfor-
mulas ψ1 and ψ2. The set of subformulas of a formula ϕ is then de-
fined as the smallest set Sub(ϕ) with ϕ ∈ Sub(ϕ) and if ψ ∈ Sub(ϕ)
then all immediate subformulas of ψ are in Sub(ϕ). The set of proper
subformulas of ϕ is Sub(ϕ) \ {ϕ}.

Next, we define the Tseitin transformation [49, 26].

Definition 1 (Tseitin Transformation). Let ϕ be a formula. The
Tseitin transformation tsn(ϕ) is defined as

tsn(ϕ) := [ϕ] ∧
∧

(ψ1•ψ2)∈Sub(ϕ),•∈{∧,∨,→,↔}

cnf([(ψ1 • ψ2)]↔ ([ψ1] • [ψ2]))

∧
∧

¬ψ∈Sub(ϕ),¬ψ is not a literal

cnf([¬ψ]↔ ¬[ψ])

with [χ] =

{
χ if χ is a literal,
vχ otherwise (vχ is an auxiliary variable)

V aux denotes the set of auxiliary variables introduced. The clauses
resulting from cnf([(ψ1 • ψ2)] ↔ ([ψ1] • [ψ2])) introduce the aux-
iliary variable v(ψ1•ψ2), and the clauses of cnf([¬ψ]↔ ¬[ψ]) intro-
duce the auxiliary variable v¬ψ . In addition, the clause [ϕ] introduces
auxiliary variable vϕ if the input formula ϕ is not a literal.

For a formula ϕ, the Tseitin transformation produces a quasi-
equivalent formula tsn(ϕ) in CNF. This means that there is a bijec-
tive mapping between the truth assignments of the original formula
and the transformed one. A truth assignment for the transformed for-
mula can be mapped to a truth assignment of the original formula by
forgetting the auxiliary variables V aux. Finally, the Tseitin transfor-
mation tsn can be generated in linear time and space in the size of the
original formula [26].

Example 1. Consider a formula ϕ = (x∧y)∨¬z with subformulas
Sub(ϕ) = {(x ∧ y) ∨ ¬z, (x ∧ y),¬z, x, y, z}. We obtain tsn(ϕ) =
vϕ2 ∧ cnf(vϕ2 ↔ (vϕ1 ∨ ¬z)) ∧ cnf(vϕ1 ↔ (x ∧ y)) where ϕ2 =
(x ∧ y) ∨ ¬z and ϕ1 = (x ∧ y). For cnf(vϕ1 ↔ (x∧ y)), we obtain
the clauses C(vϕ1) = {(¬vϕ1 ∨ x), (¬vϕ1 ∨ y), (vϕ1 ∨ ¬x ∨ ¬y)},
which are the clauses that introduce variable vϕ1 . The remaining
clauses C(vϕ2) = {vϕ2 , (¬vϕ2∨vϕ1∨¬z), (vϕ2∨¬vϕ1), (vϕ2∨z)}
introduce vϕ2 .

2.3 Classical Planning

We consider grounded propositional planning tasks derived from a
PDDL problem specification with full ADL features [30].

Definition 2 (Actions and States). Let V be a finite set of Boolean
state variables, and let all formulas be defined over V . An as-
signment s to V is called a state. An action a over V is a pair
⟨pre(a), eff(a)⟩, where pre(a) is a formula describing the precon-
dition, and eff(a) is the effect, where effects are defined inductively
as: 1)⊤ is the empty effect, 2) v and ¬v are atomic effects for v ∈ V ,
3) (e∧ e′) is a conjunctive effect if e, e′ are effects, and 4) (ϕ▷ e) is
a conditional effect if ϕ is a formula and e is an effect. Each action a
is associated with a cost cost(a) ∈ N0.

An action a has size ∥a∥ = ∥pre(a)∥ + ∥eff(a)∥, where the size
of its effect is defined inductively: the empty and atomic effects have
size 1, a conjunctive effect has size equal to the sum of its compo-
nents, and a conditional effect has size equal to the size of its condi-
tion formula plus that of its effect.

We define the semantics of an effect with the concept of effcond
[32]. Intuitively, effcond(ℓ, e) represents the condition that must be
true in the current state for the effect e to lead to the atomic effect ℓ.

Definition 3 (Effect Condition for an Effect). Let ℓ be an atomic
effect, and let e be an effect. The effect condition effcond(ℓ, e) un-
der which ℓ triggers given the effect e is a formula defined as:
1) effcond(ℓ,⊤) = ⊥, 2) effcond(ℓ, e) = ⊤ for the atomic ef-
fect e = ℓ, 3) effcond(ℓ, e) = ⊥ for all atomic effects e = ℓ′ ̸=
ℓ, 4) effcond(ℓ, (e ∧ e′)) = (effcond(ℓ, e) ∨ effcond(ℓ, e′)), and
5) effcond(ℓ, (ϕ▷ e)) = (ϕ ∧ effcond(ℓ, e)).

The application of an action with its effects to a state is then de-
fined as follows.

Definition 4 (Application of Actions and Effects). The resulting
state s′ = sJeK of applying e in s is defined as follows for all v ∈ V :

s′(v) =


⊤ if s |= effcond(v, e)
⊥ if s |= effcond(¬v, e) ∧ ¬effcond(v, e)
s(v) otherwise

Action a is applicable in s if s |= pre(a). If a is applicable in s, the
resulting state of applying a in s, written sJaK, is the state sJeff(a)K.

We define a planning task as follows.

Definition 5 (Planning Task). A planning task Π = ⟨V, I, A, γ⟩
consists of a finite set of propositional state variables V , an assign-
ment I of V called the initial state, a finite set of actions A over V
and a goal formula γ over V .

The objective of classical planning is to find a plan. A plan π =
⟨a1, . . . , an⟩ for planning task Π is a sequence of applicable actions
that generates a sequence of states s0, . . . , sn, where s0 = I , sn |=
γ, and si = si−1JaiK for all i = 1, . . . , n. The cost of a plan π =
⟨a1, . . . , an⟩ is defined as the sum of the costs of its actions, i.e.,∑n
i=1 cost(ai). A plan is optimal if no other plan has a lower cost.
Let v be a variable and a an action. We define regr(v, eff(a)) as a

shorthand for effcond(v, eff(a)) ∨ (v ∧ ¬effcond(¬v, eff(a))). Intu-
itively, regr(v, a) describes the condition under which v is true after
applying the effect of a. This concept is known as regression [32].

Example 2. Consider two variables x, y and an action a =
⟨¬x, (¬y ▷ x) ∧ y⟩. For a state s = {x 7→ ⊥, y 7→ ⊥},
action a is applicable since s |= pre(a). For literal x, we get
effcond(x, eff(a)) = effcond(x, (¬y ▷ x) ∧ y) = effcond(x,¬y ▷
x) ∨ effcond(x, y) = (¬y ∧ effcond(x, x)) ∨ ⊥ = ¬y ∧ ⊤ = ¬y.
Further, we get effcond(y, eff(a)) = ⊤ and effcond(¬x, eff(a)) =
effcond(¬y, eff(a)) = ⊥. Thus, applying a in s yields state sJaK =
{x 7→ ⊤, y 7→ ⊤}.

2.4 Binary Decision Diagrams

Binary decision diagrams are data structures that can be used to rep-
resent propositional formulas [27].

Definition 6 (Binary Decision Diagram). Let V be a set of Boolean
variables. A binary decision diagram (BDD) B is a directed acyclic
graph with a single root node and two terminal nodes: the ⊥-sink
and the ⊤-sink. Each inner node is labeled with a variable v ∈ V
and has two successors connected by labeled edges: the low edge,
representing that variable v is false, and the high edge, representing
that variable v is true. The size |B| of a BDD B is the number of its
nodes.

We consider BDDs in a reduced and ordered form [2]. In plan-
ning, BDDs are often used to represent formulas and sets of states.
A BDD B represents the set of states S where s ∈ S iff travers-
ing the BDD according to s leads to the ⊤-sink. We consider the
previously defined logical operations ¬ (not), ∧ (and), ∨ (or), ∃ (for-
getting), [v1 → v2] (variable renaming) for BDDs, which yield the
corresponding BDD representing the modified formula [2, 29]. By
bdd(ϕ) we refer to the BDD representing formula ϕ that results from
a bottom-up creation of ϕ.

In this paper, we use multiple sets of variables V , V ′ and V aux for
BDDs. V refers to the (unprimed) state variables of a planning task,
V ′ refers to a primed copy of such state variables and V aux are the
auxiliary variables introduced by the Tseitin transformation. Impor-
tantly, if a formula ϕ does not refer to certain variables, the BDD
representation of ϕ also does not refer to those variables, i.e., has
no decision nodes on those variables. Thus, we freely introduce new
variables for some BDDs, which does not affect the size of BDDs
that do not refer to such variables.

The order of the variables has a significant impact on the size of
a BDD. For certain formulas ϕ, there is an exponential difference in

the size of bdd(ϕ) depending on the variable order. Most importantly
for this work, there are formulas that have exponentially large BDDs
with respect to the size of the formula independently of the order of
the variables. One such formula is the connect-two formula which,
for a grid of size n× n, describes all vertically or horizontally adja-
cent cells [10]. We assume that the primed and unprimed versions of
the variables alternate in the variable order. The auxiliary variables
are positioned after all others.

2.5 Symbolic and Explicit Search

We describe symbolic search for cost-optimal classical planning
[29, 48]. To start the search, all relevant components of a planning
task — initial state, goal, and actions — are transformed into logi-
cal formulas and represented as BDDs. Then, symbolic search is split
into two phases, a reachability phase and a plan reconstruction phase.

The reachability phase maintains a closed and open list. The closed
list stores already expanded states, while the open list contains states
that have not yet been considered. Both lists consist of multiple
BDDs listg parameterized by cost g, where closedg contains all ex-
panded states and openg all states reachable with cost g. In each
step, the BDD openg representing the states with the lowest cost g
is extracted from open. Then the function eval-goal is used to check
whether openg contains a goal state, usually implemented as the in-
tersection of openg and the BDD representing the goal formula. If the
intersection is non-empty, a goal state has been found and the plan
reconstruction is triggered to return the corresponding optimal plan
(see below). Otherwise, the image operation [e.g., 29, 48] is applied
to compute all successor states of openg with respect to the actions of
the planning task. The successors of an action a with cost cost(a) are
then filtered by removing all already expanded states stored in closed
and added to the BDD openc+cost(a). Finally, the algorithm termi-
nates either when a goal state (and thus a plan) is found or when
open becomes empty, in which case the task is unsolvable.

In symbolic search, the parent state that caused a state to be gen-
erated is not directly known, so a plan reconstruction is necessary
once a goal state is found. This is possible by performing a greedy
search in the reverse direction, using the optimal path costs stored
in closed as perfect heuristic estimates. More precisely, starting from
the found goal state s with cost g, the predecessors of s with respect
to each action a are computed using the preimage operation, until a
predecessor is found in closedg−cost(a). Once such a predecessor s′

of s is found, the same procedure is repeated with s′ until the ini-
tial state is reached, and the actual plan induced by this trace can be
returned (omitting some details in the presence of zero-cost actions).

While the above description of symbolic search is sufficient to fol-
low this paper, we refer the interested reader to more elaborate ex-
planations in Torralba [45] and Speck et al. [43].

By explicit (blind) search we refer to uniform-cost search, i.e.,
Dijkstra’s algorithm [6]. We sometimes refer to explicit search as
the explicit counterpart of symbolic search because the main differ-
ence is that symbolic search processes complete sets of states at once
while explicit search handles states individually. For explicit search,
we consider a straightforward implementation, i.e., all states and
formulas are processed iteratively. In particular, we assume that no
sophisticated duplicate detection or successor generation techniques
are used [e.g., 18]. This is a reasonable assumption, since these tech-
niques usually require special normal forms of actions.

Both symbolic search and explicit search are complete and opti-
mal, meaning that for a given planning task they return a plan if one
exists and that plan is optimal.

3 Representing Formulas of a Planning Task
In this section, we derive how planning tasks with complex condi-
tions and effects can be efficiently handled as logical formulas. First,
we define a generalized version of the transition relation for complex
actions. Then, we present and discuss three methods for represent-
ing goal formulas and transition relations with varying degrees of
conjunctive partitioning for symbolic search: one is the standard ap-
proach used in planning, one is adapted from model checking (used
here for the first time for domain-independent planning), and the
third is a novel method based on the Tseitin transformation. Finally,
we analyze the theoretical properties of these representations, estab-
lish performance guarantees for symbolic search using the proposed
representations, and conclude with a set of optimizations.

3.1 Complex Actions as Formulas

While the goal of a planning task is already given as a logical for-
mula, symbolic search also requires that each action a is represented
as a logical formula τ(a). Previous approaches to classical planning
as symbolic search assume that actions are in a normalized form,
such as SAS+ [48] or FDR [19, 24]. Thus, we introduce the follow-
ing general definition of a transition relation for actions, directly de-
rived from PDDL problem specifications with all ADL features [30],
eliminating the need for prior normalization, which can be computa-
tionally expensive.

Definition 7 (Transition Relation). Let a be an action, V a set of
state variables, and V ′ a primed copy of the set of state variables.
The transition relation of a is defined as

τ(a) := pre(a) ∧
∧
v∈V

τ(v, a),

with τ(v, a) = (regr(v, eff(a))↔ v′).

The first conjunct of the transition relation encodes the precon-
dition. The big conjunction relates the new values of the variables
v ∈ V , represented by v′ ∈ V ′, to the old state described by the
variables V . More precisely, a variable v′ is true iff regr(v, eff(a))
holds, which exactly encodes the condition under which v is true af-
ter applying action a. Intuitively, the transition relation τ(a) of an
action a describes all state pairs, represented as predecessor (over
V) and successor states (over V ′), such that applying a in one of the
predecessors is allowed and yields one of the successors.

Lemma 1. Transforming an action a into a logical formula τ(a) is
bounded by O(|V | · ∥a∥) in time and space.

Proof. The precondition pre(a) is bounded by ∥a∥. Transforming
effcond(v, eff(a)) into a logical formula is asymptotically linear in
time and space in the size of the effect ∥e∥, which itself is bounded
by the action size ∥a∥. This is because effcond traverses each subef-
fect (atomic effect, conjunction effect, etc.) of effect e exactly once,
recursively applying the rules defined in Def. 3. Since the size of e
depends on the subeffects of e, the computation of effcond is lin-
ear in ∥e∥. We have regr(v, eff(a)) = effcond(v, eff(a)) ∨ (v ∧
¬effcond(¬v, eff(a))) for every variable in V . Thus, the formula
τ(a) is bounded by O(∥a∥+ 2 · |V | · ∥e∥) = O(|V | · ∥a∥).

Importantly, the size of an action ∥a∥ can be greater than the num-
ber of variables |V |. For example, if action a has conditional effects
on each variable in V , then the time and space to construct τ(a) can
grow quadratically with the number of variables, i.e., Ω(|V |2).

Algorithm 1: Central functions of symbolic search.

1 function formula-as-bdds(ϕ : formula)
2 return ⟨bdd(C) | C ∈ cf(ϕ)⟩
3 function image(states : bdd, Ta : bdds)
4 succ← states
5 foreach t ∈ Ta do
6 succ← succ ∧ t
7 return (∃(V ∪ V aux) succ)[V ′ → V]

8 function eval-goal(states : bdd, G : bdds)
9 goal← states

10 foreach g ∈ G do
11 goal← goal ∧ g
12 return ∃V aux goal

13 function cpreimage(s : bdd, Ta : bdds, closed : bdd)
14 state-pairs← s[V → V ′] ∧ closed
15 foreach t ∈ Ta do
16 state-pairs← state-pairs ∧ t
17 return ∃(V ′ ∪ V aux) state-pairs

3.2 Conjunctive Representations

For symbolic search we must represent all relevant formulas of a
planning task as BDDs. The critical components are the actions (as
transition relations) and the goal formula, while the initial state is
negligible, as it is just a conjunction of atoms. We conjunctively par-
tition these formulas: the tuple of formulas ⟨ϕ1, . . . , ϕn⟩ represents
the formula ϕ = ϕ1 ∧ · · · ∧ ϕn. The implementation represents
each formula ϕi as a BDD and the partitioned formula ϕ as a tu-
ple of BDDs (function formula-as-bdds in Alg. 1). More precisely,
formula-as-bdds returns a tuple of BDDs whose conjunction repre-
sents the function ϕ, where cf specifies how the formula is parti-
tioned. Note that the other functions in Alg. 1 are introduced later in
the paper.

3.2.1 Action-Monolithic Representation

Let us consider the approach common in automated planning of rep-
resenting each action and the goal formula using a single monolithic
BDD within symbolic search [e.g., 8, 48].

Definition 8 (Action-Monolithic Form). Let ϕ be a formula, we de-
fine the action-monolithic form cfA as cfA(ϕ) = ⟨ϕ⟩.

In the action-monolithic form, we create with formula-as-bdds
(Alg. 1) a single monolithic BDD for each action and for the goal
formula. This is not to be confused with having a single monolithic
transition relation for all actions by disjunctive merging [7, 47]. Note
that allowing rich actions with complex preconditions and effects
(Def. 7) goes beyond the state of the art in symbolic planning, which
considers only normalized forms with worst-case exponential pre-
processing [e.g., 48, 43].

3.2.2 Variable-Monolithic Representation

The next representation for complex actions uses one conjunct per
effect variable. This approach was originally described for model
checking [4]. In model checking, the dynamics of the world are typi-
cally described in a variable-centric way, meaning that transitions are
specified independently for each variable. This is also the reason why

Burch et al. [4] introduced the modeling language NADL to describe
nondeterministic planning tasks, which allows the direct specifica-
tion of the transition of each variable and thus naturally supports a
conjunctive partitioned form. In contrast, classical planning tasks are
typically modeled in an action-centric manner using PDDL [28], and
actions are often assumed to have a simple structure. As a result, a
conjunctive representation has historically not been considered natu-
ral in planning [45], and it was not immediately clear how to derive it.
Based on our definition of the transition relation (Def. 7), we can au-
tomatically transform classical planning actions into the conjunctive
form originally proposed by Burch et al. [4]. Note that the precondi-
tions and the goal are still represented as a single monolithic BDD.

Definition 9 (Variable-Monolithic Form). Let Π = ⟨V, I, A, γ⟩ be
a planning task with V = {v1, . . . , vn}. We define the variable-
monolithic form cfV of either the goal formula γ or the transition
relations τ(a) with a ∈ A as

cfV(ϕ) =

{
⟨γ⟩ if ϕ = γ,

⟨pre(a), τ(v1, a), . . . , τ(vn, a)⟩ if ϕ = τ(a).

In the variable-monolithic form, the symbolic planning algorithm
represents the goal formula as a tuple with a single BDD, while the
transition relation of each action is represented as a tuple with 1+|V |
BDDs, one for the precondition and one for each variable. This neatly
aligns with the structure of our transition relation definition (Def. 7),
which consists of the precondition and a conjunction of τ(v, a) over
each variable v ∈ V , which are explicitly kept separate here.

3.2.3 Tseitin Representation

The final approach to representing actions and goal formulas of a
planning task is based on the Tseitin transformation [49]. The idea
is to bring potentially complex transition relations and goal formu-
las into a CNF without imposing a significant increase in the size of
the representation. We call this novel representation of formulas of
a planning task the Tseitin form. It will be key to guaranteeing that
symbolic search can incur only a polynomial worst-case overhead
over explicit blind search, while still being exponentially more ef-
ficient in the best case. The main reason is that even the transition
function for a single variable can be highly complex, leading to an
infeasibly large representation for the previously considered forms.

Definition 10 (Tseitin Form). For a formula ϕ, let ⟨ϕ1, . . . , ϕn⟩ be
an order of its subformulas Sub(ϕ) without literals such that for all
ϕi and ϕj , if ϕi is a proper subformula of ϕj , then i < j. We define
the Tseitin form cfT as

cfT(ϕ) =

{
⟨tsn(ϕ)⟩ if tsn(ϕ) is a literal,
tup(C(vϕ1))⊕ · · · ⊕ tup(C(vϕn)) otherwise,

where C(vϕi) is the set of clauses of tsn(ϕ) that introduce the auxil-
iary variable vϕi .

Intuitively, for a formula ϕ, the Tseitin form represents each clause
of the CNF formula tsn(ϕ) as a separate BDD using formula-as-bdds
(Alg. 1). In addition, we impose an order on the clauses induced by
the partial order of the subformulas of ϕ. More precisely, we have
all clauses corresponding to a formula ϕi before the formula ϕj if
ϕi is a proper subformula of ϕj . The idea behind this is that we only
introduce a new auxiliary variable vϕj if all auxiliary variables vϕi on
which vϕj depends have already been fully introduced. So if we build
the sequential conjunction with a state set S, we also sequentially fix
the values of the auxiliary variables for each state s ∈ S.

Example 3. Consider the formula (x∧y)∨¬z from Example 1. With
the Tseitin transformation we get the clause sets C(vϕ1) and C(vϕ2),
which introduce the two auxiliary variables vϕ1 = v(x∧y) and vϕ2 =
v(x∧y)∨¬z . Since ϕ1 is a proper subformula of ϕ2, we get the order
⟨ϕ1, ϕ2⟩. So the Tseitin form is the tuple tup(C(vϕ1))⊕tup(C(vϕ2)).

4 Symbolic Search for Complex Actions and Goals
We now describe how symbolic search can be implemented using
the different representations aimed at handling complex actions and
goals by explaining the important operations of symbolic search,
which are outlined as functions in Alg. 1. In particular, for all three
representations we describe the successor computation (image), the
goal checking (eval-goal), and the constrained predecessor computa-
tion necessary for plan reconstruction (cpreimage). The handling of
auxiliary variables and constrained predecessor computation within
symbolic search are essential for the novel performance guarantees
derived later.

Image (Alg. 1, lines 3–7) computes all successor states succ of
a given set of states states for a transition relation representing
action a. In the action-monolithic case, we compute the standard
image operation on BDDs, (∃V (states ∧ Ta))[V ′ → V] [4, 48].
For the variable-monolithic and Tseitin forms, we use the parti-
tioned form of a transition relation Ta. Consider a transition rela-
tion Ta = t1 ∧ t2 ∧ t3 and the for loop of the image function
of Alg. 1. In the variable-monolithic and Tseitin cases we compute
(((states∧t1)∧t2)∧t3), while in the action-monolithic case we have
the computation (states∧Ta) = (states∧ (t1∧ t2∧ t3)). This differ-
ence in computation is the most critical part of the partitioned repre-
sentation. Instead of computing the complete predecessor-successor
relation of an action as a monolithic BDD, we reorder the conjunc-
tion to place the state BDD states first. This allows us to compute
only those successors that are relevant with respect to states. Finally,
image computes equivalent formulas in all three cases. Compared to
the action-monolithic form, the variable-monolithic form uses a dif-
ferent conjunction order to yield an equivalent formula (associative
law). In Tseitin form, a quasi-equivalent formula is computed which
is equivalent after forgetting auxiliary variables [49, 26].

Eval-goal (Alg. 1, lines 8–12) returns all goal states of a given
set of states states. In the action- and variable-monolithic form, this
simply computes states ∧ bdd(γ). In the Tseitin form, we compute
a quasi-equivalent formula using a conjunctive partitioned represen-
tation of G. After forgetting all auxiliary variables, this is equivalent
to the formula obtained with a monolithic goal representation.

Cpreimage (Alg. 1, lines 13–17) is defined for plan reconstruc-
tion to identify predecessors of states already visited during forward
reachability and stored in the closed list closed. Thus, we define
the cpreimage to compute the predecessors of a state s contained
in closed with respect to an action a. In the action-monolithic case,
we compute the formula ∃V ′ (s[V → V ′]∧closed∧Ta). cpreimage
is almost identical to preimage used traditionally for plan reconstruc-
tion [e.g., 45, 43], but it moves the intersection with the closed states
into the predecessor computation, which is traditionally performed
after computing the predecessor states. Intuitively, this adds the for-
mula representing closed to the transition relation as an additional
precondition. We do this because the set of predecessors and its BDD
representation can be huge for complex actions, and we are only in-
terested in the subset closed. With cpreimage we avoid representing
this set of states first and then computing the intersection with the de-
sired states in closed. For the partitioned forms of Ta, with the same

argument as for the image computation, we get equivalent formulas
as a result of cpreimage with all three representations. Plan recon-
struction is typically not considered in model checking, where the
emphasis is usually on showing that states with certain conditions
are unreachable or on evaluating general LTL formulas [31, 5].

4.1 Theoretical Properties

We start by showing that symbolic search with our proposed repre-
sentations is complete and optimal.

Theorem 1. Symbolic search using the action-monolithic, variable-
monolithic, and Tseitin representations is complete and optimal.

Proof. Symbolic search is complete and optimal with standard defi-
nitions of image, cpreimage, and eval-goal. For the action-monolithic
form, all tuples of BDDs are singletons, and the functions are equiv-
alent to the standard definitions. For the other forms, it is therefore
sufficient to show that the resulting formulas are equivalent to those
in the action-monolithic case. In the variable-monolithic case, the
formulas produced are equivalent, since they differ only in the order
of the conjunctions (associative law). For the Tseitin form, each func-
tion computes a quasi-equivalent formula before forgetting auxiliary
variables. By forgetting these variables, we obtain an equivalent for-
mula.

It can be shown that symbolic search using any of the three rep-
resentations can be exponentially more efficient than explicit blind
search. Consider the Gripper domain, where a robot with two grip-
pers has to transport n balls between two rooms. The state space
grows exponentially with the number of balls, so explicit blind search
requires exponential time and memory in the input size [20]. How-
ever, it is known that any instance of the Gripper domain can be
solved in polynomial time and memory relative to the encoding size
using standard symbolic search [9, 45]. Since Gripper is a STRIPS
domain, where the preconditions and effects of actions as well as the
goal formula are conjunctions of literals, the following applies.

Proposition 1. For some inputs, explicit search can require expo-
nentially more memory and time than symbolic search using the
action-monolithic, variable-monolithic, or Tseitin representations.

Next, we show that symbolic search with the action- and variable-
monolithic representations can be exponentially worse than explicit
search. This holds even if an early goal test is performed and in the
presence of a concisely representable goal.

Theorem 2. For some inputs, symbolic search using the action-
monolithic or variable-monolithic representations can require expo-
nentially more memory and time than explicit search, regardless of
the variable order.

Proof. Consider a family of planning tasks where the variables rep-
resent a grid. We have a single action a that has the connect-two
formula [10] as a precondition, and all tasks have the unique plan
⟨a⟩. In explicit blind search, the precondition of a must be evaluated
once for the initial state, which can be done in polynomial time and
space. However, generating the action- or variable-monolithic BDD
representation of a needs exponential time and memory in

√
∥a∥

(see Lemma 4 in Edelkamp and Kissmann [10]).

We show that symbolic search with the Tseitin form has perfor-
mance guarantees relative to explicit search, requiring at most a poly-
nomial increase in time and memory in the size of the input planning

task. While this overhead may still affect practical performance, it is
preferable to the exponential overhead of previous approaches.

Theorem 3. For all inputs, symbolic search using the Tseitin repre-
sentation can require at mostO(|V |·∥γ∥+|V |2·∥amax∥) more mem-
ory and time than explicit search, where ∥amax∥ = maxa∈A ∥a∥.

Proof sketch (Full proof in Appendix). The size of a BDD represent-
ing states S is bounded by O(|S| · |V |) [12]. With Tseitin, we get
O(∥ϕ∥) clauses of constant size for a formula ϕ. For eval-goal, we
iterate over the clauses of tsn(γ), building a BDD representing a fixed
number of states over V ∪ V aux. The intermediate BDDs have size
O(|S|·|V ∪V aux|) = O(|S|·|V |·∥γ∥), since V aux are auxiliary vari-
ables of tsn(γ). eval-goal hasO(∥γ∥) steps (#clauses), resulting in a
complexity ofO(|S|·|V |·∥γ∥2). For image with action a, we can rea-
son analogously: the transition relation has size τ(a) ∈ O(|V |·∥a∥),
leading toO(|S|·|V |2·∥a∥2). In comparison, explicit search has time
and memory bounds Ω(|S|·∥γ∥) for goal evaluation and Ω(|S|·∥a∥)
for successor generation with action a.

4.2 Optimizations

Several performance optimizations can be applied directly to sym-
bolic search with partitioned representations of formulas. Early quan-
tification can be performed on a conjunctive partitioned transition re-
lation, allowing immediate forgetting of variables not referenced in
later conjuncts [4]. Partitioned BDDs can be merged with time and
size constraints, often improving runtime at the expense of memory.
Auxiliary variables that appear in only one conjunct can be safely
forgotten. Transition relations can be combined by disjunction once
an action-monolithic form is obtained [48]. Finally, backward and
bidirectional search can be realized using image for successor and
cpreimage (without constraints) for predecessor computation.

5 Experiments

We implemented the presented symbolic search (including the opti-
mizations) in the SymK planner [41], which is based on Fast Down-
ward 23.06 [18]. We evaluate forward, backward, and bidirectional
search with and without transition relation merging, limited to 100k
nodes. We use CUDD [36] as the BDD library, the Gamer variable
order [24], and an optimized Tseitin transformation introducing a
single auxiliary variable for conjunctions of multiple literals. In addi-
tion to our three representations, we evaluate a fourth variant, which
tries for five seconds to build a formula in the variable-monolithic
form and then in the Tseitin form.

We compare our approaches to explicit blind search and the top
non-portfolio planner in the 2023 International Planning Competition
(IPC), Scorpion [34], which implements an explicit A∗ search with a
saturated cost partitioning heuristic [35]. For each run, we use a time
and memory limit of 30 min and 6 GiB.

We consider domains with complex conditional effects, including
official IPC domains from all classical tracks [21, 33, 42, 3, 44]. The
Adjacent Artist domain is newly created to stress test our approaches.
It comprises a grid of different sizes and contains the connect-two
formula as an effect condition. We only consider tasks that can be
grounded within resource limits. Note that during grounding, precon-
ditions and goal formulas are normalized to conjunctions of literals
[19]. In the future, we would like to investigate other grounding ap-
proaches that may benefit our novel symbolic search approach. Our
code and experimental data are available online [38].

Adj-Artist Briefcase B-Pancakes Caldera Cavediving Citycar Flashfill FSC GED
Matrix-Mul Miconic Nurikabe Pancakes Rubiks Rubiks-IPC Settlers T0 Topspin

∅

0 50 100 150
100

102

104

106

108

Task ID (sorted by value)

To
ta

lB
D

D
N

od
es

(a) Action-Monolithic

0 50 100 150

Task ID (sorted by value)

(b) Variable-Monolithic

0 50 100 150

Task ID (sorted by value)

(c) Tseitin

0 50 100 150

Task ID (sorted by value)

(d) Var.-Mono. + Tseitin
Figure 1: Sizes of BDDs (unique nodes) required to represent planning tasks with complex effects along the y-axis. Tasks that cannot be
represented as BDDs within the resource limits are marked with ∅. Newly introduced representations for classical planning are shown in bold.

Expl. Action-Mono. Variable-Mono. Tseitin Var.-Mono. + Tseitin

Domain

B
lin

d

Sc
or

p.

Fw
d

B
w

d

B
id

Fw
d

M

B
w

d
M

B
id

M

Fw
d

B
w

d

B
id

Fw
d

M

B
w

d
M

B
id

M

Fw
d

B
w

d

B
id

Fw
d

M

B
w

d
M

B
id

M

Fw
d

B
w

d

B
id

Fw
d

M

B
w

d
M

B
id

M

Adj-Artist (100) 8 8 23 11 23 23 16 23 23 11 23 23 16 23 51 7 51 90 13 90 51 11 51 90 15 90
Briefcase (50) 7 13 8 6 9 8 6 9 8 6 9 8 6 9 8 6 8 8 6 9 8 6 9 8 6 9
B-Pancakes (100) 35 38 30 31 48 31 35 49 30 31 47 31 35 49 26 26 32 31 35 49 30 31 46 31 35 49
Caldera (78) 21 26 25 8 23 29 9 25 24 8 23 29 8 25 23 8 23 29 8 25 24 8 23 29 8 25
Cavediving (17) 4 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4
Citycar (40) 10 17 19 0 13 19 0 18 19 0 13 19 0 18 18 0 13 19 0 18 19 0 13 19 0 18
Flashfill (15) 0 0 0 0 0 2 0 2 1 0 1 6 0 6 1 0 1 6 0 6 1 0 1 6 0 6
FSC (57) 19 19 7 0 6 7 0 6 19 0 17 20 0 20 12 0 11 20 0 19 19 0 17 20 0 20
GED (26) 20 20 20 8 14 20 8 20 20 8 11 20 8 20 14 8 10 14 8 14 20 8 10 20 8 20
Matrix-Mul (77) 22 30 30 30 33 30 30 39 30 30 33 30 30 39 30 30 33 30 30 39 30 30 33 30 30 39
Miconic (150) 79 147 124 108 125 150 149 150 124 108 123 150 149 150 123 109 124 150 149 150 123 108 124 150 149 150
Nurikabe (38) 16 20 13 4 12 16 7 16 13 4 12 16 7 16 13 4 12 16 7 16 13 4 12 16 7 16
Pancakes (100) 37 39 35 35 52 35 38 52 34 35 51 35 38 52 26 26 37 35 38 52 33 35 51 35 38 52
Rubiks (100) 35 43 25 25 50 25 25 50 25 25 45 25 25 50 19 15 30 25 25 50 25 25 45 25 25 50
Rubiks-IPC (20) 8 10 0 0 0 0 0 0 4 1 4 5 1 6 4 1 4 5 1 6 4 1 4 5 1 6
Settlers (40) 8 10 8 0 9 9 0 9 7 0 6 9 0 9 4 0 5 9 0 9 7 0 7 9 0 9
T0 (119) 27 38 35 23 35 40 21 39 39 23 38 44 21 43 37 23 37 44 21 44 39 23 39 44 21 44
Topspin (100) 23 31 26 27 45 26 27 46 24 25 43 26 27 46 18 18 29 26 27 45 24 25 43 26 27 46

Σ (1227) 379 513 432 316 501 474 371 557 448 315 503 500 371 585 431 281 464 561 368 645 474 315 532 567 370 653
Norm. Σ (18) 5.5 6.9 5.5 3.2 6.0 6.0 3.7 6.9 6.0 3.3 6.2 6.8 3.7 7.7 5.5 2.9 5.7 7.3 3.7 8.2 6.2 3.3 6.4 7.5 3.7 8.4

Table 1: Coverage, i.e., the number of solved tasks, for explicit search and symbolic search with multiple action representations, search di-
rections (forward, backward, bidirectional), and transition relation merging (M). Newly introduced representations for classical planning are
shown in bold. The sum (Σ) denotes the total number of solved tasks, while the normalized sum (Norm. Σ) denotes the aggregated percentage
of solved instances per domain.

Representation Size Figure 1 shows the cumulative size of BDDs
required to represent the initial state, goal, and transition relations
for each task of 18 domains. We see that the action-monolithic
form fails to create these data structures in multiple domains, among
them the IPC 2023 Rubik’s Cube domain. The variable-monolithic
and Tseitin representations perform much better, but the variable-
monolithic form cannot represent the connect-two formula of the
Adjacent Artist domain. The Tseitin form has trouble representing
the larger instances of the Matrix Multiplication and GED domains.
In these domains the action formulas become huge, sometimes with
hundreds of thousands of auxiliary variables, causing memory is-
sues with the BDD library. Our hybrid of the variable-monolithic and
Tseitin forms combines the best of all approaches for these domains.

Coverage Table 1 shows a domain-wise comparison of the num-
ber of tasks solved by each search algorithm. The results show that

the merging of the partitioned transition relations (M) is crucial for
the performance, as also found for the action-monolithic case [48].
In practice, the Tseitin form without merging suffers in certain do-
mains from the polynomial overhead compared to explicit search and
the large number of conjuncts compared to the other symbolic forms.
However, in domains like Adjacent Artist or Rubik’s Cube, the par-
titioned forms pay off over the action-monolithic form. With merged
transition relations, the Tseitin form shows a clear advantage over ex-
plicit search. Overall, the new representations outperform the action-
monolithic form, especially when all optimizations are applied. By
combining the variable-monolithic and Tseitin forms with transition-
relation merging and bidirectional search, we introduce a novel sym-
bolic search approach that outperforms the state of the art in both
symbolic and explicit search, solving 140 more tasks than Scorpion,
the top non-portfolio planner at IPC 2023 [44].

6 Conclusions
We presented new methods to advance symbolic search for classical
planning using conjunctive partitioning. In contrast to previous work,
we propose a fully automated and domain-independent approach to
partition the relevant BDDs representing actions and goal conditions
conjunctively. For the Tseitin method, we established a performance
guarantee relative to explicit search: in the worst case, it requires
only polynomially more time and memory than its explicit counter-
part, whereas all previous approaches may incur exponential over-
head. Our empirical evaluation shows that our new representations
of actions and goals not only improve symbolic search but also allow
it to surpass modern explicit search approaches, solving significantly
more tasks on the considered benchmarks with conditional effects
than the state of the art.

As future work, we aim to conduct similar investigations for sym-
bolic search with heuristics [11, 16], with the goal of establishing
performance guarantees relative to explicit heuristic search.

Appendix: Full Proof of Theorem 3
Theorem 3. For all inputs, symbolic search using the Tseitin repre-
sentation can require at mostO(|V |·∥γ∥+|V |2·∥amax∥) more mem-
ory and time than explicit search, where ∥amax∥ = maxa∈A ∥a∥.

Proof. In symbolic search with BDDs, the critical operations com-
pared to explicit search are successor generation (image), goal eval-
uation (eval-goal), and plan reconstruction. Other tasks, such as
adding or removing states from the open or closed lists, are per-
formed iteratively in explicit search, while symbolic search handles
sets of states in bulk. However, the worst-case complexity remains
the same, since BDDs can in the worst case degenerate into rep-
resentations equivalent to explicit state tables, since the size of a
BDD representing a set of states S over variables V is bounded by
O(|S| · |V |) [12]. Furthermore, forgetting and renaming operations
on a BDD representing states S over variables V can be performed
in linear time and memory with respect to the represented states and
variables, i.e., inO(|S| · |V |), since in the worst case we can consider
an explicit state table.

eval-goal: We consider an input BDD states representing state set S.
With the Tseitin transformation, we obtain O(∥γ∥) clauses of con-
stant size (at most three literals) for the transformed goal formula γ.
For eval-goal, we iterate over the clauses of tsn(γ), building a BDD
that represents a fixed number of states |S| over V ∪V aux. This holds
because each conjunction in the for-loop may introduce new aux-
iliary variables from V aux, but due to the clause order, their values
are immediately fixed, preserving the number of represented assign-
ments |S| over V ∪ V aux. Furthermore, the intermediate BDDs have
sizeO(|S| · |V ∪V aux|) = O(|S| ·(|V |+∥γ∥)), since V aux are auxil-
iary variables introduced by tsn(γ) and hence linear in ∥γ∥. Now we
can derive thatO(|S|·(|V |+∥γ∥)) = O(S|·|V |+|S|·∥γ∥) is upper
bounded byO(|S|·|V |·∥γ∥), becauseO(|S|·|V |) andO(|S|·∥γ∥) is
bounded byO(|S| · |V | ·∥γ∥). The for-loop of eval-goal hasO(∥γ∥)
steps (one per clause), and each step performs a conjunction with
a constant-sized BDD, so the total time and memory complexity is
O(∥γ∥ · (|S| · |V | · ∥γ∥)) = O(|S| · |V | · ∥γ∥2).

image: We consider an input BDD states representing the state set S.
For the successor generation we can reason analogously to eval-goal.
However, there are two important differences: the transition relation
τ(a) of an action a has size τ(a) ∈ O(|V | · ∥a∥) (Lemma 1), so
we get O(|V | · ∥a∥) clauses, and with the conjunctions we introduce

new variables not only over V aux but over V ′ ∪ V aux. For the num-
ber of assignments in the intermediate BDDs, we get the bound of
O(|S|·|V ∪V ′∪V aux|) = O(|S|·(2|V |+∥τ(a)∥)), since |V | = |V ′|
and |V aux| is bounded byO(∥τ(a)∥). Continuing the transformation:
O(|S| · (2|V | + ∥τ(a)∥)) = O(|S| · (|V | + ∥τ(a)∥)) = O(|S| ·
(|V |+ |V | · ∥a∥)) = O(|S| · |V | · ∥a∥). Since there areO(|V | · ∥a∥)
clauses, and with the for-loop each corresponds to a conjunction of a
constant-sized BDD with a BDD of sizeO(|S| · |V | · ∥a∥), we derive
a complexity of O(|S| · |V |2 · ∥a∥2).

get-plan: The function get-plan is executed once and reverses the
successor calculation of image. Since we only consider predecessor-
successor pairs that we already considered in the forward direction
with image, the time and memory consumption of the reachability
analysis performed before can at most double, which is only a con-
stant factor that becomes negligible asymptotically.

In the explicit variant of symbolic search, for a state set S, the time
and memory complexity for goal evaluation is Ω(|S| · ∥γ∥), and
for successor generation with an action a, it is Ω(|S| · ∥a∥), since
each state and formula must be processed individually. Compared to
symbolic search, this results in an overhead of O(|V | · ∥γ∥) in time
and memory for goal evaluation and O(|V |2 · ∥amax∥) for successor
generation, where amax is the action with the largest representation
size.

Acknowledgements
This work was funded by the Swiss National Science Foundation
(SNSF) as part of the project “Unifying the Theory and Algorithms
of Factored State-Space Search” (UTA).

References
[1] C. Bäckström and B. Nebel. Complexity results for SAS+ planning.

Computational Intelligence, 11(4):625–655, 1995.
[2] R. E. Bryant. Graph-based algorithms for Boolean function manipula-

tion. IEEE Transactions on Computers, 35(8):677–691, 1986.
[3] C. Büchner, P. Ferber, J. Seipp, and M. Helmert. Abstraction heuristics

for factored tasks. In Proc. ICAPS 2024, pages 40–49, 2024.
[4] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking

with partitioned transition relations. In Proc. VLSI 1991, pages 49–58,
1991.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The
MIT Press, 1999.

[6] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[7] S. Edelkamp and M. Helmert. Exhibiting knowledge in planning prob-
lems to minimize state encoding length. In Proc. ECP 1999, pages
135–147, 1999.

[8] S. Edelkamp and M. Helmert. The model checking integrated planning
system (MIPS). AI Magazine, 22(3):67–71, 2001.

[9] S. Edelkamp and P. Kissmann. Limits and possibilities of BDDs in state
space search. In Proc. AAAI 2008, pages 1452–1453, 2008.

[10] S. Edelkamp and P. Kissmann. On the complexity of BDDs for state
space search: A case study in Connect Four. In Proc. AAAI 2011, pages
18–23, 2011.

[11] S. Edelkamp and F. Reffel. OBDDs in heuristic search. In Proc. KI
1998, pages 81–92, 1998.

[12] S. Eriksson, G. Röger, and M. Helmert. Unsolvability certificates for
classical planning. In Proc. ICAPS 2017, pages 88–97, 2017.

[13] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the applica-
tion of theorem proving to problem solving. AIJ, 2:189–208, 1971.

[14] D. Fišer, Á. Torralba, and J. Hoffmann. Operator-potential heuristics
for symbolic search. In Proc. AAAI 2022, pages 9750–9757, 2022.

[15] D. Fišer, Á. Torralba, and J. Hoffmann. Operator-potentials in symbolic
search: From forward to bi-directional search. In Proc. ICAPS 2022,
pages 80–89, 2022.

[16] D. Fišer, Á. Torralba, and J. Hoffmann. Boosting optimal symbolic
planning: Operator-potential heuristics. AIJ, 334:104174, 2024.

[17] S. Franco, S. Edelkamp, and I. Moraru. ComplementaryPDB Planner.
In IPC-10 Planner Abstracts, 2023.

[18] M. Helmert. The Fast Downward planning system. JAIR, 26:191–246,
2006.

[19] M. Helmert. Concise finite-domain representations for PDDL planning
tasks. AIJ, 173:503–535, 2009.

[20] M. Helmert and G. Röger. How good is almost perfect? In Proc. AAAI
2008, pages 944–949, 2008.

[21] J. Hoffmann and S. Edelkamp. The deterministic part of IPC-4: An
overview. JAIR, 24:519–579, 2005.

[22] R. M. Jensen and M. M. Veloso. OBDD-based universal planning:
Specifying and solving planning problems for synchronized agents in
non-deterministic domains. In M. Wooldridge and M. M. Veloso, ed-
itors, Artificial Intelligence Today, volume 1600 of LNCS, pages 213–
248. Springer-Verlag, 1999.

[23] R. M. Jensen, M. M. Veloso, and R. E. Bryant. State-set branching:
Leveraging BDDs for heuristic search. AIJ, 172(2–3):103–139, 2008.

[24] P. Kissmann, S. Edelkamp, and J. Hoffmann. Gamer and Dynamic-
Gamer – Symbolic search at IPC 2014. In IPC-8 Planner Abstracts,
pages 77–84, 2014.

[25] H. Kleine Büning and T. Lettmann. Propositional Logic: Deduction and
Algorithms, volume 48 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1999.

[26] E. Kuiter, S. Krieter, C. Sundermann, T. Thüm, and G. Saake. Tseitin
or not Tseitin? The impact of CNF transformations on feature-model
analyses. In Proc. ASE 2022, pages 110:1–110:13, 2022.

[27] C.-Y. Lee. Representation of switching circuits by binary-decision pro-
grams. Bell System Technical Journal, 38(4):985–999, 1959.

[28] D. McDermott. The 1998 AI Planning Systems competition. AI Maga-
zine, 21(2):35–55, 2000.

[29] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, 1993.

[30] E. P. D. Pednault. ADL: Exploring the middle ground between STRIPS
and the situation calculus. In Proc. KR 1989, pages 324–332, 1989.

[31] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science (FOCS 1977),
pages 46–57, 1977.

[32] J. Rintanen. Regression for classical and nondeterministic planning. In
Proc. ECAI 2008, pages 568–572, 2008.

[33] J. Segovia-Aguas, S. Jiménez, and A. Jonsson. Computing hierarchical
finite state controllers with classical planning. JAIR, 62:755–797, 2018.

[34] J. Seipp. Scorpion 2023. In IPC-10 Planner Abstracts, 2023.
[35] J. Seipp, T. Keller, and M. Helmert. Saturated cost partitioning for op-

timal classical planning. JAIR, 67:129–167, 2020.
[36] F. Somenzi. CUDD: CU decision diagram package – Release 3.0.0.

https://github.com/cuddorg/cudd, 2015. Accessed July 31, 2025.
[37] D. Speck. SymK – A versatile symbolic search planner. In IPC-10

Planner Abstracts, 2023.
[38] D. Speck and M. Helmert. Code, benchmarks and data for the ECAI

2025 paper “On Performance Guarantees for Symbolic Search in Clas-
sical Planning”. https://doi.org/10.5281/zenodo.16640080, 2025.

[39] D. Speck, F. Geißer, R. Mattmüller, and Á. Torralba. Symbolic planning
with axioms. In Proc. ICAPS 2019, pages 464–472, 2019.

[40] D. Speck, F. Geißer, and R. Mattmüller. When perfect is not good
enough: On the search behaviour of symbolic heuristic search. In Proc.
ICAPS 2020, pages 263–271, 2020.

[41] D. Speck, R. Mattmüller, and B. Nebel. Symbolic top-k planning. In
Proc. AAAI 2020, pages 9967–9974, 2020.

[42] D. Speck, P. Höft, D. Gnad, and J. Seipp. Finding matrix multiplication
algorithms with classical planning. In Proc. ICAPS 2023, pages 411–
416, 2023.

[43] D. Speck, J. Seipp, and Á. Torralba. Symbolic search for cost-optimal
planning with expressive model extensions. JAIR, 82:1349–1405, 2025.

[44] A. Taitler, R. Alford, J. Espasa, G. Behnke, D. Fišer, M. Gimelfarb,
F. Pommerening, S. Sanner, E. Scala, D. Schreiber, J. Segovia-Aguas,
and J. Seipp. The 2023 International Planning Competition. AI Maga-
zine, 45(2):280–296, 2024. doi: 10.1002/aaai.12169.

[45] Á. Torralba. Symbolic Search and Abstraction Heuristics for Cost-
Optimal Planning. PhD thesis, Universidad Carlos III de Madrid, 2015.

[46] Á. Torralba. SymBD: A symbolic bidirectional search baseline. In IPC-
10 Planner Abstracts, 2023.

[47] Á. Torralba, S. Edelkamp, and P. Kissmann. Transition trees for cost-
optimal symbolic planning. In Proc. ICAPS 2013, pages 206–214, 2013.

[48] Á. Torralba, V. Alcázar, P. Kissmann, and S. Edelkamp. Efficient sym-
bolic search for cost-optimal planning. AIJ, 242:52–79, 2017.

[49] G. Tseitin. On the complexity of derivation in the propositional calcu-
lus. In Studies in Constructive Mathematics and Mathematical Logic,

Part II, pages 115–125. Consultants Bureau, New York, 1968. English
Translation.

