
Journal of Artificial Intelligence Research 82 (2025) 1349–1405 Submitted 07/2024; published 03/2025

Symbolic Search for Cost-Optimal Planning
with Expressive Model Extensions

David Speck davidjakob.speck@unibas.ch
University of Basel, Switzerland

Jendrik Seipp jendrik.seipp@liu.se
Linköping University, Sweden

Álvaro Torralba alto@cs.aau.dk

Aalborg University, Denmark

Abstract

In classical planning, the task is to derive a sequence of deterministic actions that
changes the current fully-observable world state into one that satisfies a set of goal criteria.
Algorithms for classical planning are domain-independent, i.e., they are not limited to a
particular application and instead can be used to solve different types of reasoning problems.
The main language for modeling such problems is the Planning Domain Definition Language
(PDDL). Even though it provides many language features for expressing a wide range of
planning tasks, most of today’s classical planners, especially optimal ones, support only a
small subset of its features. The most widely supported fragment is lifted STRIPS plus
types and action costs. While this fragment suffices to model some interesting planning
tasks, using it to model more realistic problems often incurs a much higher modeling effort.
Even if modeling is possible at all, solving the resulting tasks is often infeasible in practice,
as the required encoding size increases exponentially.

To address these issues, we show how to support more expressive modeling languages
natively in optimal classical planning algorithms. Specifically, we focus on symbolic search,
a state-of-the-art search algorithm that operates on sets of world states. We show how to
extend symbolic search to support classical planning with conditional effects, axioms, and
state-dependent action costs. All of these modeling features are expressive in the sense
that compiling them away incurs a significant blow-up, so is it often necessary to support
them natively. Except for blind (non-symbolic) search, our new symbolic search is the
first optimal classical planning algorithm that supports these three modeling extensions in
combination, and it even compares favorably to other state-of-the-art approaches that only
support a subset of the extensions.

1. Introduction

Automated planning is the science of designing algorithms that can automatically derive
behaviors to achieve goals. The generation of such strategies, or thinking before acting,
is one of the original areas in the field of artificial intelligence. Informally, a classical
planning problem is the task of finding a sequence of deterministic actions that allows
an intelligent agent to achieve a set of goals from a given fully-observable initial state.
Since planning is not restricted to a specific application, it was originally called general
problem-solving (Newell & Simon, 1963; Helmert, 2008) and can be used for different types
of reasoning problems, such as elevator control (Koehler & Schuster, 2000), greenhouse
logistics (Helmert & Lasinger, 2010), natural language generation (Koller & Hoffmann,

©2025 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Speck, Seipp & Torralba

2010), algorithm discovery (Speck, Höft, Gnad, & Seipp, 2023), robot control (Nilsson,
1984; Speck, Dornhege, & Burgard, 2017; Karpas & Magazzeni, 2020), network penetration
testing (Speicher, Steinmetz, Backes, Hoffmann, & Künnemann, 2018; Torralba, Speicher,
Künnemann, Steinmetz, & Hoffmann, 2021), wildfire fighting (Yu, Han, & Ma, 2014), and
model checking (McMillan, 1993; Edelkamp, 2003b).

Most of today’s optimal classical planning algorithms only support a basic subset of
the features of the Planning Domain Definition Language (PDDL) (McDermott, Ghallab,
Howe, Knoblock, Ram, Veloso, Weld, & Wilkins, 1998), namely lifted STRIPS plus types
and action costs. For many real-world problems, however, this subset is not expressive
enough to model the problem concisely. To model and solve such problems, it is often
necessary to natively support more expressive language features.

In this article, we consider three model extensions of the basic planning model (Figure 1):
conditional effects, derived predicates with axioms, and state-dependent action costs. All
of these extensions allow us to capture different aspects of classical planning tasks while
retaining the core of the classical planning formalism: single-agent planning problems in a
fully observable, deterministic, static and discrete environment (Russell & Norvig, 2003).
Two of these extensions, conditional effects and derived predicates, are already part of
PDDL 2.2. Unfortunately, many classical planners do not support any of these expressive
extensions. This is the case since many planners are based on heuristic search, and it is very
challenging to design informative and fast-to-compute heuristics (goal-distance estimators)
that take into account additional problem properties. This is especially true for cost-optimal
planners, which additionally require that a heuristic is admissible, i.e., that the heuristic
never overestimates the true cost of reaching a goal state. Therefore, even though the
finite-domain representation (FDR) formalism used by the widely adopted Fast Downward
Planning System (Helmert, 2006) considers conditional effects and derived predicates, most
of the advanced techniques within Fast Downward or other derivative planners have to be
disabled on problems that make use of these features.

However, it is well known that the three extensions that we consider here are crucial for
the efficient and compact modeling of many real-world problems. Conditional effects provide
a natural and compact way to model actions that have different outcomes depending on the
context, i.e., the current state of the world (Nebel, 2000). Extending the state description to
include derived variables allows aspects of a planning problem that are not directly affected
by the actions but are derived from the values of other variables to be modeled concisely
using a set of logical axioms (Thiébaux, Hoffmann, & Nebel, 2005). Thus, using derived
predicates, it is possible to encode complex conditions (e.g., arbitrary Boolean formulas)
to model the action’s preconditions and/or goal. Finally, while in probabilistic planning a
concise encoding of state-dependent action costs or rewards in form of Markov decision pro-
cesses has long been standard, in classical planning compiling away state-dependent action
costs incurs an exponential blow-up (Geißer, 2018). Furthermore, the three extensions are
often required together. For example, actions with many conditional effects may require
state-dependent action costs in order to make the cost dependent on which effects have been
triggered.

Given the known complexity and compilability results for these model extensions (Nebel,
2000; Thiébaux et al., 2005; Speck, Borukhson, Mattmüller, & Nebel, 2021), it becomes
evident that for many real-world problems it is desirable and even necessary to support

1350

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

independent

conditional

basic

derived vars/
axioms

constant

state-
dependent

Action effects

Action costs Action/Goal conditions

Figure 1: Overview of the dimensions in which we extend the basic planning formalism.
The blue color represents the basic formalism, while the red color shows the formalism with
our three expressive extensions: conditional effects, derived predicates with axioms, and
state-dependent action costs. In this article, we show how symbolic search can support the
planning formalism with these extensions.

these features natively. Symbolic search provides a suitable basis for such a native support,
since state-of-the-art symbolic search methods do not require heuristics (Torralba, Alcázar,
Kissmann, & Edelkamp, 2017; Speck, Geißer, & Mattmüller, 2020). In fact, symbolic blind
search is very competitive and often complementary to other optimal classical planning
techniques. For example, it is a key component of many modern planning systems that won
awards such as the optimal track of the International Planning Competition in 2014 (Tor-
ralba, Alcázar, Borrajo, Kissmann, & Edelkamp, 2014), 2018 (Katz, Sohrabi, Samulowitz,
& Sievers, 2018; Franco, Lelis, & Barley, 2018), and 2023 (Drexler, Gnad, Höft, Seipp,
Speck, & St̊ahlberg, 2023), and the Combinatorial Reconfiguration Competition in 2022
and 2023 (Christen, Eriksson, Katz, Muise, Petrov, Pommerening, Seipp, Sievers, & Speck,
2023). Since symbolic search does not necessarily require heuristics to be efficient, search
efficiency does not suffer from the lack of efficient and informative heuristics for the more
expressive planning formalisms. This is the main reason why, in contrast to most state-of-
the-art heuristic search planners, it is feasible to support the discussed model extensions in
modern symbolic blind search planners.

In this article, we provide a comprehensive overview and describe the key concepts of
symbolic search for classical planning with the three expressive extensions (see Figure 1).
More specifically, we describe theoretically and analyze empirically how symbolic search can
support expressive model extensions with different symbolic data structures such as Binary
Decision Diagrams (Bryant, 1986) or Edge-Valued Multi-Valued Decision Diagrams (Ciardo
& Siminiceanu, 2002) in a unified framework. Based on this, we show that it is possible
to support all model extensions simultaneously, resulting in optimal planning algorithms

1351

Speck, Seipp & Torralba

that support conditional effects, derived predicates with axioms, and state-dependent action
costs. Finally, our empirical evaluations demonstrate that the presented symbolic search
algorithms complement and frequently show superior performance compared to other plan-
ning approaches from the literature. This holds across various planning domains, for each
of the model extensions individually and in combination.

The outline of this article is as follows. We first present the necessary background for
classical planning, decision diagrams, and symbolic search (Section 2), and the experimental
setup we follow in all our empirical analyses (Section 3). We then consider planning with
the following three expressive extensions in isolation: conditional effects (Section 4), axioms
(Section 5), and state-dependent action costs (Section 6), and finally with all of them in
combination (Section 7). In each of these sections, we formalize planning with the expressive
extension, show how symbolic search can support the extension, and provide an empirical
evaluation. Finally, we discuss future work and conclude the paper.

Preliminary versions of Section 5 and Section 6 were first presented by Speck, Geißer,
Mattmüller, and Torralba (2019) and Speck, Geißer, and Mattmüller (2018a), respectively.
Some underlying ideas of Section 4 can be found in the planner abstract by Kissmann,
Edelkamp, and Hoffmann (2014) and in the work by Torralba et al. (2017). This article
differs from the aforementioned works by providing support for the considered model ex-
tensions in a unified framework for symbolic search, including a comprehensive description
that considers not only a single type of decision diagrams, but multiple types. In addition,
we present extensive new experimental results that evaluate symbolic search in a unified
framework with different decision diagrams and search directions (forward, backward, and
bidirectional search), comparing its performance to other state-of-the-art techniques. For
each of the model extensions and their combinations, we have collected relevant bench-
marks and suitable baseline planners. To foster more research on model extensions, we
make the benchmarks, the baseline planners and our code available online (Speck, Seipp,
& Torralba, 2024). Finally, in Section 7 we provide new theoretical and empirical results
showing that symbolic search can efficiently support all three considered model extensions
simultaneously.

2. Background

In this section, we formally define classical planning and introduce one approach for it,
symbolic search. Finally, we introduce different types of decision diagrams that are used as
the underlying data structure in symbolic search.

2.1 Classical Planning Formalism

We consider the SAS` formalism for describing classical planning tasks (Bäckström & Nebel,
1995).

Definition 1 (SAS` Planning Task). A SAS` planning task is a tuple Π “ xV,O, C, I,Gy,
where V is a finite set of state variables v, each associated with a finite domain Dv. A fact
is a pair xv, wy, where v P V and w P Dv. A partial state s over Vpsq Ď V is a function
such that spvq P Dv for all v P Vpsq. If s assigns a value to each variable v P V, s is called
a state. We often treat (partial) states as sets of facts, i.e., s “ txv, spvqy | v P Vpsqu.

1352

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

With S we refer to the set of all states that can be defined over V. O is a finite set of
operators/actions, where each operator is a pair o “ xpreo, eff oy of partial states, called
preconditions and effects. An operator o P O is applicable in a state s iff preo is satisfied in
s, i.e., preo Ď s. Applying operator o to state s yields state s1 “ sJoK, where s1pvq “ eff opvq
for all variables v P V for which eff o is defined and s1pvq “ spvq otherwise. Furthermore, Π
consists of the cost function C : O Ñ N0 that describes the cost of applying an operator.1

With rangepCq “ tCpoq | o P Ou, we refer to the set of all possible cost values of the opera-
tors. Finally, I P S is the initial state of Π and the partial state G (goal condition) defines
the set of goal states S‹ “ ts P S | G Ď su.

The objective of classical planning is to find plans, which are sequences of applicable
operators leading from the initial state to a goal state, or to prove that no such sequence
exists.

Definition 2 (Plan). A plan π “ xo0, . . . , on´1y for planning task Π is a sequence of
applicable operators that generates a sequence of states s0, . . . , sn, where s0 “ I, sn P S‹

is a goal state, si`1 “ siJoiK for all i “ 0, . . . , n ´ 1. The cost of a plan is the sum of its
operator costs, i.e., costpπq “

řn´1
i“0 Cpoiq. A plan is optimal if there is no cheaper plan.

The search for an optimal plan is called cost-optimal planning, or optimal planning for
short, and is the focus of this article. Example 1 describes a Mars rover planning task
that can easily be encoded using the SAS` formalism from Definition 1. We will use this
example throughout this article to motivate and explain expressive extensions to the SAS`

formalism.

Example 1. Consider a Mars rover similar to Perseverance2 that is designed to perform
autonomous tasks. Such a scenario is illustrated in Figure 2. The dynamics of this example
are as follows. The rover can navigate between adjacent cells if they are free (impassable
cells are highlighted in red). Navigating the rover between cells has no cost, i.e., a cost of 0.
There are interesting rocks at certain locations, and the rover can collect a sample of those
rocks at a cost of 1 when it is at that location. We consider the particular planning task
shown in Figure 2, where the rover is initially located at (7,3), the actual landing site of
Perseverance. The goal is to collect rock samples at (5,1) and (7,1) and bring the samples
to (0,5), a location known as “Three Forks” from which new missions can be launched. The
cost of gathering a rock sample is 1. An optimal plan for this task is π “ xnavigate-7-2,
navigate-7-1, sample-rock-7-1, navigate-7-0, . . . , navigate-5-1, sample-rock-5-1, navigate-5-0,
. . . , navigate-0-5y with a cost of Cpπq “ 2, since the navigate actions cost 0 and there are
two sample-rock actions, each incurring cost 1.

For the remainder of this paper, we assume binary variables, unless stated otherwise, to
simplify the presentation. We assume that Dv “ t0, 1u, and write v as a shorthand for xv, 1y
and ␣v for xv, 0y. We emphasize that the synthesis of finite domain variables using mutexes
(Helmert, 2009) combined with a binary encoding is critical for the efficiency of symbolic
search with BDDs (Edelkamp & Helmert, 1999, 2001). Such a binary encoding is possible

1. In this article, we stick to the common practice of considering operator cost functions with the natural
numbers N0 as the codomain, which allow efficient cost bucketing within symbolic search algorithms.

2. https://mars.nasa.gov/mars2020/mission/overview/ (Accessed: 2023-09-21)

1353

Speck, Seipp & Torralba

y

0

1

2

3

4

5

6

7

x0 1 2 3 4 5 6 7 8 9 10

�

Figure 2: Visualization of the running example, a Mars rover planning task. The original
image is from NASA/JPL-Caltech/University of Arizona3 and shows the Jezero crater,
where the green dot indicates the actual landing site of the Perseverance rover. To illustrate
the task, we added the rover, grid lines, red coloring (impassable cells for the rover), rocks
(goal: collect sample), and an arrow to indicate where the rover should end its journey.

for all SAS` planning tasks because each finite domain variable v P V can be represented
by rlog2 |Dv|s binary variables. All the theory presented, and our implementations support
finite-domain variables. The restriction to binary variables in the following is only for ease
of understanding.

2.2 Decision Diagrams

Decision diagrams are data structures that can be used to represent relevant functions
for solving a planning task. For example, we can represent a set of states S Ď S by
its characteristic function χS , which is a Boolean function χS : S Ñ t0, 1u that decides
whether a given state belongs to S or not. More precisely, χSpsq “ 1 if s P S and χSpsq “ 0
otherwise.

In symbolic search, the most prominent way to represent (characteristic) functions is to
use decision diagrams such as binary decision diagrams (BDDs) (Bryant, 1985), algebraic
decision diagrams (ADDs) (Bahar, Frohm, Gaona, Hachtel, Macii, Pardo, & Somenzi, 1997)
or edge-valued binary decision diagrams (EVBDDs) (Lai, Pedram, & Vrudhula, 1996). All of
these data structures offer a compromise between conciseness of representation and efficiency

3. https://mars.nasa.gov/resources/25621/perseverances-landing-spot-in-jezero-crater/ (Ac-
cessed: 2023-09-21)

1354

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

of manipulation (Drechsler & Becker, 1998a). Their main idea is to break down a function
f into subfunctions, so that f can be reassembled from them.

Definition 3 (Binary Decision Diagram). Let X be a set of binary variables and let χ

be a Boolean function over X. A binary decision diagram (BDD) Bχ is a directed acyclic
graph with a single root node and two terminal nodes: the 0-sink and the 1-sink. Each
inner node corresponds to a binary variable x P X and has two successors, where the low
edge represents that variable x is false, while the high edge represents that variable x is
true. The represented Boolean function χ is evaluated by traversing the BDD according to
a given assignment.

As we explain in Section 2.3, we consider BDDs with X “ V to represent a set of states,
and with X “ V Y V 1 to represent sets of operators, where V 1 “ tv1 | v P Vu denotes the set
of primed versions of the state variables V.

While BDDs are commonly used to represent state sets, ADDs and EVBDDs have been
successfully used to represent numerical functions, e.g., mappings from states to a numerical
value f : SÑ QYt8u in symbolic planning (Hansen, Zhou, & Feng, 2002; Torralba, Linares
López, & Borrajo, 2013; Speck, Geißer, & Mattmüller, 2018b). An algebraic decision di-
agram (ADD) Af is similar to a BDD, but it has an arbitrary number of terminal nodes
with different discrete values, including real numbers. Edge-valued multi-valued decision
diagrams (EVMDDs) are rooted directed acyclic graphs that generalize their binary coun-
terparts (EVBDDs), by allowing variables to have multiple values (Ciardo & Siminiceanu,
2002). Due to their generality, EVMDDs are more common in planning than EVBDDs
(Geißer, Keller, & Mattmüller, 2015, 2016; Mattmüller, Geißer, Wright, & Nebel, 2018;
Speck et al., 2018a).

Definition 4 (Edge-Valued Multi-valued Decision Diagram). Let V be a set of
multi-valued variables and let f be a function over V. An edge-valued multi-valued decision
diagram (EVMDD) Ef is a weighted directed acyclic graph with a single dangling incoming
edge with weight w P QYt8u to a root node and a single terminal node denoted by 0. Each
inner node corresponds to a multi-valued variable v P V and has, for each domain value
i P Dv, an outgoing edge to a successor node ni with edge weight wi P Q Y t8u such that
miniPDv wi “ 0. The represented function f is evaluated by traversing the graph according
to the variable assignment, summing the edge weights to yield the function value.

Decision diagrams are typically considered in a reduced and ordered form and can rep-
resent exponentially many states requiring only polynomial space. A decision diagram is
called ordered if variables appear in the same order on all paths from the root to a sink.
A decision diagram is called reduced if isomorphic subgraphs are merged and any node is
eliminated whose two children are identical. For fixed variable orders, reduced and ordered
decision diagrams are unique (Bryant, 1986; Bahar et al., 1997; Lai et al., 1996). Note
that for EVBDDs and EVMDDs the corresponding edge values must be taken into account.
From now on, we consider all decision diagrams to be reduced and ordered for a fixed
variable order.

Example 2. Figures 3a and 3b show the ADD Af and EVMDD Ef representing the
numeric function f “ 2x`xy. The function f can also be represented as multiple BDDs by

1355

Speck, Seipp & Torralba

x

y

0 2 3

0 1

0 1

(a) ADD Af representing the numeric function
f “ 2x` xy with size |Af | “ 5.

x

y

0

0

0

0 2

1

0
0

1 1

(b) EVMDD Ef representing the numeric func-
tion f “ 2x` xy with size |Ef | “ 3.

x

0 1

01

(c) BDD Bf“0 representing the
characteristic function χS “ ␣x
with size |Bf“0| “ 3.

x

y

0 1

0 1

0
1

(d) BDD Bf“2 representing the
characteristic function χS “ x^
␣y with size |Bf“2| “ 4.

x

y

0 1

0 1

0 1

(e) BDD Bf“3 representing the
characteristic function χS “ x^
y with size |Bf“3| “ 4.

Figure 3: Visualization of different decision diagrams used in Example 2.

disassembling the ADD Af into three different BDDs, one for each terminal node. Figures 3c
to 3e depict the BDDs Bf“z representing all states for which the evaluation of function
f “ 2x`xy is z. The variable order for all decision diagrams is x ą y, i.e., x appears before
y on each path.

The size |D| of a decision diagram D is the number of nodes in D. The size of a
decision diagram strongly depends on the variable order, so that a good order can lead to
an exponentially more compact decision diagram (Edelkamp & Kissmann, 2011). For some
functions the size of the corresponding decision diagram is exponential, independent of the
underlying variable order (Bryant, 1986; Edelkamp & Kissmann, 2011).

Comparing the different types of decision diagrams, an EVBDD can be exponentially
more compact than an ADD (Siminiceanu & Roux, 2010) representing additively separable
functions such as f : t0, 1un`1 Ñ t0, . . . , 2n`1 ´ 1u with fpx0, . . . , xnq “

řn
i“0 2

ixi. More-
over, an ADD can be efficiently disassembled into multiple BDDs, one for each terminal
node, in polynomial time and memory with respect to the ADD size (Torralba, 2015).

In practice, the main advantage of using BDDs over ADDs (and EVMDDs) is that
decision diagram libraries such as CUDD (Somenzi, 2015) use techniques like complement
edges to store BDDs more compactly (Brace, Rudell, & Bryant, 1990) and allow for more
efficient operations (Burch, Clarke, Long, McMillan, & Dill, 1994). However, the use of
ADDs or EVMDDs as data structures in symbolic search makes it possible to simultaneously
represent multiple sets of states associated to different costs. As shown in Figure 2, this
can lead to a more concise symbolic representation.

1356

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

In the text below, when we refer to state sets, characteristic functions and numerical
functions, we assume that they are represented as one of the corresponding decision diagrams
and all logical or numerical operations are realized with the efficient and appropriate decision
diagram-based operations using the apply algorithm (Bryant, 1986; Bahar et al., 1997;
Lai et al., 1996). In this article, we consider symbolic search with BDDs and EVMDDs.
While alternative representations exist in both cases (e.g., ZDDs (Minato, 1993), or Affine
ADDs (Sanner & McAllester, 2005)), BDDs and EVMDDs have shown good performance
for symbolic search in planning.

2.3 Symbolic Search with BDDs

Symbolic search algorithms, originally developed in the field of model checking (McMillan,
1993), are similar to their explicit counterparts. However, they differ in that symbolic search
generates and expands entire sets of states, as opposed to individual states. To enable this
approach, a SAS` planning task (Definition 1) must be represented in a symbolic way
(Edelkamp & Helmert, 2000, 2001; Edelkamp & Kissmann, 2009; Torralba, 2015; Torralba
et al., 2017), which is outlined below using BDDs as the underlying data structure.

The BDDs representing the characteristic function of the initial state and the states
satisfying the goal condition of a SAS` task can be constructed in linear time in the number
of variables |V|, since they are simply a conjunction of facts. Note that this is the case even
for tasks with an exponential number of goal states.

Similarly, single operators o P O or sets of operators O Ď O are represented as so-called
transition relations, which are sets of state pairs, namely predecessor and successor states.
The characteristic function of a transition relation TO is a function χTO

: SˆSÑ t0, 1u that
maps all pairs of states xs, s1y to 1 iff there exists o P O such that preo Ď s and s1 “ sJoK.
In practice, we use two sets of variables V and V 1, one for the current states s, which we
describe by a set of unprimed variables V “ tv0, . . . , v|V|´1u, and another for the successor
states s1, which we describe by a set of primed variables V 1 “ tv1

0, . . . , v
1
|V|´1u. For a formula

or a partial state ϕ, we write ϕrVs when referring to ϕ encoded using the unprimed variables
V. Similarly, with ϕrV 1s we refer to encoding ϕ using the primed variables V 1.

Definition 5 (Transition Relation). The transition relation To of an operator o P O is
defined as To “ preorVs ^ eff orV 1s ^

Ź

vPVzVpeff oqpv ðñ v1q. Multiple operators O Ď O
with the same cost can be represented by a single transition relation as TO “

Ž

oPO To.

In Definition 5, the transition relation consists of three main parts. The first part encodes
the preconditions over the unprimed variables, the second part encodes the effects over the
primed variables, and the last part ensures the closed-world assumption by encoding so-
called frame axioms, meaning that any variable that is not changed by the effect keeps its
original value.

Example 3. Consider a set of two Boolean variables V “ tx, yu and an operator o “
xtxu, t␣yuy. The transition relation for o is To “ x^␣y1^px ðñ x1q “ x^x1^␣y1. To can
also be interpreted as the set of pair of states ps, s1q such that o is applicable on s resulting on
s1. In the example, this correspond to two pairs of states: pxx “ 1, y “ 1y, xx1 “ 1, y1 “ 0yq
and pxx “ 1, y “ 0y, xx1 “ 1, y1 “ 0yq.

1357

Speck, Seipp & Torralba

Finally, given a set of states S and a transition relation TO, the image operator computes
the set of successor states S1 of S via TO, i.e., S

1 “ ts1 P S | Ds P S, o P O s.t. preo Ď
s and s1 “ sJoKu. Analogously, given a set of states S1 and a transition relation TO, the
preimage operator computes the set of predecessor states S1 of S via TO. The exact details
of how these operations work are not important for following the ideas presented in this
article. Note, however, that in practice, most BDD packages implement efficient image and
preimage operations in the form of the so-called relational product (Burch et al., 1994). The
key take-away is that the method above allows us to encode a SAS` task as BDDs.

Definition 6 (Symbolic Task Representation with BDDs). The symbolic task rep-
resentation with BDDs of a planning task Π “ xV,O, C, I,Gy is a tuple xT , χI , χGy where
χIrVs is a BDD representing the initial state, χGrVs is a BDD representing the set of goal
states, and T is a set of transition relations with a transition relation TorV,V 1s P T for each
operator o P O.

Even if the transition relation represents exponentially many state pairs, the size of the
BDD representing the transition relation of a single SAS` operator is always linear in the
number of variables (assuming that every pair of variables x, x1 are adjacent in the variable
ordering). This is the case because the precondition and effect are simple conjunctions of
facts, whereas px ðñ x1q can be represented with a constant number of nodes if the
variables are next to each other in the variable ordering. In the following, when we refer to
the size of a transition relation, we mean the size of the decision diagram representing it.

Next, we describe algorithms that can find an optimal plan for tasks in this representa-
tion. Importantly, the transition relation, as well as the image and preimage, do not need
any specific form. This means that we can model and handle any predecessor-successor
relation, and we are not constrained by, for example, conjunctive preconditions in the form
of partial states or context-free conjunctive effects. As long as the transition relation accu-
rately encodes the predecessor-successor state relation of operators, the image (or preimage)
operator computes the correct set of successor (or predecessor) states for a given set of states.
Therefore, the key concept in supporting expressive extensions to the SAS` planning for-
malism (Definition 1) is to correctly encode the underlying predecessor-successor relation
of operators with feature extensions, such as conditional effects or derived predicates.

Symbolic (blind) search is a symbolic version of uniform cost search, also known as
Dijkstra’s algorithm (Dijkstra, 1959), which can be performed in different search directions.
Symbolic forward (blind) search, also known as progression, begins with the representation
of the initial state χI . Then, it iteratively computes the image using transition relations
that represent the operators of the planning task at hand until it finds a set of states S whose
intersection with the goal χG is non-empty, i.e., χS ^χG ‰ K. The open and closed lists are
represented as state sets partitioned into buckets with identical g-values, where the g-value
is the cost required to reach the set of states in a bucket. During the search, the closed
list is used to track and prune states that have already been expanded. Algorithm 1 shows
pseudo-code for symbolic forward search with non-zero operator costs, which is arguably
the simplest symbolic search algorithm. For simplicity, we only present symbolic search
algorithms (Algorithm 1 and later Algorithm 3) for non-zero operator costs. However,
our theory generalizes to zero-cost operators, as described by Torralba, Speck et al. (2015,
2018a), and our implementations support them.

1358

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

Algorithm 1: Symbolic BDD forward search with non-zero operator costs.

Data: Planning task xV,O, C, I,Gy and BDD representation xT , χI , χGy
Result: Optimal plan π

1 TOc Ð
Ž

ToPT ,Cpoq“c To for all c P rangepCq
2 open0 Ð

χI
3 closedg Ð K for all g P N0

4 while Dg : openg ‰ K do

5 gmin Ð mintg | openg ‰ Ku

6 closedgmin Ð opengmin
^

Źgăgmin
g“0 ␣closedg

7 opengmin
Ð K

8 if pclosedgmin ^
χGq ‰ K then

9 return reconstruct-planpΠ, closedgmin ^
χG , xclosed0, . . . , closedgmin yq

10 forall c P rangepCq do
11 opengmin`c Ð opengmin`c _ imagepclosedgmin , TOcq

12 return task is unsolvable

The first line of Algorithm 1 aggregates all the transition relations of operators with
the same cost into a single transition relation. This is an optional step but recommended,
as it significantly speeds up the image computation. However, it also may increase the
memory required to represent the transition relation. As the size of the aggregated transition
relation is worst-case exponential in the number of operators with the same cost, a time
and memory limit can be used to ensure the step terminates successfully (Torralba et al.,
2017). The algorithm continues by initializing the open list bucket open0 with a g-value of
0, which represents the singleton set containing the initial state, and the closed list, which is
empty at the beginning. Until all open list buckets openg are empty (line 4), the algorithm
iteratively chooses the cheapest-to-reach, non-empty bucket opengmin

(line 5) and expands
it. Expanding opengmin

involves removing all previously expanded states with lower cost and
then marking the remaining set of states as closed (line 6). If a goal state is reached (line 8),
a plan is reconstructed (line 9), the details of which are explained below. As the final step
of a bucket expansion, the algorithm generates the set of successor states by iterating over
the transition relations TOc representing all operators Oc with cost c, computing the image
with respect to closedgmin and TOc , and then adding the new states to the corresponding
open list buckets opengmin`c (lines 10 and 11). If all open list buckets become empty and
no goal state was reached, the task is unsolvable because all reachable states have been
considered (line 12).

Symbolic backward (blind) search, also known as regression, starts with the goal states,
and applies the preimage operation until the initial state is found. In symbolic bidirectional
(blind) search, both forward and backward symbolic search are performed simultaneously,
maintaining two separate open and closed lists (Torralba et al., 2017). A search step consists
either of a backward or a forward search step (and modifies the respective open and closed
lists). A goal path is found once the current search direction expands a symbolic state set
that shares an explicit state with a symbolic state contained in the closed list of the opposite

1359

Speck, Seipp & Torralba

search direction. Note that in bidirectional search, the search cannot immediately stop
once a state is found in both directions; it must first be proven to be on an optimal path.
In symbolic bidirectional blind search, optimality is ensured by expanding a state that has
already been closed in the opposite direction. When considering bidirectional search with
heuristics (which we do not consider in this paper), more sophisticated stopping conditions
are required (Holte, 2010).

Finally, symbolic search needs a plan reconstruction procedure to obtain the final plan
(Torralba, 2015). In explicit search, each search node keeps track of its parent node, making
it easy to construct a plan when a goal state is found. In symbolic search, however, the
parents are not directly known, but all parents are stored in the closed list with their
reachability costs. Therefore, it is possible to perform a greedy search, which opposes the
actual search direction, using the optimal path costs stored in the closed list as the perfect
heuristic estimates. In symbolic forward search, the plan is reconstructed by a greedy
backward search starting with an explicit goal state that was found by the symbolic search.
Iteratively, the plan reconstruction procedure loops over all operators and selects an explicit
predecessor state contained in the closed list. The procedure ends when the initial state
is reached. Plan reconstruction in symbolic search can also be solved with a divide-and-
conquer approach that avoids storing all closed lists with their reachability costs, which
trades memory consumption for runtime (Jensen, Hansen, Richards, & Zhou, 2006).

Algorithm 2: Plan reconstruction for symbolic forward search.

Data: Planning task Π “ xV,O, C, I,Gy
Data: Target states target
Data: Closed list buckets xclosed0, . . . , closedgmin y

Result: Optimal plan π
1 π Ð xy

2 g Ð gmin

3 sÐ select arbitrary state from target
4 while s ‰ I do
5 foreach o P O do
6 pred Ð preimagepχs, Ttouq

7 gpred Ð g ´ Cpoq
8 if pred ^ closedgpred ‰ K then

9 sÐ select arbitrary state from pred
10 g Ð gpred
11 prepend o to π
12 break

13 return π

Algorithm 2 details the plan reconstruction for the symbolic forward algorithm described
in Algorithm 1. Lines 1 to 3 initialize the plan π as an empty sequence, initialize the variable
g with the remaining plan cost of gmin , and assign to s an arbitrary explicit goal state from
the set of goal states target . The procedure continues to reconstruct the plan backwards
until we reach the initial state (line 4). In line 5, we iterate over all operators, and in lines 6

1360

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

and 7, we compute the set of predecessor states with respect to the selected operator and
our current state, and calculate the remaining plan cost of those predecessors. In line 8,
we check whether we have found a predecessor with such costs during search, i.e., whether
there is such a predecessor in the respective closed list. If so, in lines 9 to 12 we select one of
these predecessors from which we continue the plan reconstruction, update the remaining
plan costs, prepend the determined operator to our plan, and continue the main loop of
line 4. Finally, when we reach the initial state, we return the reconstructed plan π.

In backward symbolic search, the plan reconstruction procedure is similar, but it starts
with the initial state and selects explicit successor states contained in the closed list. Note
that a greedy search in combination with the perfect heuristic leads the search directly from
a starting state to a target state, making the runtime of the plan reconstruction negligible
with respect to the actual search. For bidirectional search, a greedy best-first search is
performed twice, both opposing the actual search direction. More specifically, both plan
reconstructions are initialized with an explicit state contained in the symbolic meeting point
and one search is a regression to the initial state, while the other search is a progression to
the goal states.

2.4 Symbolic Search with EVMDDs

Symbolic Search with EVMDDs operates similar as with BDDs. However, EVMDDs enable
a richer representation of numerical functions, which can be used to represent mappings from
states to numbers, f : S Ñ Q Y t8u, and weighted transition relations that represent the
cost of the cheapest operator that can be applied in s to get to s1, f : Sˆ S1 Ñ QY t8u.

So, while symbolic search with BDDs keeps separate sets of states per g-value in the
open list, EVMDDs can represent the entire open list in a single decision diagram. An
EVMDD ErVs represents a set of states where each state in the set is assigned a finite cost
and any state not in the set is assigned 8. The example from Figure 3 can be interpreted as
an open list with sets of states that are reachable from the initial state with a cost of 0, 2,
and 3, respectively. When using an EVMDD, the single diagram in Figure 3b can represent
all these sets of states even if they are at different distances from the initial state. Note
that the idea of representing states with different assigned priority values within a decision
diagram is also common practice in symbolic heuristic search (Reffel & Edelkamp, 1999;
Hansen et al., 2002; Speck et al., 2018a).

Whenever we can construct a BDD to represent a set of states χS , this is equivalent to
having an EVMDD that represents the function s ÞÑ 0 if s P S and s ÞÑ 8 otherwise. Also,
we can manipulate sets of states as with BDDs. For example, given two EVMDDs E1, E2,
the union-min (min

_) operation assigns each state s the value minpE1psq, E2psqq, resulting in
the union of both sets where each state s is assigned the minimum value of the two functions.
Similarly, for the intersection-max (max

^) operation, each state s is assigned maxpE1psq, E2psqq,
resulting in the intersection of both sets where each state is assigned the maximum value of
the two functions. We also consider the negation and preserve-min operations for EVMDDs
(Speck et al., 2018a). For arithmetic functions, there is no traditional complement; we
define the complement of an EVMDD E as the function ␣Epsq “ 0 if Epsq “ 8 and
␣Epsq “ 8 otherwise. Note that this definition of complement is not self-inverse. The
preserve-min operation extracts the least-cost states from an EVMDD. Given an EVMDD

1361

Speck, Seipp & Torralba

E , the preserve-min operation is defined as preserve-minpEqpsq “ Epsq if Epsq “ minsPS Epsq
and preserve-minpEqpsq “ 8 otherwise.

While symbolic search with BDDs keeps separate transition relations per operator cost,
EVMDDs can represent the transition relation of all operators in a single decision diagram.
A transition relation in EVMDDs T E

o rV,V 1s corresponding to an operator o P O, is an
EVMDD that represents the function over ps, s1q ÞÑ Cpoq if ps, s1q P T E

o and ps, s1q ÞÑ 8

otherwise.

Definition 7 (Symbolic Task Representation with EVMDDs). The symbolic task
representation with EVMDDs of a planning task Π “ xV,O, C, I,Gy is a tuple xT E , EI , EGy
where EIrVs is an EVMDD representing the initial state, EGrVs is an EVMDD representing
the set of goal states, and T E is a set of transition relations with a transition relation
T E
o rV,V 1s P T for each operator o P O.

Algorithm 3 shows how to perform blind search with EVMDDs, a simplified form of
EVMDD-A‹ proposed by Speck et al. (2018a).

Algorithm 3: Symbolic EVMDD forward search with non-zero operator costs.

Data: Planning task Π “ xV,O, C, I,Gy and EVMDD representation xT E , EI , EGy
Result: Optimal plan π

1 T Ð
Ž

min

TE
o PT E T E

o

2 open Ð EI
3 closed Ð E8

4 while open ‰ 8 do
5 E Ð preserve-minpopenq

6 closed Ð closed min
_ E

7 if E max
^ EG ‰ 8 then

8 return reconstruct-planpΠ, E max
^ EG , closedq

9 open Ð open min
_ imagepE , T q

10 open Ð open max
^ ␣closed

11 return task is unsolvable

As mentioned above, we can construct a single transition relation that represents all
operators (line 1). Similar to aggregating transition relations with the same cost using
BDDs, representing multiple or all transition relations as monolithic EVMDDs can exceed
memory and time resources. Therefore, it is common practice to impose time and memory
limits to ensure the process terminates (Torralba et al., 2017; Speck et al., 2018a). Then,
in lines 2 and 3, the open list is initialized with the EVMDD representing the initial state,
and the closed list is initialized as the empty set. The algorithm continues as long as any
state remains in the open list. In line 5, a set of states is extracted with the preserve-min
operation, which keeps states with the lowest costs (minimal g-values) and maps all others
to infinity. Subsequently, those states are inserted into closed. If any state of E is a goal
state, the plan is reconstructed and returned. In contrast to Algorithm 1 which partitions
the open and closed lists into buckets, Algorithm 3 maintains only two EVMDDs. As a
result, the cost of reaching a goal state is directly contained in the EVMDD E max

^ EG . Plan

1362

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

reconstruction works similarly to the version for BDDs, with the difference that one checks
if a predecessor is in the monolithic EVMDD closed list with corresponding costs. If no
goal state was found, the states represented in E are expanded and the successor states are
added to the open list (line 9). Finally, in line 10, we remove all closed states from the open
list by computing the max of the current open list and the complement of the closed list
␣closed.

For a detailed description of other symbolic search variants, we refer the interested
reader to Torralba (2015) and Speck et al. (2018a).

3. Experimental Setup

In this article, we extend the basic SAS` formalism with three expressive extensions—
conditional effects, axioms, and state-dependent action costs—first in isolation and then in
combination, resulting in four main sections. Each of these sections contains a theoretical
analysis of symbolic search with the extensions and an empirical comparison to other state-
of-the-art techniques.

For the empirical evaluations, we collected an extensive set of benchmark tasks from
the literature. To determine the required model extensions for each task, we used the Fast
Downward translator component to translate the first-order PDDL tasks into a grounded
representation (Helmert, 2009), using up to 30 minutes and 8 GiB. Based on the grounded
representation, we collected the PDDL planning tasks that have conditional effects, axioms,
and/or state-dependent action costs after a successful translation phase. We then divided
them into benchmark sets for the different model extensions and their combination. We pro-
vide detailed information about the resulting benchmark sets and the planners we compare
against in the dedicated sections.

For our symbolic search algorithms we use six variants, using forward, backward and
bidirectional search with BDDs and/or EVMDDs. The algorithms introduced in Section 2
work for all extensions, provided that the planning tasks can be represented using BDDs
and EVMDDs. Thus, to show that all the algorithms guarantee to return an optimal plan,
it suffices to show that the transition relations and goal correctly encode the semantics of
the planning task with each of the extensions.

Our BDD-based and EVMDD-based symbolic searches are performed using extended
versions of SymK (Speck, Mattmüller, & Nebel, 2020) and Symple (Speck et al., 2018b),
and support finite-domain variables (Edelkamp & Helmert, 1999; Helmert, 2009) and state-
dependent action costs in N0. Both planners are based on Fast Downward (Helmert, 2006)
and have their origin in SymBA˚ (Torralba et al., 2014). For the BDD representation we
use the CUDD library (Somenzi, 2015) and for the EVMDD representation we use MEDDLY
(Babar & Miner, 2010). To empirically compare state-of-the-art planning systems, we apply
the following optimizations to BDD-based symbolic search with CUDD (not available in
MEDDLY): the relational product for image and preimage computation (Burch et al., 1994),
and in bidirectional search, we impose initial time and BDD size limits of 1 minute and
10 million nodes per search step in both directions, doubling these limits if both directions
exceed the limits in the current step. In each of the experiments presented in the different
sections, we impose the same resource limits and use the same hardware. For each planner
run, we allocate 30 minutes and a memory limit of 8 GiB and use Downward Lab (Seipp,

1363

Speck, Seipp & Torralba

Pommerening, Sievers, & Helmert, 2017) to run our experiments on Intel Xeon Gold 6130
CPUs. All our code, the code for other planners, the benchmarks, and the experiment data
are available online (Speck et al., 2024).

4. Conditional Effects

In classical planning, actions are typically assumed to have fixed, context-independent ef-
fects. However, it is often desirable to specify effects that are context-dependent, i.e., based
on the state in which the action is applied. Conditional effects are an extension to planning
formalisms like SAS`, and they provide a natural and compact way to model such contextual
effects (Pednault, 1989; Nebel, 2000; Helmert, 2009). It is well-established that conditional
effects contribute to the expressive power of the planning formalism. Nebel (2000) demon-
strated this by showing that conditional effects cannot be compiled away if the length of
plans is limited to grow only linearly (and the size of the model is not allowed to grow ex-
ponentially). Conditional effects can be compiled away if one allows the resulting plans to
grow polynomially. Sometimes, this compilation can even be done efficiently, by exploiting
specific structures of conditional effects (Gerevini, Percassi, & Scala, 2024; Percassi, Scala,
& Gerevini, 2024). However, in general the resulting tasks often pose a significant challenge
to planning systems, since the search space usually grows exponentially with the search
depth.

Recognizing the importance of conditional effects, many modern planners provide sup-
port for this model extension, including cost-optimal planning systems. This unusually high
support for a model extension beyond SAS` can be attributed to the fact that this feature
has become a mandatory requirement for the most recent installments of the Classical Track
at the International Planning Competition (i.e., in 2014, 2018 and 2023). In these com-
petitions, a subset of the benchmark domains include conditional effects, and alternative
formulations without the feature are not provided, in contrast to previous IPCs (e.g., IPC
2004; Hoffmann & Edelkamp, 2005).

The history of symbolic planners supporting conditional effects natively already started
with the first symbolic search planner, the Model Checking Integrated Planning System
(MIPS; Edelkamp & Helmert, 2001). MIPS was designed to support the full action descrip-
tion language (ADL; Pednault, 1989), which includes conditional effects. While there have
been some symbolic planners without support for conditional effects, the feature is almost
universally supported in modern symbolic planning systems. However, to the best of our
knowledge, there is no comprehensive description and analysis of how conditional effects
can be implemented efficiently and compactly in symbolic search planners. A notable ex-
ception is the planner abstract by Kissmann et al. (2014), which describes the encoding of
conditional effects in the Gamer planner.

In this section, we fill this literature gap and describe in detail how modern symbolic
search planners support conditional effects by efficiently encoding them in transition rela-
tions. At the end of the section, we present an empirical study that compares symbolic and
explicit search planners on domains that feature conditional effects. Our results show that
overall symbolic search achieves comparable performance while often complementing other
state-of-the-art techniques.

1364

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

4.1 Formalism

A planning task with conditional effects is defined as follows (Pednault, 1989; Helmert,
2009).

Definition 8 (Planning Task with Conditional Effects). A planning task with condi-
tional effects Π “ xV,O, C, I,Gy is identical to a SAS` planning task (Definition 1), except
that the effects eff o of an operator o “ xpreo, eff oy P O are not partial variable assignments,
but a set of conditional effects pcond ▷v “ dq, where v P V, d P Dv, and the effect condition
cond is a partial state. Effects must be well-formed, i.e., the conditions of multiple condi-
tional effects that assign different values to the same variable can never hold in the same
state.4 As for SAS` tasks, an operator o P O is applicable in a state s iff preo is satisfied
in s, i.e., preo Ď s. The result of applying operator o to a state s is the state s1 “ sJoK,
where for all v P V we have s1pvq “ d if there exists pcond ▷ v “ dq P eff o and cond Ď s,
and s1pvq “ spvq otherwise. Slightly abusing notation, for an operator o, Vpeff oq is the set
of all variables affected by the effects of o.

Example 4. Consider the Mars rover planning problem described in Example 1. Consider
an extended goal description that includes downlinking the scientific data collected from
the rock sample. However, the rover can only establish a connection to downlink the data
at certain locations, and such an operation is costly. Therefore, the objective is to send as
much data as possible in a single downlink. Further, assume that the rover can send all
collected data at location (0,7). Such an operator downlink-0-7 can be easily modeled with
conditional effects. It has a precondition that the rover is at location (0,7) and conditional
effects that specify the corresponding data upload when the rover has collected a rock
sample at a certain location. So we have two conditional effects: if the rock sample at (5,1)
has been collected, the corresponding data will be downlinked, and the same is true for the
rock sample at (7,1). Thus, if the rover has not yet collected any rock samples, the operator
has no effect (apart from inducing costs). If it has collected the rock sample at (5,1), this
data will be communicated, and the same is true for (7,1). If both are collected, both sets of
data are downlinked. Assigning a cost of 1 to the downlink-0-7 operator, the optimal plan
for this extended example is similar to the one described in Example 1. However, we now
have the additional downlink-0-7 operator, which is not executed until both rock samples
have been collected on the way to the final location.

In Example 4, one could introduce operators for each possible subset of the collected
data, resulting in four operators with corresponding preconditions, splitting the context in
which they can be applied. This corresponds to a combinatorial compilation of introducing
new operators for each context. However, this approach can incur an exponential number of
operators, which usually makes it infeasible to solve the task in practice. This issue becomes
apparent for Example 4, when there are not just two, but n rock samples to collect and
downlink. In this case, the SAS` task without conditional effects needs Op2nq operators.

4. If an operator has conflicting effects, an “equivalent” conflict-free version can be generated, as is done in
the Fast Downward translator (Helmert, 2009), which we use in the presented symbolic search planners.

1365

Speck, Seipp & Torralba

preorVs:

x

0 1

0 1

CE pxq:

x

x1 x1

yy

0 1

0 1

0

1 01

0

1
01

CE pyq:

y1

0 1

0 1

(a) BDDs representing the relevant components of the transition
relation To, where CE pvq “ CE`

pvq _ CE`
pvq.

To

x

x1

y y

y1

0 1

10

01

0
1 01

0 1

(b) BDD representing the tran-
sition relation To.

Figure 4: Visualization of BDDs representing the components and the final symbolic rep-
resentation To of an operator o “ xtxu, eff oy with one conditional and one unconditional
effect eff o “ tpy ▷␣xq, pH▷ yqu.

4.2 Symbolic Search

The underlying idea for supporting conditional effects in symbolic search is to encode them
directly in the transition relation. As for SAS` tasks, this implies creating a transition
relation for each operator o P O that assigns the value 1 to each predecessor-successor state
pair xs, s1y induced by o if and only if o is applicable in state s, and s1 “ sJoK. All other
state pairs are assigned the value 0.

The main idea for encoding an operator o P O with conditional effects, is to collect
the conditions cond under which a certain effect d occurs for variable v. The induced
conditional effect can be encoded as CE`pvq “

Ž

pcond▷v“dqPeff o
pcondrVs ^ pv1, dqq. This

formula reflects that if any condition with v as the effect variable is true in the resulting
state, then the effect is encoded using the primed variable v1. In addition, we need to encode
the frame axiom if none of the conditions are met to set a value for the variable v. This
can be represented as CE´pvq “ p

Ź

pcond▷v“dqPeff o
␣condrVsq ^ pv ðñ v1q.

Using the functions CE` and CE´, we can now define a transition relation for an
operator o P O with conditional effects as follows.

To “ preorVs ^
ľ

vPVpeff oq

pCE`pvq _ CE´pvqq ^
ľ

vPVzVpeff oq

pv ðñ v1q (1)

For operators without conditional effects, i.e., those where all effect conditions are empty,
Equation (1) reduces to the one in Definition 5 since CE` is eff orV 1s, and CE´ is always
false.

Example 5. Consider a set of two propositional variables V “ tx, yu and an operator
o “ xpreo, eff oy with preo “ txu and eff o “ tpy ▷ ␣xq, pH ▷ yqu. The transition relation

1366

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

representing o consists of the following components. The precondition preorVs “ x specifies
that x must be true for applying o. For variable x, we derive CE`pxq “ y ^ ␣x1 and
CE´pxq “ ␣y ^ px ðñ x1q, specifying that x becomes false if y is true, and retains its
value if␣y. For variable y, we get CE`pyq “ J^y1 “ y1 and CE´pyq “ K^py ðñ y1q “ K,
encoding the unconditional effect y1 (making y true). In this example, all variables are part
of an effect, so the last part of Equation (1) is an

Ź

over the empty set and evaluates to
true. Combining these components we get To “ x^ ppy ^␣x1q _ p␣y ^ px ðñ x1qqq ^ y1.
Formula To precisely describes operator o, considering that 1) the precondition x must be
satisfied, 2) if y is true, then ␣x1 holds, and if ␣y, then x retains its value, and 3) y becomes
true in the subsequent state. Figure 4 illustrates To and its components as BDDs.

It is important to note that, unlike in the case of SAS` operators without conditional
effects, the BDD/EVMDD representation of the transition relation of a single operator To is
not guaranteed to have a polynomial size relative to the size of the operator o. Specifically,
CE`pvq encodes an arbitrary DNF formula, whose representation as one of these decision
diagrams may be exponential. An example is an operator that makes a variable true
if two variables representing adjacent cells of a grid are true, which is known to result in
exponentially large decision diagrams regardless of the order of the variables (Edelkamp &
Kissmann, 2011). However, in many cases the BDD representation is concise in practice.
In Example 4, where the compilation to the SAS` formalism would involve an exponen-
tial number of operators, the BDD representation remains polynomial as it exploits the
independence between conditional effects where conditions and effects impact only a single
variable. Thus, by directly constructing the transition relation using Equation (1), we can
completely avoid this exponential blow-up.

4.3 Empirical Evaluation

We compare different planning algorithms on 11 domains with conditional effects obtained
from the literature (McDermott et al., 1998; Koehler & Schuster, 2000; Hoffmann &
Edelkamp, 2005; Palacios & Geffner, 2009; Haslum, 2011, 2013; Vallati, Chrpa, Grześ,
McCluskey, Roberts, & Sanner, 2015; Segovia-Aguas, Jiménez, & Jonsson, 2018). The
benchmark set consists mainly of domains (primary and alternative versions) from the 2004,
2014, and 2018 International Planning Competitions. These domains range from developing
strategies in popular board games to planning outdoor activities. In addition, “non-IPC
domains” are included, ranging from a compilation of conformant to classical planning
(Palacios & Geffner, 2009) to finite-state controller synthesis (Segovia-Aguas et al., 2018).

To compare our implementations of BDD-based and EVMDD-based symbolic search,
which embed conditional effects directly in the transition relation, we ran a non-symbolic
(blind) search in the form of A‹ with the blind heuristic h0 and the hmax heuristic (Bonet &
Geffner, 1999) as a baseline. In addition, we selected state-of-the-art cost-optimal planning
systems from the International Planning Competition 2018. Specifically, we chose the top
three non-portfolio planners from the optimal track of the 2018 International Planning Com-
petition on domains with conditional effects. These planners are Scorpion, Complementary-
2 and Metis-1.

Scorpion (Seipp, 2018) performs A‹ (Hart, Nilsson, & Raphael, 1968) with an admissible
heuristic (Pearl, 1984) based on component abstraction heuristics combined with saturated

1367

Speck, Seipp & Torralba

A‹ IPC 2018 EVMDD BDD

Domain h0 hmax

C
om

p
l-
2

M
et
is
-1

S
co
rp
io
n

fw bw bd fw bw bd

Briefcaseworld (50) 7 8 10 9 16 7 5 7 8 6 9

Caldera (78) 24 20 26 33 26 20 8 20 29 22 28

Cavediving (17) 4 4 4 4 4 4 0 4 4 4 4

Citycar (40) 10 19 13 21 15 12 0 10 19 7 19

Flashfill (15) 0 2 0 1 0 0 0 0 2 0 1

FSC (57) 19 19 4 19 19 5 0 5 7 0 7

GED (26) 20 20 20 20 24 14 8 13 20 8 20

Miconic-Simple (150) 81 78 138 144 147 123 103 123 150 149 150

Nurikabe (38) 16 16 16 16 19 12 4 10 17 8 17

Settlers (40) 8 9 9 9 10 2 0 1 9 0 9

T0 (120) 28 30 33 40 37 24 17 24 40 23 39

Total Coverage (631) 217 225 273 316 317 223 145 217 305 227 303

Norm. Coverage (11) 3.43 3.78 3.79 4.48 4.56 2.96 1.45 2.79 4.27 2.51 4.22

Table 1: Number of problems solved within each of the 11 domains with conditional
effects and neither axioms nor state-dependent action costs. The total coverage is the sum
of all solved instances, while the normalized coverage is the aggregated percentage of solved
instances per domain. The number of problems grounded within resource limits per domain
is indicated in brackets.

cost partitioning (Seipp & Helmert, 2018) to find optimal plans. For tasks with conditional
effects, the abstraction heuristics are pattern database heuristics for systematically and
explicitly generated patterns consisting of 1, 2, and 3 variables (Pommerening, Röger, &
Helmert, 2013).

Complementary-2 (Franco et al., 2018) implements an explicit A‹ search with pattern
database (PDB) heuristics. This planner sequentially generates new PDBs that complement
the previous ones (Franco, Torralba, Lelis, & Barley, 2017). The heuristic values for these
PDBs are computed and stored using symbolic data structures, specifically using BDDs
and symbolic search. The support for conditional effects is based on the approach we have
outlined in this article, which involves encoding them directly in the transition relation.
However, the main difference between standard symbolic search and Complementary-2 is
the use of symbolic search: In Complementary-2, it is primarily used to compute a heuristic
value. The heuristic value is derived by multiple symbolic backward searches on simplified
versions of the task described by the considered patterns and then combined using 0-1 cost
partitioning.

Metis-1 (Sievers & Katz, 2018) is an explicit heuristic search planner that implements
orbit space search (Domshlak, Katz, & Shleyfman, 2015) for symmetry-based pruning and a

1368

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

100

101

102

103

104

105

106

107

108

109uns.

Tasks (sorted by total BDD nodes)

T
o
ta
l
B
D
D

N
o
d
es

Briefcaseworld
Caldera
Cavediving
Citycar
Flashfill
FSC
GED
Miconic-Simple
Nurikabe
Settlers
T0

Figure 5: Visualization showing the cumulative size of transition relations represented
by BDDs for planning tasks with conditional effects. The y-axis shows the summed
nodes of the transition relations To, which represent the individual operators o P O within
the planning tasks. Tasks within each domain are arranged in ascending order based on the
total number of BDD nodes and are distributed along the x-axis.

variant of the LM-cut heuristic (Helmert & Domshlak, 2009) with context splitting (Röger,
Pommerening, & Helmert, 2014) to support conditional effects.

Table 1 shows the number of solved instances per domain (coverage) for different ap-
proaches. When considering symbolic search, we observe that BDD-based symbolic search
generally outperforms EVMDD-based symbolic search. This superiority can be attributed
to the more efficient operations and libraries for BDD manipulation, coupled with the fact
that the structural advantage of compactly representing cost functions does not amortize
well when costs lack sufficient diversity. By lack of diversity in the cost function, we mean
that the cardinality of the range of the cost function C is small, i.e., |rangepCq| is small. This
can result in only a modest structural advantage of EVMDDs over BDDs, given the limited
additive separability of these functions. Extreme cases are domains with unit operator costs
where |rangepCq| “ 1, such as Briefcase, FSC, Miconic-Simple, Nurikabe, and T0.

Notably, on this benchmark set, forward search proves to be the overall best performing
search direction for symbolic search. While it is commonly reported in practice that bidirec-
tional search performs best (Torralba et al., 2017; Speck et al., 2020), it is also known that
its effectiveness is domain dependent, as observed here for both BDD- and EVMDD-based
search. A reason for this is that, in domains where actions have many conditional effects,
the transition relations may be complex to represent (see Figure 5). While this affects
the search in both directions, regression is more affected, possibly because the conditions
of conditional effects are more complex than the effects themselves. In fact, in the three

1369

Speck, Seipp & Torralba

domains with larger transition relations (Flashfill, FSC and Settlers), backward search is
unable to solve any instance.

Comparing symbolic search to explicit A‹ with the blind and hmax heuristics, we ob-
serve that both forward and bidirectional BDD-based searches perform favorably overall,
while EVMDD-based searches perform less favorably. Figure 5 shows the cumulative sizes of
the transition relations representing individual operators in the form of BDDs for the eleven
domains considered. The main observation is that symbolic search is often empirically bet-
ter than or equal to explicit search when it is possible to create the transition relations.
This is typically the case for domains with a moderate number of operators and conditional
effects, such as Miconic-Simple. However, in domains such as FSC (finite-state controller),
where the number of conditional effects is vast (thousands per operator), symbolic search
approaches tend to run out of memory when creating the necessary data structures. This
trend continues and is especially true for the less memory-optimized symbolic search ap-
proach based on EVMDDs.

Looking at the top three planners on domains with conditional effects from IPC 2018,
we find that the explicit heuristic search approaches Metis-1 and Scorpion perform the
best overall. A key reason for their performance is their ability to handle domains with
numerous conditional effects more effectively. However, we can also see that symbolic search
has complementary strengths compared to these explicit heuristic search approaches. For
example, symbolic forward BDD search outperforms Scorpion in five domains, and vice
versa. Interestingly, while Metis-1 performs worse than Scorpion overall, we can observe
that it is more similar to symbolic search. It performs better than symbolic forward BDD
search in four domains, while it performs worse in two domains.

When comparing symbolic search with Complementary-2, we observe that pure forward
and bidirectional symbolic search with BDDs outperform Complementary-2’s symbolic pat-
tern database approach overall. The same pattern holds when examining the number of
domains where forward symbolic and bidirectional symbolic search with BDDs outperform
Complementary-2: 7 versus 1. The main reason for this is that Complementary-2 faces
similar challenges when dealing with planning problems containing numerous conditional
effects. The approach first generates all transition relations, as in pure symbolic search, and
then abstracts them to create simpler tasks.

Overall, in this empirical evaluation, we find that symbolic search performs overall com-
parably, albeit weaker, than other modern approaches based on explicit heuristic search. It
excels in domains involving moderately many conditional effects, but struggles to represent
and deal with problems with very complex actions where the transition relation is hard
to represent, especially when the actual search is not challenging (e.g., due to plans being
relatively short). In summary, symbolic search is complementary to other search strategies
when it comes to planning tasks involving conditional effects.

5. Complex Action and Goal Conditions via Axioms

In classical planning, Boolean or finite domain variables are commonly used to describe
the states of the world, the preconditions and the effects of actions, and the goal criteria
(Fikes & Nilsson, 1971; Bäckström & Nebel, 1995). For many planning problems, however,

1370

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

complex action preconditions or goals are desirable or even necessary for a compact task
description (Hoffmann & Edelkamp, 2005; Thiébaux et al., 2005).

Axioms allow to model such complex preconditions and goals compactly by introducing
a set of derived variables whose values are not directly influenced by the actions but are
derived from the values of other variables using a set of logical rules. Thiébaux et al. (2005)
showed that axioms are an essential feature, i.e., it is not possible to compile them away
in a compact and efficient way in general. In particular, such compilations can lead to a
super-polynomial increase in either plan length or description size.5

Although axioms are an essential modeling feature, modern planning techniques rarely
support them, especially not in cost-optimal planning. Most admissible heuristics commonly
used within A‹ search, one of the most prominent approaches to cost-optimal planning, are
not defined for tasks with axioms. The few heuristics that do support axioms are based on
näıve relaxations that treat axioms as zero-cost actions, which may greatly reduce the accu-
racy of the heuristics. One exception are axiom-aware delete relaxation heuristics, obtained
by applying a model for state constraints to planning with axioms (Ivankovic & Haslum,
2015; Haslum, Ivankovic, Ramı́rez, Gordon, Thiébaux, Shivashankar, & Nau, 2018). While
these heuristics are often informative, they are also time-consuming to compute and there-
fore often do not pay off in terms of coverage or runtime.

In this section, we define planning with axioms and describe how to extend symbolic
search algorithms to support axioms natively, based on the work by Speck et al. (2019).
Our empirical study on different planning domains shows that the symbolic axiom encodings
yield an optimal planner that compares favorably with other state-of-the-art methods that
support axioms.

5.1 Formalism

A planning tasks with axioms extends a SAS` planning task (Definition 1) with a set of
derived variables and a set of axiom rules (Thiébaux et al., 2005; Helmert, 2008).

Definition 9 (Planning Task with Axioms). A planning task with axioms is a tuple
Π “ xV,O, C,D,A, I,Gy, extending a SAS` planning task with a set of axioms A and
derived/secondary variables D. Each derived variable d is a binary variable with domain
Dd “ t0, 1u and a default value of 0. In addition to the set S, which contains all states
defined over the primary variables V, we let SE refer to the set of all extended states defined
over V Y D. For a state s P S, we let Apsq P SE denote the corresponding extended state.
Preconditions preo of operators o P O and the goal condition G are defined over primary
and secondary variables V Y D. In contrast, effects eff o of operators o P O and the initial
state I are defined only over the primary variables V. An operator is applicable in a state
s P S if preo Ď Apsq and a state s P S is a goal state if G Ď Apsq. We discuss the semantics
of operator application below.

An axiom (rule) r P A has the form head Ð body where the head head is a value
assignment of 1 to a derived variable d P D, i.e., head “ xd, 1y (or just head “ d), and the
body body is a partial state over primary and secondary variables V Y D. Given an axiom

5. Thiébaux et al. (2005) consider planning tasks described in PDDL (McDermott et al., 1998; Hoffmann
& Edelkamp, 2005), while we consider planning tasks, and in particular axioms, in a grounded and
normalized form.

1371

Speck, Seipp & Torralba

rule r, we denote with bodyprq and headprq the body or head of r, respectively. The set of
axioms is partitioned into a totally ordered set of axioms layers A1 ă ¨ ¨ ¨ ă Ak. The layer
of an axiom is defined by the layer of its head, which is determined by a partition of the
set of derived variables into subsets D1 ă ¨ ¨ ¨ ă Dk. We assume that this partition forms a
stratification, i.e., that for all i “ 1, . . . , k, and for each di P Di, it holds that (1) if dj P Dj

appears in the body of an axiom with head di, then j ď i, and (2) if dj P Dj appears as ␣d
(with its default value) in the body of an axiom with head di, then j ă i.

The semantics of axioms is as follows: (1) to evaluate a derived variable, only axioms in
the current or previous layers have to be considered, and (2) axioms have negation-as-fault
semantics, i.e., if a fact cannot be derived as true, it is assumed to be false in subsequent
layers. Given a state s P S (over V), the extended state Apsq P SE (over V YD) is uniquely
defined by the standard stratified semantics (Apt, Blair, & Walker, 1988; Thiébaux et al.,
2005). In other words, axioms are evaluated in a layer-by-layer fashion using fixed-point
computations. More precisely, given a state s P S, first all derived variables d P D are set
to their default value 0. Second, a fixed-point computation is performed for each axiom
layer in sequence to determine the final values of the derived variables (Helmert, 2008).
Algorithm 4 describes the axiom evaluation algorithm for explicit states.

Algorithm 4: Axiom evaluation for explicit states (Helmert, 2008).

Data: Axiom layers A1 ă ¨ ¨ ¨ ă Ak, state s P S
Result: Extended state s1 “ Apsq

1 foreach primary variable v P V do
2 s1pvq :“ spvq

3 foreach derived variable d P D do
4 s1pdq :“ 0

5 foreach axiom layer i “ 1, . . . , k do
6 while there is an axiom headÐ body P Ai such that s1 (body and s1 * head do
7 s1pheadq :“ 1

8 return s1

Intuitively, the axioms form a background theory that makes it possible to capture/derive
some properties of states, i.e., secondary variables, from the primary state variables. While
an operator can only change the values of the primary variables directly (eff o is a partial
variable assignment over V), the values of the secondary variables are derived from the
axioms and the primary variables in the successor state.

Example 6. Consider the navigate operators of Example 1, which navigate the rover be-
tween cells with a cost of 0. This verbose modeling of the rover navigation leads to a larger
state space and longer plans than necessary. Instead, reachability can be expressed as a
recursive property with axioms and derived properties. To model a navigate operator with
axioms that moves the rover to a reachable location loc, we introduce a derived variable
reachable-loc as a precondition for the navigate operator. The values for the derived vari-
ables reachable-loc are determined by a single layer of axioms A1, containing the following
axioms for each location loc and each adjacent location from:

1372

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

• reachable-locÐ rover-at “ loc

• reachable-locÐ free-loc^ reachable-from^ adjacent-from-loc

Intuitively, the first axiom encodes that the current location of the rover is reachable. The
second axiom means that a free location adjacent to a reachable location is also reachable.
By applying the axioms until a fixed point is reached, the current state s is expanded toApsq,
which then contains the information about the actual reachable locations (reachable-loc)
based on the current state s, which contains the rover location and all relevant information
about the map and what locations are currently free. This encoding provides a natural and
concise modeling of the transitive closure property of reachability. Moreover, it provides
not only a smaller state space (as actions moving the robot can consider only the relevant
locations where rock samples can be taken ignoring all intermediate locations that are
traversed during the navigation), but also a shorter plan π “ xnavigate-7-2, sample-rock-7-1,
navigate-5-1, sample-rock-5-1, navigate-0-5y, which avoids the irrelevant choice of the exact
path the rover must take.6

In Example 6, the reachable cells for the rover are always the same (as no action has
an effect on free-loc), but this is not necessarily true in general. For example, it could be
the case that actions by the rover make some cells impassable. A similar scenario where
reachability can change from state to state is Sokoban, where the locations of the boxes
affect the reachability of the cells (Ivankovic & Haslum, 2015; Miura & Fukunaga, 2017).

5.2 Symbolic Search

Speck et al. (2019) introduced three sound and complete variants to support axioms in
symbolic search. While none of the three encodings dominates the others in theory, their
symbolic translation approach has several advantages over the other two methods. It read-
ily allows forward, backward, and bidirectional search and, as we will show below, can be
straightforwardly combined with other encodings of expressive planning features. Further-
more, it has been shown to be the empirically dominant strategy (Speck et al., 2019). For
these reasons, in this article we will consider only the symbolic translation approach to sup-
porting axioms with derived variables and compare it to other state-of-the-art approaches
to cost-optimal planning with axioms. The symbolic translation encoding is based on pre-
computing a symbolic representation over the primary variables V for each derived variable
d P D.

Definition 10 (Primary Representation). Let d P V Y D be a (primary or derived)
variable and A a set of axioms. The primary representation of d is the set of states Sd,
which contains all states over V where d is evaluated to true, i.e., Sd “ ts P S | Apsq |ù du.

Clearly, it is infeasible to construct the primary representation of a derived variable by
enumerating all the states in which it is true. Therefore, we create the primary represen-
tation in the form of its characteristic function using decision diagrams as the underlying
data structure. Algorithm 5 describes a fixed-point algorithm that builds the primary rep-
resentations of all variables d P D. We compute the primary representations of derived

6. If the navigation operators of the rover would have non-zero costs, such a modeling would require state-
dependent action costs, which we discuss in Section 6.

1373

Speck, Seipp & Torralba

Algorithm 5: Construction of primary representations (Speck et al., 2019).

Data: Axiom layers A1 ă ¨ ¨ ¨ ă Ak

Data: Derived variables D1 ă ¨ ¨ ¨ ă Dk partitioned into layers
Result: Symbolic primary representations χSd

, d P D
1 foreach D1 ă ¨ ¨ ¨ ă Dk do
2 foreach d P Di do
3 χSd

Ð
Ž

rPAăi
d

bodyprqrχSD{Ds

4 queueÐ Di

5 while queue is not empty do
6 dÐ queue.poppq
7 foreach headÐ body P Ai with d P body do
8 χShead

Ð χShead
_ bodyrχSD{Ds

9 if χShead
has changed then

10 queue.insertpheadq

11 return tχSd
| d P Du

variables layer by layer, which is possible because the primary representation χSd
of each

derived variable d P D depends only on previous layers.
In each iteration, Algorithm 5 begins by gathering information for derived variables

that relies solely on variables from lower levels. More precisely, we initialize the set of
states in which d P D is true by considering all axioms in Aăi

d , where Aăi
d stands for all

axiom rules that have d in their heads and whose bodies contain only variables that are
either primary variables or derived variables of lower levels, i.e., Aăi

d “ theadÐ body P A |
head “ d and @d1 P Vpbodyq X D : d1 P Dj for some j ă iu. For an axiom r, we compute
bodyprqrχSD{Ds, where the notation φrχSD{Ds stands for the result of simultaneously re-
placing each derived variable d P D with χSd

within the formula φ. The algorithm then
proceeds to apply axioms based on variables in the same layer until a fixed point is reached.
It is important to note that at no point a derived variable appears within χSd

. Algorithm 5
is sound and complete, i.e., it returns a characteristic function χSd

(in form of a DD) which
precisely characterizes the primary representation Sd for each d P D (Speck et al., 2019).

Example 7 (Speck et al., 2019). Consider a planning task with primary variables x, y
and derived variables a, b, c, together with the following axioms:

r11 : aÐ b

r12 : bÐ ␣x

r13 : bÐ y

r21 : cÐ p␣a^␣bq,

where A1 “ tr11, r12, r13u and A2 “ tr21u, i.e., D1 “ ta, bu and D2 “ tcu. We derive the
primary representations χSa , χSb

, and χSc using Algorithm 5. The first step is to consider
D1 and derived variable a (line 3). We observe that Aă1

a “ H, since the body of r11 contains
b, which is in the same layer. Consequently, the value of χSa is K. We then continue with b

1374

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

and find that Aă1
b consists of r12, r13, so χSb

“ ␣x_y. We then continue by initializing the
queue (line 4) with both a and b. After popping a from the queue, we encounter a situation
where there is no rule in the current layer that contains a in the body (line 7). As a result,
we move on to pop b. In this case, we have a single rule in the current layer with b in the
body, specifically the rule r11 “ aÐ b. We set χSa “ K_

χSb
, which is equivalent to ␣x_y

(line 8). We need to re-insert a into the queue. However, as with the previous iteration,
we can immediately remove it from the queue and exit the loop. This marks the end of the
iteration for D1, resulting in χSa “

χSb
“ ␣x_ y. In the subsequent iteration, we consider

c, and the set Aă2
c contains only one rule, namely r21 “ cÐ p␣a^␣bq. Consequently, we

derive

χSc “ p␣
χSa ^␣

χSb
q

“ p␣p␣x_ yq ^ ␣p␣x_ yqq

” x^␣y.

Note that due to the equivalence of χSa and χSb
, a DD library can potentially bypass

intermediate transformations, since both DDs represent the same object. The algorithm
stops now because there are no rules with c in the body. As a result, we arrive at the
primary representations: χSa “

χSb
“ ␣x_ y and χSc “ x^␣y.

The key idea of the symbolic translation encoding is to replace all occurrences of derived
variables in the planning task with their corresponding primary representation. In particu-
lar, derived variables in operator preconditions and the goal formula are replaced by their
corresponding primary representation, resulting in a new set of operators O1 and a new goal
formula G1, i.e., O1 “ txpreorχSD{Ds, eff oy | o P Ou and G1 “ GrχSD{Ds. More precisely,
if a DD for φ is constructed and a derived variable d P D occurs in φ, we replace d with
its primary representation in the form of another DD χSd

during the construction. This
uses the compact and efficient nature of DDs and results in a symbolic representation of the
transition relations and the goal formula based on the primary representations of derived
variables. With the symbolic compilation we obtain a planning task without axioms and
derived variables such that no reasoning about derived variables during the actual search
is required. Therefore, the symbolic compilation offers the possibility of forward, backward
and bidirectional search. Since Apsq |ù d iff s |ù Sd, it follows that this encoding is sound
and complete, i.e., a sequence of actions π of a planning task Π found using the symbolic
translation encoding is a plan iff π is a plan for Π (Speck et al., 2019).

Note that this symbolic translation encoding is different from compilations that convert
SAS`/PDDL with axioms to SAS`/PDDL without axioms (Gazen & Knoblock, 1997;
Thiébaux et al., 2005), since at no point it creates an explicit version of the compiled
task (a new SAS`/PDDL representation). While the primary representation, and thus the
symbolic translation, can lead to exponential size growth in the worst case, in practice the
concise representation of decision diagrams alleviates this problem.

5.3 Empirical Evaluation

We compare different planning algorithms, including symbolic search, on 15 different do-
mains with axioms collected from the literature (Koehler & Schuster, 2000; Hoffmann &

1375

Speck, Seipp & Torralba

A‹ EVMDD BDD

Domain h0 hmax hmax
full hmax

3val hPDB fw bw bd fw bw bd

Airport (50) 19 22 11 18 14 14 11 14 20 11 20

APPN (33) 11 11 9 10 8 11 10 11 22 18 22

Blocker (7) 7 7 5 6 7 6 6 6 6 6 6

Blocks (35) 18 18 11 17 28 20 18 29 21 21 30

Control-Systems (35) 16 14 3 7 15 7 2 7 7 7 7

Fridge (30) 0 0 0 0 0 0 0 0 1 0 1

Grid (5) 1 3 1 2 2 1 1 1 1 1 3

Horn-DL (75) 57 53 36 51 15 22 19 23 21 17 20

Miconic-IH15 (150) 60 60 45 55 52 125 145 145 150 150 150

Openstacks (85) 38 36 15 32 38 49 29 48 64 45 64

Optical-Telegraphs (48) 2 2 1 2 1 2 0 2 4 0 4

Philosophers (48) 5 5 3 5 4 5 3 6 12 4 12

Social-Planning (2) 2 2 1 2 2 2 2 2 2 2 2

Sokoban (30) 24 27 5 21 28 21 21 23 24 25 25

Trucks (30) 8 10 3 6 6 6 4 6 9 5 9

Total Coverage (663) 268 270 149 234 220 291 271 323 364 312 375

Norm. Coverage (15) 6.70 7.18 3.61 6.08 6.38 6.18 5.60 6.67 7.42 6.47 8.10

Table 2: Number of problems solved for each of the 15 domains with axioms and neither
conditional effects nor state-dependent action costs. The total coverage is the sum of all
solved instances, while the normalized coverage is the sum over the percentages of solved
instances per domain. The number of problems grounded within resource limits per domain
is shown in brackets.

Nebel, 2001; Edelkamp, 2003a; Hoffmann & Edelkamp, 2005; Ghosh, Dasgupta, & Ramesh,
2015; Ivankovic & Haslum, 2015; Borgwardt, Hoffmann, Kovtunova, Krötzsch, Nebel, &
Steinmetz, 2022). The benchmark set contains several (alternative) formulations of do-
mains with axioms from previous International Planning Competitions, ranging from ver-
ification problems such as Philosophers or Optical Telegraphs, via puzzle games such as
Sokoban, to practical applications such as Airport ground control. The benchmark set also
includes “non-IPC domains”, such as repairing a Fridge or planning with state constraints
formalized in Horn Description Logics (Horn-DL). Note that some domains do not con-
tain inherently defined axioms (e.g., Trucks), but complex preconditions with quantifiers
that are translated into axioms in a way that the considered planning systems can handle
(Helmert, 2009). Some domains in our benchmark set have a single layer with rather
simple axioms, while others, such as the Blocker domain by Ivankovic and Haslum (2015),
have complex recursive axiom structures with up to four layers. The explicit A‹ search
(Hart et al., 1968) is evaluated with the blind heuristic h0, the (näıve) max heuristic hmax,
the full ASP consistency checking max heuristic hmax

full , the 3-valued relaxed max heuristic
hmax
3val , and the canonical PDB axiom-aware heuristic hPDB (default and recommended pat-

1376

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

Airport APPN Blocker Blocks Control-Systems

Fridge Grid Horn-DL Miconic-IH15 Openstacks

Optical-Telegraphs Philosophers Social-Planning Sokoban Trucks

100

102

104

106

108uns.

Tasks (sorted by total BDD nodes)

T
o
ta
l
B
D
D

N
o
d
es

(a) Number of BDD nodes representing the goal
description.

100

102

104

106

108uns.

Tasks (sorted by total BDD nodes)

T
o
ta
l
B
D
D

N
o
d
es

(b) Summed number of BDD nodes for the
transition relations To, representing the indi-
vidual operators o P O of the planning tasks.

Figure 6: Sizes of the critical BDDs required to represent planning tasks with axioms
along the y-axis. Tasks within each domain are sorted in ascending order based on the total
number of BDD nodes and distributed along the x-axis.

tern selection: one PDB per primary variable), which are all admissible for planning with
axioms (Ivankovic & Haslum, 2015).

For symbolic search, the computation of the primary representation for each derived
variable is generally not a limiting factor. In most instances, the precomputation, as de-
scribed in Algorithm 5, only takes a few seconds. However, there are situations where the
computation of the underlying BDD is infeasible due to the large number of derived vari-
ables and axioms. For example in the Control-Systems domain, where instances have up to
602 757 derived variables and 2 411 000 axioms, this results in a comparatively low coverage
for symbolic search (Table 2).

After computing the primary representation of each derived variable, the next step is to
compute the BDDs representing the goal and/or transition relations. This requires combin-
ing the representation of all the derived variables mentioned in the goal and/or operator’s
preconditions. In the worst-case, the size of the resulting BDD grows exponentially in the
number of derived variables that are combined. So, even in cases where the representation
of each derived variable is not large, this may become a bottleneck. Figure 6 shows the
size of the BDDs representing the goal and operators of the task. Considering Figure 6a, it
becomes apparent that in some domains, such as Philosophers or Optical Telegraphs, the
substitution of derived variables in the goal formula becomes computationally challenging
or even infeasible for larger instances. This is related to some cases where it is known that
the BDDs representing the set of goal states are exponential in the size of the task regard-
less of the variable ordering (Edelkamp & Kissmann, 2008). For other domains, such as

1377

Speck, Seipp & Torralba

Horn-DL or Sokoban, incorporating the primary representations of the derived predicates in
the preconditions into the transition relations becomes infeasible as the task size increases
(Figure 6b).

Considering the coverage results shown in Table 2, BDD-based symbolic search comes
out on top in terms of overall coverage. However, we observe that explicit heuristic search
and symbolic search have complementary strengths and perform better in different do-
mains. In particular, the (näıve) hmax heuristic outperforms symbolic bidirectional search
with BDDs in six domains, while symbolic bidirectional search outperforms the (naive)
hmax heuristic in seven domains. Explicit blind search can sometimes perform better than
symbolic search, including BDD-based search, in domains with many derived variables and
axioms, such as Control-Systems, Blocker, and Horn-DL, where there are tasks with more
than 10 000 derived variables and computing the primary representations of the transition
relations is impractical. Then, there are some domains (Airport, Sokoban, and Trucks)
where despite symbolic search being superior to explicit search without heuristics, some
heuristics can get better performance. Interestingly, in these domains the transition rela-
tions are also large, so this is again an important factor to decide whether symbolic search
is to be preferred to A‹.

The empirical performance of symbolic search is particularly strong in domains where
the representation of the transition relations is small and does not scale exponentially with
increasing task size (Figure 6b). In such domains, symbolic search typically outperforms
all explicit-search variants. Interestingly, this also includes the two domains where the goal
representation is impractical (Optical-Telegraphs and Philosophers). Even though the size
of the goal representation negatively affects backward search configurations (as they start
their computation from the goal), forward search is less affected by the size of the goal
representation.

In the comparison of EVMDD and BDD based representations, we see that EVMDD-
based search is inferior to BDD-based search in the domains at hand, primarily because
its structural advantages over BDDs do not provide significant benefits when representing
predominantly propositional formulas with non-diverse action costs. In this benchmark set
domains have mostly unit costs, except Openstacks and Sokoban where costs are either 0
or 1. In Section 7 we also consider domains with axioms and richer state-dependent action
costs.

6. State-Dependent Action Costs

In classical planning, it is common to assume constant, context-independent action costs
(Fikes & Nilsson, 1971; Bäckström & Nebel, 1995). Similar to not having context-dependent
effects (cf. Section 4), this often results in increased effort for the modeler. When a plan-
ning problem inherently involves context-dependent action costs, or more precisely, state-
dependent action costs (sometimes called conditional costs), the modeler must distribute
these costs over multiple copies of the original action. In addition, the structure of the
original cost function is hidden, which, however, could provide useful information and more
compact representation possibilities for planning algorithms (Geißer, 2018). If we consider,
e.g., probabilistic planning in the form of factorized Markov decision processes (Puterman,
1994), state-dependent action costs/rewards have been the standard for a long time (Sanner,

1378

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

2010; Geißer, 2018; Geißer, Speck, & Keller, 2020) and are supported by many different ap-
proaches (Keller & Eyerich, 2012; Geißer & Speck, 2018; Cui & Khardon, 2018). Therefore,
recently there has been increased interest in classical planning with state-dependent action
costs (SDACs) (Keller & Geißer, 2015; Keller, Pommerening, Seipp, Geißer, & Mattmüller,
2016; Geißer, 2018; Corraya, Geißer, Speck, & Mattmüller, 2019; Mattmüller et al., 2018;
Ivankovic, Gordon, & Haslum, 2019; Haslum et al., 2018; Drexler, Seipp, & Speck, 2021).

Speck et al. (2021) showed that SDACs increase expressiveness of classical planning by
proving that they cannot be compiled away. Specifically, there is no compilation scheme that
preserves plan length linearly, when the cost function is in FP. Moreover, it is impossible
to preserve the plan length polynomially when the cost function is in FPSPACE, unless
the polynomial hierarchy collapses to the third level. Since many practically relevant cost
functions are in FP (all cost functions in this article fall in this class), it is often necessary
to support SDACs natively in algorithms. This avoids the polynomial blowup in terms of
domain description size and/or original plan length caused by compilation schemes.

In the following, we formally introduce planning with SDACs and show how it is possi-
ble to natively represent SDACs with decision diagrams to perform symbolic search (Speck
et al., 2018b, 2018a; Speck, 2022). Our empirical evaluation shows that the native sup-
port of SDACs within symbolic search can be beneficial compared to other explicit search
approaches that are partially based on compilations.

6.1 Formalism

A planning task with state-dependent action costs (SDACs) is defined as follows (Geißer
et al., 2015; Geißer, 2018; Speck, 2022).

Definition 11 (Planning Task with SDACs). A planning task with state-dependent
action costs Π “ xV,O,C, I,Gy is identical to a SAS` planning task (Definition 1), except
that it has a state-dependent action cost function C : O ˆ S Ñ N0, where the cost of
applying an operator o P O depends on the state s P S in which it is applied. A plan
π “ xo0, . . . , on´1y for an SDACs planning task that generates a sequence of states s0, . . . , sn
generalizes a constant-cost plan (Definition 2) by considering for the cost computation the
state in which each operator is applied, i.e., Cpπq “

řn´1
i“0 Cpoi, siq. With Co : S Ñ N0 we

refer to the local SDAC function for an operator o P O induced by C.

In general, a state-dependent cost function can have an arbitrary form and even be
uncomputable (Geißer, 2018; Speck, 2022). In practice, however, it is useful to restrict the
form and expressiveness of the cost function. Similar to previous works, we mainly consider
cost functions that can be evaluated in polynomial time and have a concise form.

Definition 12 (Operator Cost Function). We define a language L by the following
Backus normal form:

t ::“ c v t` t t´ t t ¨ t |t|,

1379

Speck, Seipp & Torralba

where c P Z, v P V. The semantics of L is defined for operators o P O and states s P S as
follows:

Cc
opsq “ c

Cv
opsq “ spvq

Ct˝t1

o psq “ Ct
opsq ˝ C

t1

o psq for ˝ P t`,´, ¨u

C|t|
o psq “ |C

t
opsq| “

"

Ct
opsq if Ct

opsq ě 0
´Ct

opsq otherwise

For a given term t P L, the interpretation Ct
o specifies the operator cost function of

operator o P O, where we restrict the allowed operator cost function to a positive range,
i.e., Ct

o : S Ñ N0. In the following, we often identify a cost function Ct
o with the term t

that defines it.

We emphasize that a SAS` planning task (Definition 1) is an important special case, in
which operators have constant costs, i.e., the costs are independent of the state in which the
operator is applied. Modeling operator costs as state-dependent allows for a more natural
and concise representation of planning problems, as the following example illustrates.

Example 8. Consider the navigate actions of the rover in Example 1. Now assume that
we want the navigate action to have a cost of 1, plus additional costs that depend on the
weight of the carried rock samples. Without SDACs (Definition 1), we need a distinct
navigate action connecting two cells for each possible carrying scenario: when the rover
carries no rock sample, one sample, the other sample, or both samples simultaneously.
With SDACs, we can model such actions in a natural and concise way by specifying the cost
function of the navigate action. Suppose we have two binary variables, carries-sample-5-1
and carries-sample-7-1 that have value 1 iff the rover carries the rock sample from location
p5, 1q or p7, 1q, respectively. Then the SDACs of the navigate action is 1`Jcarry-sample-5-1K¨
2` Jcarry-sample-7-1K ¨5,7 assuming that carrying the rock sample from p5, 1q costs 2, while
carrying the sample from p7, 1q costs 5 due to its heavier weight.

Unfortunately, SDACs is not an official PDDL feature. Previous research has tradi-
tionally used the grounded input format of the Fast Downward planner (Helmert, 2009)
with finite-domain variables to describe planning tasks with SDACs. We have extended our
planners to directly support SDACs specified as per Definition 12, but modeled directly in
PDDL to improve practical usability. The following example demonstrates how to model
SDACs in PDDL by considering the navigation costs of the rover in our running example.

Example 9. Figure 7a shows an excerpt of a PDDL domain describing Example 8. The
:cost section in the navigate action describes the state-dependent action costs. The ` is an
n-ary operator that describes the addition of n elements (similarly, there are ´ and ˚ for
subtraction and multiplication). In this example, we have two elements connected by the `
operator. The first, navigate-cost, describes the navigation cost of the rover in question. The
second element uses the Summation (sum-over) operation, which sums over all rock samples

7. For readability, we sometimes use Iverson brackets JxK, which are defined to take the value 1 if x is true,
and 0 otherwise.

1380

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

(a) Functions and navigate action with state-
dependent action cost modeled in a PDDL domain.

(b) Objects and initial state with numeric
constants in a PDDL problem.

Figure 7: Excerpts of a PDDL model describing the navigate action illustrated in Exam-
ples 8 and 9 with state-dependent action costs depending on whether a rover is carrying
rock samples and their weight.

?s and adds the cost of the different rock samples ?s if they are currently carried by the
rover ?r. Note that the syntax of the Sum (sum-over) and Product (product-over) operators
is similar to the standard PDDL quantifiers exists and forall. Finally, the specific values of
the navigation costs of the rovers and the specific weights of the rock samples are defined
as functions in the problem description (Figure 7b). Of course, it is also possible to use a
number directly in the domain description, e.g., if all rovers have the same navigation cost.

6.2 Symbolic Search

While we can represent reachability costs in tasks with SDACs using both BDDs and
EVMDDs, the latter representation is more natural, so we discuss it first. In contrast
to symbolic search with BDDs, where costs are represented by partitioning sets of states
into subsets with identical cost values (see Example 2), with EVMDDs we can represent a
set of reachable states together with reachability costs simultaneously. More precisely, we
assign sets of reachable states S Ď S the corresponding cost g P N0 and unreachable states
the cost 8. The same idea can be applied to transition relations To, which represent an
operator o P O. Here, the function χTo : S ˆ S Ñ N0 Y t8u maps all pairs of states xs, s1y

to Copsq if o is applicable in s and s1 “ sJoK, and all other state pairs are mapped to cost
8. The construction of the transition relation is analogous to that of a state-independent
cost operator (Definition 5). Example 10 illustrates the idea of encoding an operator with
SDACs as an EVMDD (and as BDDs). By encoding SDACs directly into the transition

1381

Speck, Seipp & Torralba

x

x1

y

y1 y1

0

1

0

0

8

1

8

0

0

1

0
0

5
1

00
8

1
8

0

0 1

(a) An EVMDD representing the transition
relation of operator o and the cost Copsq.

x

x1

y

y1

0 1

0
1

0 1

01

0
1

x

x1

y

y1

0 1

0
1

0 1

0 1

0
1

(b) Two BDDs representing the transition relation
of operator o, where the left BDD encodes the cost
of 1 and the right BDD encodes the cost of 6.

Figure 8: Visualization of different variants for a symbolic representation of an operator
o “ x␣x, xy with state-dependent action costs Copsq “ 5y ` 1.

relation this way, it is possible to readily perform a complete and optimal forward, backward
and bidirectional symbolic search with EVMDDs (Speck et al., 2018a).

In addition to the EVMDD-based symbolic search for SDACs planning tasks, multiple
BDDs can be used to support SDACs (Speck, 2022). The underlying idea is to first create
an ADD (instead of an EVMDD) that represents each operator as a transition relation
that includes costs, before partitioning the ADD into multiple BDDs. In other words, we
create multiple transition relations for each operator with SDACs, one for each possible cost
value, encoding as a precondition the corresponding condition for the cost. This approach
may result in multiple transition relations with different costs, but allows us to perform
the standard symbolic search with cost bucketing, using the full power of sophisticated
BDD operations and libraries. Disassembling the ADD into multiple BDDs is feasible in
polynomial time (Torralba, 2015). Thus, when the transition relation, along with the cost
function, can be compactly represented as an ADD, it can also be represented compactly
with multiple BDDs. The union of these BDDs accurately represents the transition relation
of an operator o, excluding the SDACs of the operator Co, and distinct cost values are asso-
ciated with the disassembled BDDs. Therefore, using these transition relations in standard
forward, backward, or bidirectional symbolic search ensures the optimality.

Example 10. Consider a set of two propositional variables V “ tx, yu and an operator
o “ x␣x, xy with SDACs Copsq “ 5y`1 for s P S. Figure 8 visualizes the transition relation of
o represented with different decision diagrams, where the precondition (predecessor states)
are encoded with unprimed variables and the effects (successor states) with primed variables.
Figure 8a represents the EVMDD representing the transition relation of o, while encoding
the cost Copsq for each state s P S at the same time. To represent operator o with BDDs,
multiple BDDs are necessary to decompose the cost function. Figure 8b illustrates the two

1382

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

BDDs representing the two possible cost values of Copsq, specifically 1 and 6. The left BDD
encodes the cost of 1 by adding ␣y to the precondition. Note that this change incurs that
␣y also holds in all successor states, i.e., ␣y1, since variable y does not occur in the effect
(closed world assumption). Similarly, the right BDD encodes y as a precondition to obtain
a cost of 6.

The performance of symbolic search algorithms is greatly influenced by the choice of
decision diagram and their ability to represent the relevant functions (goal, transition rela-
tions, and sets of states reached during the search) compactly.

One of the main advantages of using EVBDDs/EVMDDs over ADDs and BDDs is that
they can represent certain additive functions exponentially more compactly. To illustrate
this, consider Example 8 as one increases the rock samples the rover can carry. With one rock
sample (of weight 5), this is exactly the same as in Figure 8. And increasing the number of
rock samples increases the size of the EVMDD linearly, adding three nodes per rock sample
and encoding the weight of the rock sample locally (in the same way as Figure 8a between
nodes y and y1). Thus, for cost functions that are simply linear combinations, EVMDDs
can always represent them efficiently. However, the ADD/BDD representation may require
exponential size in the number of rock samples to represent such a function, depending on
the weights of the rock samples. The reason is that we need to construct a different BDD
(or a different terminal node in the ADD) for each possible summed weights. And, in the
worst-case, there are 2n possible sums for n rock samples, e.g., if the weight of sample i is
2i.

Using BDDs instead of the structurally more expressive decision diagrams has the ad-
vantage that BDDs offer more advanced and sophisticated optimizations. For example,
complement edges can be used to store BDDs more compactly (Brace et al., 1990), and
there are more efficient operations available for manipulating BDDs (Burch et al., 1994).

In general, however, representing the cost function as a decision diagram can lead to
exponential size in the worst case, regardless of the type of decision diagram used. An
example is a cost function that depends on whether vertically or horizontally adjacent cells
of a grid have been visited, which imposes an exponentially large decision diagram in the
size of the grid, regardless of the variable order (Edelkamp & Kissmann, 2011).

6.3 Empirical Evaluation

We compare different planning algorithms (Table 3) on 7 different domains with SDACs
collected from the literature (Geißer, 2018; Corraya et al., 2019; Speck et al., 2021; Speck,
2022). The domains are mostly modified versions of well-known domains from previous In-
ternational Planning Competitions, extended with state-dependent action costs. We com-
pare explicit A‹ search (Hart et al., 1968) with various translation-based heuristics (Geißer,
2018) and forward, backward and bidirectional symbolic search using EVMDDs (Speck
et al., 2018a) or BDDs (Speck, 2022). In explicit A‹ search, the cost function is represented
as an EVMDD, which is used to evaluate the actual costs (g-values) (Geißer, 2018). We
consider the blind heuristic (h0) and two versions of the hmax heuristic (Bonet & Geffner,
1999): hmax

c uses the combinatorial translation (Geißer, 2018) and hmax
dd uses the EVMDD

translation (Geißer et al., 2015) to compute the heuristic values. The hmax
dd heuristic uses

EVMDDs to represent the cost function, which is then compiled into the (relaxed) plan-

1383

Speck, Seipp & Torralba

A‹ EVMDD BDD

Domain h0 hmax
c hmax

dd fw bw bd fw bw bd

Blocks-SDACs (35) 21 9 18 15 9 15 18 18 27

Gripper-Colored (30) 8 4 8 12 8 12 20 13 20

Gripper-Valued (30) 9 4 10 8 5 19 7 5 7

Openstacks-SDACs (110) 13 13 13 43 32 41 59 51 57

Pegsol-SDACs (36) 35 0 35 33 8 33 35 13 35

Transporter (30) 24 19 24 24 23 29 24 23 29

Traveling-Salesman (26) 22 12 20 15 10 15 18 10 18

Total Coverage (297) 132 61 128 150 95 164 181 133 193

Norm. Coverage (7) 3.91 1.73 3.77 3.79 2.36 4.30 4.41 3.08 4.82

Table 3: Number of problems solved within each of the 7 domains with state-dependent
action costs and neither conditional effects nor axioms. The total coverage is the sum of
all solved instances, while the normalized coverage is the aggregated percentage of solved
instances per domain. The number of problems grounded within resource limits per domain
is indicated in brackets.

ning graph for heuristic computation. Thus, hmax
dd incorporates symbolic data structures for

heuristic purposes only, without any elements of symbolic search. Consequently, A‹ with
hmax
dd is a purely explicit heuristic search, using EVMDDs for heuristic computation only.

Table 3 shows the number of problems solved per domain using different search ap-
proaches. Overall, we see that native support for SDACs within symbolic search compares
favorably with explicit search approaches. Comparing symbolic search with BDDs and
EVMDDs, there are per-domain differences in coverage, with BDD-based symbolic search
performing better in most individual domains and overall. Figure 9 shows that, in most of
these domains both BDDs and EVMDDs are able to represent the cost function efficiently,
the only exception being Openstacks-SDAC. It is important to note that the number of
EVMDD nodes and BDD nodes are not directly comparable, as each EVMDD node requires
more memory (having k instead of 2 children and information in the edges). So, in cases
where both curves only differ on a constant factor (as happens in most domains here), which
of the two data structures is more compact in terms of memory depends on implementation
details and the exact library used.

The cost functions C of the domains Blocks-SDACs, Gripper-Colored, Openstacks-
SDACs, and Pegsol-SDACs are simple sums over objects for which certain properties hold
in a state, yielding costs bounded by the number of objects. For Transporter and Traveling-
Salesman, the costs correspond to distances traveled on a map. Overall, these cost functions
induce the same cost for many states. Thus, |rangepCq| is often small, and the domains have
a low diversity of action costs. This is one explanation why EVMDDs cannot offer advan-
tages over BDDs (Table 3).

1384

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

Blocks-SDACs Gripper-Colored Gripper-Valued Openstacks-SDACs
Pegsol-SDACs Transporter Traveling-Salesman

100

102

104

106

108uns.

Tasks (sorted by total DD nodes)

T
o
ta
l
B
D
D

N
o
d
es

(a) The summed BDD nodes of the transition
relations To, representing the individual oper-
ators o P O within the planning tasks.

100

102

104

106

108uns.

Tasks (sorted by total DD nodes)

T
ot
a
l
E
V
M
D
D

N
o
d
es

(b) The summed EVMDD nodes of the tran-
sition relations To, representing the individual
operators o P O within the planning tasks.

Figure 9: Cumulative sizes of EVMDDs and BDDs representing the individual operators
of planning tasks with state-dependent action costs along the y-axis. Tasks within
each domain are sorted in ascending order based on the total number of BDD nodes and
distributed along the x-axis.

However, the structural advantages of EVMDDs become apparent in the Gripper-Valued
domain, a variant of the Gripper-Colored domain (McDermott, 2000; Geißer, 2018). This
domain is similar to our running example. In Gripper-Colored, there are colored balls and
rooms, and the goal is to use a gripper to move the balls from one room to another. The pick
up and drop ball actions incur zero cost, whereas the move action induces a cost equivalent
to the number of balls in a room that does not match the color of the ball. Instances scale the
number of balls, but the number of rooms and colors remains constant so all instances have
exactly two colors. In Gripper-Valued, each ball has an additional importance value, and
the cost of the move action is the sum of these misplaced ball values. Specifically, each ball
is assigned a cost represented by different powers of two, resulting in diverse action costs. As
explained in Section 6.2, BDDs cannot represent this cost function compactly, but EVMDDs
have a linear representation. In fact, Figure 9 shows how the EVMDDs representing the
transition relation have exactly the same size in Gripper-Colored and Gripper-Valued (as
they are independent of the “weight” assigned to each ball), but the BDD representation is
heavily affected, scaling linearly for Gripper-Colored and exponentially for Gripper-Valued.
Interestingly, having diverse action costs (Gripper-Colored vs. Gripper-Valued), makes the
domain easier to solve for the explicit search approaches and the EVMDD-based search, as
the costs give some guidance, which is a known phenomenon (Fan, Müller, & Holte, 2017).

Regarding the explicit approaches, we see that in many domains hmax
c fails to perform a

combinatorial translation, which often requires exponentially many operators. As a result,
hmax
c solves the least number of tasks. Explicit A‹ search with the h0 and hmax

dd heuristics

1385

Speck, Seipp & Torralba

performs much better. These configurations use EVMDDs to concisely represent the cost
functions and as a basis for the heuristic computation, which pays off for the tasks at hand.
It turns out that the heuristic estimates of hmax

dd can sometimes help the search, but the
performance of hmax

dd is still often nowhere close to symbolic blind search.

7. Classical Planning With Multiple Expressive Extensions

The previous sections demonstrated how to model planning problems more naturally and
compactly by using the three model extensions under consideration: conditional effects,
axioms and state-dependent action costs. In this section, we tackle the challenge of combin-
ing these extensions. While each extension captures different aspects of classical planning,
there is actually a close connection between them. As a result, they often appear together
in practice. However, to our knowledge this article is the first to consider and formalize all
three extensions jointly, rather than just a subset of them.

Planning with conditional effects and axioms has been formalized by Helmert (2009).
This includes a procedure capable of translating the full PDDL 2.2 Level 1 fragment (Fox &
Long, 2003) along with all ADL features such as quantified and conditional effects, negation,
disjunction, and quantification in conditions (Pednault, 1989) into a grounded finite-domain
representation (FDR). This translation and grounding process is an integral part of Fast
Downward (Helmert, 2006), on which our symbolic search planners are based. Later, Speck
et al. (2019) introduced an approach for planning with axioms via symbolic search. They
directly addressed planning tasks with conditional effects, supporting the aforementioned
fragment of PDDL.

Furthermore, Mattmüller et al. (2018) demonstrated the frequent co-occurrence of con-
ditional effects with conditional costs, namely state-dependent action costs. They conducted
a mostly theoretical analysis of methods to jointly represent and handle these. In related
work, Speck et al. (2018a) introduced EVMDD-based planning specifically tailored to tasks
with state-dependent action costs. This approach directly accounts for conditional effects,
as described in Section 4. When a planning task requires the natural and concise modeling
of multiple extensions, similar considerations apply as for single extensions. Compiling them
away may not be feasible without suffering a super-linear or super-polynomial increase in
model size or plan length. However, whether certain extensions can be compiled away in
the presence of others remains an open research question, which we will discuss in Section 8.

While previous work has shown that symbolic search can support two of the extensions
simultaneously, the question is whether it can support all three model extensions at the same
time. The short answer is yes, which is remarkable because support for only one of these
features is quite rare in practice, and support for more than one feature is almost nonexistent
in the literature on cost-optimal planning. Again, the reason why very few planners support
even a single extension is that almost all optimal planners are based on heuristic search,
and it is very difficult to design admissible, informative, and quick-to-evaluate heuristics
that take into account any of the three model extensions.

In the following, we formally introduce planning tasks with conditional effects, axioms
and state-dependent action costs, and show how to solve planning tasks described in this
formalism using symbolic search. Our empirical evaluation shows that symbolic search

1386

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

can be advantageous compared to the only other cost-optimal approach supporting such
planning tasks, namely explicit blind search.

7.1 Formalism

By extending the SAS` formalism (Definition 1) with conditional effects and axioms, we
arrive at planning tasks in finite-domain representation (FDR) (Helmert, 2009). We now
extend the FDR formalism to also consider state-dependent action costs.

Definition 13 (Planning Task with Conditional Effects, Axioms, and SDACs). A
planning task with conditional effects, axioms, and state-dependent action costs is a tuple
Π “ xV,O,C,D,A, I,Gy. The components are identical to those defined by a SAS` planning
task (Definition 1), with the three extensions discussed above (Definitions 8, 9 and 11). As
for planning tasks with axioms, partial variable assignments are defined over primary and
secondary variables. Consequently, preconditions, effect conditions, and goal conditions are
defined over VYD and the state-dependent action cost function is defined as C : OˆSE Ñ N0.

The combination of all three model extensions into a single formalism is a natural gen-
eralization that allows the modeling of several aspects simultaneously in a concise manner.
An example of this is illustrated by the three scenarios outlined in Examples 4, 6 and 8,
which one can consider all at the same time (see Example 11) using the formalism from
Definition 13. Beyond that, the FDR formalism, along with our extension incorporating
state-dependent action costs, also permits to include derived predicates in both the effect
conditions and the operator cost functions, enabling the modeling of complex effect and cost
conditions. More precisely, conditions cond , such as preconditions, effect conditions, or goal
conditions, hold in a state s if and only if the extended state is a model for cond , denoted by
cond Ď Apsq. Additionally, for the state-dependent action cost function C : O ˆ SE Ñ N0,
the cost of applying an operator o P O depends on the extended state Apsq P SE , which
includes the evaluated derived variables. Thus, cost functions may depend on arbitrarily
complex conditions, as derived variables and axioms allow to encode any Boolean formula.
Example 11 illustrates such an interaction of derived variables with conditional effects and
state-dependent action costs.

Example 11. Consider the cost of the navigate actions in our running example (Exam-
ple 1). Previously, we assumed that their cost depends on whether the rover is carrying
rock samples and on their corresponding weights (Example 8). Now, let us assume that the
cost depends only on whether any rock sample is carried. More precisely, if no rock sample
is carried, the cost of the navigate action is 1, and otherwise it is 2 due to the need to drive
more cautiously and slowly. Such a fact, whether at least one sample is carried, has a dis-
junctive nature and is typically represented by a derived predicate carry-any-sample and two
axioms: carry-any-sample Ð carry-sample-5-1 and carry-any-sample Ð carry-sample-7-1.
Now the desired cost function can be specified as 1 ` Jcarry-any-sampleK. Similarly, the
derived predicate carry-any-sample can be part of an effect condition to indicate whether a
rock sample is currently being carried by the rover.

Example 11 illustrates a relatively simple interaction between derived variables, effect
conditions, and context-specific costs. However, the importance of complex effect conditions

1387

Speck, Seipp & Torralba

represented by derived predicates is well-known and is captured by the FDR planning
formalism by allowing derived predicates in effect conditions (Helmert, 2009).

In the power supply restoration (PSR) domain (Thiébaux & Cordier, 2001), derived
predicates encode whether certain devices are affected by faults, where the causes are mod-
eled by axioms. These derived predicates are used to conditionally trigger specific effects
of actions. Similarly, for state-dependent action costs, complex conditions leading to the
occurrence of costs can be modeled naturally and concisely using derived predicates and
axioms (Speck, 2022).

7.2 Symbolic Search

In the sections above, we showed how symbolic search can support conditional effects,
derived variables with axioms, or state-dependent action costs. The underlying idea is to
encode the logic of these sophisticated model extensions directly in the transition relation
and/or goal condition. Interestingly, supporting all of these features simultaneously is fairly
straightforward, given the ideas and concepts already introduced.

First, as outlined in Section 5, we precompute the primary representation χSd
in the

form of a decision diagram for each derived variable d P D. Second, as described in Section 4,
we create a transition relation To for each operator o P O, possibly containing conditional
effects. However, whenever a derived variable d occurs in a precondition preo or an effect
condition cond of an operator o P O, we replace it with the corresponding primary repre-
sentation χSd

. Third, as described in Section 6, we create a decision diagram representing
the cost function Co of each operator o P O and add it to the operator’s transition relation
To. Again, we replace all occurrences of each derived variable d with the corresponding
primary representation χSd

. Finally, we represent the initial state χI and the goal states
χG as decision diagrams. For χG , we replace all derived variables with their primary repre-
sentation, χGrχSD {Ds, as described in Section 5. This gives us a symbolic representation of
the planning task with conditional effects, axioms, and state-dependent action costs, and
we can readily apply symbolic search.

For the individual planning extensions, we already know that the described procedure
results in a symbolic representation of the planning task, which, when performing a symbolic
blind search, is a sound, complete, and optimal search algorithm (Torralba et al., 2017;
Speck et al., 2018a, 2019). This also applies to the combination of derived variables and
conditional effects (Speck et al., 2019). Considering state-dependent action costs by adding
them to the transition relation does not affect these properties. Since Apsq |ù d if and only
if s |ù Sd (Speck et al., 2019), it follows that for any reachable state s P S, the original
cost of an operator o P O for the extended state Apsq P SE maps to the same cost value
as when we replace the derived variables with their primary representation in the operator
cost function Co and consider s directly, i.e., CopApsqq “ CorχSD{Dspsq. As a result, we
obtain transition relations To, which represent an operator o P O, so that the function
χTo : S ˆ S Ñ N0 Y t8u maps all pairs of states xs, s1y to Copsq if o is applicable in s and
sJoK “ s1, and all other state pairs are mapped to cost 8. Consequently, applying symbolic
(blind) search to planning tasks with conditional effects, axioms, and state-dependent action
costs is a sound, complete, and optimal approach.

1388

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

x

x1 x1

y y

y1

0 1

0 1

0 1
01

0

1

0 1

0
1

(a) A BDD representing the
transition relation of o.

x

y

3 1

10

1
0

(b) An ADD representing
the cost function of o.

x

x1 x1

y y

y1 y1

3 8 1

0 1

0 1
0 1

0
1

0

1

0

1

0

1

(c) An ADD representing the com-
bined transition relation and cost
function of o.

Figure 10: Visualization of decision diagrams showing the transition relation To and the
cost function Copsq “ J␣aK ¨ 2 ` 1 for an operator o “ xH, tpa ▷ xq, pH ▷ ␣yquy with no
precondition, one unconditional and one conditional effect using the primary representation
of the derived variable a, which in this example is x_ y.

The following example illustrates the combination of an operator with conditional effects
and a cost function defined over derived variables.

Example 12. Consider a set of two propositional primary variables V “ tx, yu, a set of
a single propositional secondary variable D “ tau, two axioms a Ð x and a Ð y, and an
operator o “ xH, tpa▷ xq, pH▷␣yquy with a cost function Copsq “ J␣aK ¨ 2` 1 for s P SE .
We observe that the primary representation of a is x_ y, i.e., χSa “ x_ y. The transition
relation with derived variables is To “ pa ^ x1q _ p␣a ^ px ðñ x1qq ^ ␣y1. Since we
directly replace all occurrences of the secondary variable a with χSa during construction,
we get To “ ppx _ yq ^ x1q _ p␣px _ yq ^ px ðñ x1qq ^ ␣y1. This simplifies8 to To “

px ^ x1 ^ ␣y1q _ p␣x ^ ppx1 ^ y ^ ␣y1q _ p␣x1 ^ ␣y ^ ␣y1qq. It implies that the operator
o is always applicable, and we observe that after application y is always false (␣y1) as an
unconditional effect. In the case where x is true, then χSa “ x_y, and thus the conditional
effect is triggered, leaving x1 true. However, if x is not true, we distinguish whether y is
true. If true, then again χSa “ x _ y is true, and x1 becomes true after the application; if
false, then ␣x1 holds. The resulting BDD representing To is visualized in Figure 10a. In
the cost function Copsq “ J␣aK ¨ 2 ` 1, we replace the occurrence of a with χSa , yielding
J␣px_ yqK ¨ 2` 1 “ J␣x^␣yK ¨ 2` 1, which is shown as an ADD in Figure 10b. Finally, we
can combine To and Co into a single ADD representing state pairs and the costs associated
with those transitions, as shown in Figure 10c. Here, transitions between two states that are
not described by the operator o are mapped to a cost of infinity. As detailed in Section 6,

8. We explicitly simplify the formula for illustration purposes, but this happens automatically when encod-
ing the formula as a BDD or EVMDD.

1389

Speck, Seipp & Torralba

Extensions A‹ EVMDD BDD

Domain CE Axioms SDACs h0 fw bw bd fw bw bd

Assembly (30) Ë Ë 0 4 4 5 10 9 10

Asterix (30) Ë Ë 11 30 29 30 30 29 30

Blocks-SDACs (35) Ë Ë 19 18 15 18 18 15 19

GED (14) Ë Ë 14 10 6 10 14 10 13

Horn-DL (196) Ë Ë 175 143 117 139 143 132 143

Miconic-Full (150) Ë Ë 78 91 68 90 113 88 111

Multiagent-Beliefs (7) Ë Ë 7 4 1 4 3 1 3

Openstacks-SDACs (55) Ë Ë 13 35 27 34 43 38 42

PSR (86) Ë Ë 39 59 58 60 60 60 61

PSR-SDACs (86) Ë Ë Ë 47 55 41 58 52 43 53

Snowman (123) Ë Ë 87 78 17 55 98 21 91

Total Coverage (812) 490 527 383 503 584 446 576

Norm. Coverage (11) 6.27 6.86 4.93 6.71 7.63 5.87 7.53

Table 4: Number of problems solved within each of the 11 domains with combinations
of conditional effects, axioms, and state-dependent action costs, where at least
two of the model extensions are present in each domain. For each domain, we indicate
the extensions present: conditional effects (CE), axioms with derived predicates (Axioms),
and state-dependent action costs (SDACs). The total coverage is the sum of all solved
instances, while the normalized coverage is the summed percentage of solved instances per
domain. The number of problems grounded within resource limits per domain is indicated
in brackets.

this ADD can then be decomposed into two BDDs representing all valid (non-infinite cost)
transitions between state pairs: one BDD for the transitions with cost 1 and another for
those with cost 3.

7.3 Empirical Evaluation

We collected eleven planning domains from the literature, each having at least two of the
three modeling features considered: conditional effects, axioms with derived predicates, and
state-dependent action costs. These domains are listed with their extensions in Table 4.
Most of these domains are either original or modified versions of those featured in previous
International Planning Competitions. In some cases, they originate from real-world applica-
tions, such as elevator control (Koehler & Schuster, 2000), genome editing distance (GED)
computation (Haslum, 2011), or power supply restoration (PSR) (Thiébaux & Cordier,
2001). In addition, certain domains stem from work on multiagent beliefs (Multiagent-
Beliefs) (Kominis & Geffner, 2015), state constraints (Horn-DL) (Borgwardt et al., 2022),

1390

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

Assembly Asterix Blocks-SDACs GED
Horn-DL Miconic-Full Multiagent-Beliefs Openstacks-SDACs
PSR PSR-SDACs Snowman

100

102

104

106

108

uns.

Tasks (sorted by total DD nodes)

T
ot
a
l
B
D
D

N
o
d
es

(a) The summed BDD nodes of the goal and
transition relations To, representing the indi-
vidual operators o P O within the planning tasks.

100

102

104

106

108

uns.

Tasks (sorted by total DD nodes)

T
o
ta
l
E
V
M
D
D

N
o
d
es

(b) The summed EVMDD nodes of the goal
and transition relations To, representing the
individual operators o P O within the planning
tasks.

Figure 11: Cumulative sizes of EVMDDs and BDDs representing the goal and the individ-
ual operators of planning tasks with combinations of conditional effects, axioms, and
state-dependent action costs along the y-axis. Tasks within each domain are sorted in
ascending order based on the total number of BDD nodes and distributed along the x-axis.

state-dependent action costs (Asterix) (Speck et al., 2018a), or modeling puzzle games
(Snowman) (Bofill, Borralleras, Espasa, Mart́ın, Patow, & Villaret, 2023).

The existing methods for finding optimal plans while supporting multiple of the consid-
ered modeling features are limited. They include explicit A‹ search with the blind heuristic
h0 (Geißer, 2018) and our proposed symbolic search methods using EVMDDs and BDDs
(Torralba et al., 2017; Speck et al., 2018a, 2019). We compare these methods with each
other.

In terms of overall coverage (Table 4), forward search with BDDs performs best. Inter-
estingly, similar to previous empirical evaluations, bidirectional search is overall inferior to
forward search. This suggests potential future work in balancing and deciding the search
directions for symbolic search. Symbolic search with EVMDDs also performs well overall
and even outperforms BDD approaches in the PSR-SDACs domain. A possible explana-
tion for this is the more compact representation of complex cost functions with EVMDDs
compared to BDDs, especially noticeable for larger tasks as shown in Figure 11.

A‹ search with the blind heuristic performs worse overall than forward and bidirectional
symbolic search. However, in certain domains it is advantageous, especially when dealing
with large planning problems that are not overly combinatorially challenging. This phe-

1391

Speck, Seipp & Torralba

nomenon is evident in the Multiagent-Beliefs domain (Kominis & Geffner, 2015), where the
grounded and simplified task involves hundreds of variables but only a handful of opera-
tors. For this kind of planning problems, it is not feasible for symbolic search approaches
to create the necessary data structures to represent the planning task (Figure 11).

Despite the complementary strengths of explicit and symbolic search, we can see that on
this benchmark set with multiple model features present, the symbolic search approach with
the highest total coverage (forward + BDDs) solves more tasks than blind A‹ search in 7
out of 11 domains. In contrast, blind A‹ search solves more tasks than the forward+BDDs
symbolic search in three domains, with a particularly large margin evident only in the Horn-
DL and Multiagent-Beliefs domains. In these domains, representing goal and/or transition
relations with DDs poses severe challenges as the task size increases (Figure 11).

8. Discussion and Future Work

We discussed the close connection between three extensions—conditional effects, axioms,
and state-dependent action costs—for modeling planning problems concisely. Decision dia-
grams provide a method for representing propositional formulas and numerical functions in
a compact manner, and are well suited for supporting these model extensions. The efficiency
of symbolic search, however, is mainly determined by the time it takes to manipulate these
decision diagrams, which in turn depends on their size. Therefore, it is important to mini-
mize the size of these diagrams, and developing new methods for this goal is an important
area of future work. Addressing this goal becomes particularly important when dealing with
larger planning tasks, as highlighted in our empirical evaluations, where symbolic search
faces significant challenges in certain domains.

We explored various types of decision diagrams, focusing primarily on EVMDDs and
BDDs, in the context of symbolic search for classical planning. These diagrams offer a
trade-off between conciseness of representation and efficiency of operation. A more detailed
comparison, both in theory and in practice, could provide valuable insights into when to use
which type of decision diagram. In addition, exploring other types of decision diagrams,
such as (Affine) Algebraic Decision Diagrams (Bahar et al., 1997; Sanner & McAllester,
2005), Functional Decision Diagrams (Kebschull, Schubert, & Rosenstiel, 1992) or Kro-
necker Functional Decision Diagrams (Drechsler & Becker, 1998b), may further improve
the conciseness and efficiency of the representation.

In the empirical evaluations, we saw that representing the necessary components of a
planning task with decision diagrams, i.e., initial state, transition relations, and goal, can
be a serious challenge in certain domains. One way to address this issue is to consider
the representation of these components in a partitioned way. While it is common practice
to have a disjunctive partitioning of the transition relations (Torralba et al., 2017), as we
considered in this article and in our experiments, one could also consider a conjunctive
partitioning (Burch, Clarke, & Long, 1991) for the goal representation or the transition
relations. This approach could help overcome representation challenges, especially in the
presence of a complex state-dependent action cost function or many derived variables and
conditional effects. In particular, it will be interesting to see whether this can alleviate
the representation bottlenecks of symbolic planners (Torralba, 2023; Speck, 2023; Franco,
Edelkamp, & Moraru, 2023) for large planning tasks from the recent International Planning

1392

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

Competition in 2023 (Taitler, Alford, Espasa, Behnke, Fǐser, Gimelfarb, Pommerening,
Sanner, Scala, Schreiber, Segovia-Aguas, & Seipp, 2024).

Throughout this article, we have assumed a fixed, static variable order. Since the
efficiency of symbolic search is strongly influenced by the chosen variable order, and the
size of decision diagrams is strongly dependent on this order, the search for good variable
orders is crucial. While it has been established that computing an optimal order for decision
diagrams is co-NP-complete (Bryant, 1986), the practical challenge of finding good orders
remains an open question (Kissmann & Hoffmann, 2013, 2014). In addition, dynamic
reordering techniques (Rudell, 1993), well studied in areas such as model checking (Yang,
Bryant, O’Hallaron, Biere, Coudert, Janssen, Ranjan, & Somenzi, 1998) and logic synthesis
(Scholl, Möller, Molitor, & Drechsler, 1999), have been little studied in planning (Kissmann
& Hoffmann, 2014; Kissmann et al., 2014).

While the availability of accurate and efficient heuristics for the considered model ex-
tensions is limited, we have observed their potential to provide valuable guidance in certain
domains. In particular, for conditional effects, these heuristics are generally competitive.
Therefore, the efficient integration of heuristics into symbolic search remains an open re-
search task. However, it is worth noting that achieving such an integration is not easy,
as even a perfect heuristic can be detrimental to search performance (Speck et al., 2020).
A promising family of heuristics are symbolic abstractions, which use symbolic backward
search to explore an abstract state space (Edelkamp, 2002; Kissmann & Edelkamp, 2011;
Torralba, Linares López, & Borrajo, 2018). The techniques presented in this paper could
be the basis to obtain abstraction heuristics that can deal with all the model extensions we
considered. Notably, Fǐser, Torralba, and Hoffmann (2022a) introduced operator potentials
based on potential heuristics (Pommerening, Helmert, Röger, & Seipp, 2015), and ap-
plied them to symbolic bidirectional heuristic search (Fǐser, Torralba, & Hoffmann, 2022b).
These potential functions provide a concise representation in symbolic forward search that
efficiently prunes states based on their heuristic values. However, applying this idea in
our setting would require computing potential heuristics for tasks with conditional effects,
derived variables, and state-dependent action cost. Therefore, further research is needed to
improve our understanding of search behavior in symbolic heuristic search, and whether is is
possible to derive heuristics that provide size guarantees for the decision diagrams involved.

Furthermore, considering the relationship between the considered model extensions in
terms of complexity and compatibility will be of interest in future investigations. It might be
the case that one extension can be compiled away (with small overhead) in the presence of
another extension. For example, it might be possible to simulate the evaluation of the values
of the derived variables using the cost function, potentially eliminating the need to include
the derived variables in the cost function. Or it may be possible to simplify a complex
cost function by introducing new derived variables, thereby transferring the complexity
to the evaluation of those derived variables. Similar considerations apply to conditional
effects. While it is well known that conditional effects cannot be easily eliminated by
concise compilations (Nebel, 2000), one can simplify the effect conditions by introducing
derived predicates that encapsulate these conditions. This approach would most likely lead
to more concise compiled models.

Finally, several of the considered model extensions are not yet covered by more expressive
planning formalisms, such as fully observable nondeterministic planning (Cimatti, Pistore,

1393

Speck, Seipp & Torralba

Roveri, & Traverso, 2003), partially observable nondeterministic planning (Bertoli, Cimatti,
Roveri, & Traverso, 2006; Speck, Ortlieb, & Mattmüller, 2015), or hierarchical task network
planning (Erol, Hendler, & Nau, 1996; Geier & Bercher, 2011). An analysis of how and to
what extent the three extensions can enhance these planning formalisms is an important
future line of research, and whether the proposed ideas can also be used for symbolic search
in these settings (Kissmann & Edelkamp, 2009; Behnke & Speck, 2021; Bertoli et al., 2006).

9. Conclusions

We conducted both theoretical and empirical investigations of cost-optimal planning with
three widely used model extensions: conditional effects, derived variables with axioms, and
state-dependent action costs. Each of these extends different facets of classical planning
while preserving the essence of the formalism. Computational complexity and compilability
results from the literature underscore the need for native support for these extensions to
model and solve many real-world planning problems.

This article has provided a thorough overview of symbolic search applied to classical
planning with these expressive extensions. By theoretically describing and empirically ana-
lyzing the integration of symbolic search, we presented a unified framework involving Binary
Decision Diagrams or Edge-Valued Multi-Valued Decision Diagrams. In addition, we intro-
duced practical tools in the form of optimal, sound, and complete symbolic search planning
algorithms and planners that provide support for planning problems involving conditional
effects, derived predicates with axioms, and state-dependent action costs simultaneously.
Our empirical evaluations demonstrated the complementary strengths and overall strong
performance of the presented symbolic search approaches compared to other state-of-the-
art methods on planning problems modeled with the considered extensions.

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation and by TAILOR,
a project funded by the EU Horizon 2020 research and innovation programme under grant
agreement no. 952215. The computations were enabled by resources provided by the Na-
tional Academic Infrastructure for Supercomputing in Sweden (NAISS) partially funded by
the Swedish Research Council through grant agreement no. 2022-06725. David Speck was
funded by the Swiss National Science Foundation (SNSF) as part of the project “Unifying
the Theory and Algorithms of Factored State-Space Search” (UTA).

References

Apt, K. R., Blair, H. A., & Walker, A. (1988). Towards a theory of declarative knowledge.
In Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan
Kaufmann.

Babar, J., & Miner, A. (2010). MEDDLY: Multi-terminal and Edge-Valued Decision Dia-
gram Library. In Proceedings of the Seventh International Conference on the Quanti-

1394

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

tative Evaluation of Systems (QEST 2010), pp. 195–196. IEEE Computer Society.

Bäckström, C., & Nebel, B. (1995). Complexity results for SAS` planning. Computational
Intelligence, 11 (4), 625–655.

Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A., & Somenzi,
F. (1997). Algebraic decision diagrams and their applications. Formal Methods in
System Design, 10 (2–3), 171–206.

Behnke, G., & Speck, D. (2021). Symbolic search for optimal total-order HTN planning. In
Leyton-Brown, K., & Mausam (Eds.), Proceedings of the Thirty-Fifth AAAI Confer-
ence on Artificial Intelligence (AAAI 2021), pp. 11744–11754. AAAI Press.

Bertoli, P., Cimatti, A., Roveri, M., & Traverso, P. (2006). Strong planning under partial
observability. Artificial Intelligence, 170, 337–384.

Bofill, M., Borralleras, C., Espasa, J., Mart́ın, G., Patow, G., & Villaret, M. (2023). A good
snowman is hard to plan. arXiv:2310.01471 [cs.AI].

Bonet, B., & Geffner, H. (1999). Planning as heuristic search: New results. In Biundo,
S., & Fox, M. (Eds.), Recent Advances in AI Planning. 5th European Conference on
Planning (ECP 1999), Vol. 1809 of Lecture Notes in Artificial Intelligence, pp. 360–
372, Heidelberg. Springer-Verlag.

Borgwardt, S., Hoffmann, J., Kovtunova, A., Krötzsch, M., Nebel, B., & Steinmetz, M.
(2022). Expressivity of planning with horn description logic ontologies. In Honavar,
V., & Spaan, M. (Eds.), Proceedings of the Thirty-Sixth AAAI Conference on Artificial
Intelligence (AAAI 2022), pp. 5503–5511. AAAI Press.

Brace, K. S., Rudell, R., & Bryant, R. E. (1990). Efficient implementation of a BDD pack-
age. In Smith, R. C. (Ed.), Proceedings of the 27th ACM/IEEE Design Automation
Conference (DAC 1990), pp. 40–45.

Bryant, R. E. (1985). Symbolic manipulation of Boolean functions using a graphical repre-
sentation. In Ofek, H., & O’Neill, L. A. (Eds.), Proceedings of the 22nd ACM/IEEE
Conference on Design Automation (DAC 1985), pp. 688–694.

Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, 35 (8), 677–691.

Burch, J. R., Clarke, E. M., & Long, D. E. (1991). Symbolic model checking with parti-
tioned transistion relations. In Halaas, A., & Denyer, P. B. (Eds.), Proceedings of the
International Conference on Very Large Scale Integration (VLSI 1991), pp. 49–58.

Burch, J. R., Clarke, E. M., Long, D. E., McMillan, K. L., & Dill, D. L. (1994). Symbolic
model checking for sequential circuit verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 13 (4), 401–424.

Christen, R., Eriksson, S., Katz, M., Muise, C., Petrov, A., Pommerening, F., Seipp, J.,
Sievers, S., & Speck, D. (2023). PARIS: Planning algorithms for reconfiguring inde-
pendent sets. In Gal, K., Nowé, A., Nalepa, G. J., Fairstein, R., & Rădulescu, R.
(Eds.), Proceedings of the 26th European Conference on Artificial Intelligence (ECAI
2023), pp. 453–460. IOS Press.

1395

Speck, Seipp & Torralba

Ciardo, G., & Siminiceanu, R. (2002). Using edge-valued decision diagrams for symbolic
generation of shortest paths. In Aagaard, M., & O’Leary, J. W. (Eds.), Proceedings
of the Fourth International Conference on Formal Methods in Computer-Aided De-
sign (FMCAD 2002), Vol. 2517 of Lecture Notes in Computer Science, pp. 256–273.
Springer-Verlag.

Cimatti, A., Pistore, M., Roveri, M., & Traverso, P. (2003). Weak, strong, and strong cyclic
planning via symbolic model checking. Artificial Intelligence, 147, 35–84.

Corraya, S., Geißer, F., Speck, D., & Mattmüller, R. (2019). An empirical study of the
usefulness of state-dependent action costs in planning. In Benzmüller, C., & Stucken-
schmidt, H. (Eds.), Proceedings of the 42nd Annual German Conference on Artificial
Intelligence (KI 2019), Vol. 11793 of Lecture Notes in Computer Science, pp. 123–130.
Springer-Verlag.

Cui, H., & Khardon, R. (2018). The SOGBOFA system in IPC 2018: Lifted BP for con-
formant approximation of stochastic planning. In Sixth International Probabilistic
Planning Competition (IPC-6): Planner Abstracts, pp. 1–6.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1, 269–271.

Domshlak, C., Katz, M., & Shleyfman, A. (2015). Symmetry breaking in deterministic
planning as forward search: Orbit space search algorithm. Tech. rep. IS/IE-2015-03,
Technion.

Drechsler, R., & Becker, B. (1998a). Binary Decision Diagrams – Theory and Implementa-
tion. Springer.

Drechsler, R., & Becker, B. (1998b). Ordered Kronecker functional decision diagrams-a data
structure for representation and manipulation of Boolean functions. IEEE Trans. on
CAD of Integrated Circuits and Systems, 17 (10), 965–973.

Drexler, D., Gnad, D., Höft, P., Seipp, J., Speck, D., & St̊ahlberg, S. (2023). Ragnarok. In
Tenth International Planning Competition (IPC-10): Planner Abstracts.

Drexler, D., Seipp, J., & Speck, D. (2021). Subset-saturated transition cost partitioning.
In Goldman, R. P., Biundo, S., & Katz, M. (Eds.), Proceedings of the Thirty-First
International Conference on Automated Planning and Scheduling (ICAPS 2021), pp.
131–139. AAAI Press.

Edelkamp, S. (2002). Symbolic pattern databases in heuristic search planning. In Ghallab,
M., Hertzberg, J., & Traverso, P. (Eds.), Proceedings of the Sixth International Con-
ference on Artificial Intelligence Planning and Scheduling (AIPS 2002), pp. 274–283.
AAAI Press.

Edelkamp, S. (2003a). Limits and possibilities of PDDL for model checking software. In
Edelkamp, S., & Hoffmann, J. (Eds.), Proceedings of the ICAPS 2003 Workshop on
the Competition: Impact, Organisation, Evaluation, Benchmarks.

Edelkamp, S. (2003b). Promela planning. In Ball, T., & Rajamani, S. K. (Eds.), Proceedings
of the 10th International SPIN Workshop (SPIN 2003), Vol. 2648 of Lecture Notes in
Computer Science, pp. 197–212. Springer-Verlag.

1396

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

Edelkamp, S., & Helmert, M. (1999). Exhibiting knowledge in planning problems to mini-
mize state encoding length. In Biundo, S., & Fox, M. (Eds.), Recent Advances in AI
Planning. 5th European Conference on Planning (ECP 1999), Vol. 1809 of Lecture
Notes in Artificial Intelligence, pp. 135–147, Heidelberg. Springer-Verlag.

Edelkamp, S., & Helmert, M. (2000). On the implementation of MIPS. In Traverso, P.,
Veloso, M., & Giunchiglia, F. (Eds.), Proceedings of the AIPS 2000 Workshop on
Model-Theoretic Approaches to Planning.

Edelkamp, S., & Helmert, M. (2001). The model checking integrated planning system
(MIPS). AI Magazine, 22 (3), 67–71.

Edelkamp, S., & Kissmann, P. (2008). Limits and possibilities of BDDs in state space search.
In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI
2008), pp. 1452–1453. AAAI Press.

Edelkamp, S., & Kissmann, P. (2009). Optimal symbolic planning with action costs and
preferences. In Boutilier, C. (Ed.), Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence (IJCAI 2009), pp. 1690–1695. AAAI Press.

Edelkamp, S., & Kissmann, P. (2011). On the complexity of BDDs for state space search:
A case study in Connect Four. In Burgard, W., & Roth, D. (Eds.), Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2011), pp. 18–23.
AAAI Press.

Erol, K., Hendler, J. A., & Nau, D. S. (1996). Complexity results for HTN planning. Annals
of Mathematics and Artificial Intelligence (AMAI), 18 (1), 69–93.

Fan, G., Müller, M., & Holte, R. (2017). The two-edged nature of diverse action costs. In
Barbulescu, L., Frank, J., Mausam, & Smith, S. F. (Eds.), Proceedings of the Twenty-
Seventh International Conference on Automated Planning and Scheduling (ICAPS
2017), pp. 98–106. AAAI Press.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 189–208.

Fǐser, D., Torralba, Á., & Hoffmann, J. (2022a). Operator-potential heuristics for symbolic
search. In Honavar, V., & Spaan, M. (Eds.), Proceedings of the Thirty-Sixth AAAI
Conference on Artificial Intelligence (AAAI 2022), pp. 9750–9757. AAAI Press.

Fǐser, D., Torralba, Á., & Hoffmann, J. (2022b). Operator-potentials in symbolic search:
From forward to bi-directional search. In Thiébaux, S., & Yeoh, W. (Eds.), Proceedings
of the Thirty-Second International Conference on Automated Planning and Scheduling
(ICAPS 2022), pp. 80–89. AAAI Press.

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20, 61–124.

Franco, S., Edelkamp, S., & Moraru, I. (2023). Complementarypdb. In Tenth International
Planning Competition (IPC-10): Planner Abstracts.

Franco, S., Lelis, L. H. S., & Barley, M. (2018). The Complementary2 planner in the IPC
2018. In Ninth International Planning Competition (IPC-9): Planner Abstracts, pp.
32–36.

1397

Speck, Seipp & Torralba

Franco, S., Torralba, Á., Lelis, L. H. S., & Barley, M. (2017). On creating complementary
pattern databases. In Sierra, C. (Ed.), Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI 2017), pp. 4302–4309. IJCAI.

Gazen, B. C., & Knoblock, C. A. (1997). Combining the expressivity of UCPOP with the
efficiency of Graphplan. In Steel, S., & Alami, R. (Eds.), Recent Advances in AI
Planning. 4th European Conference on Planning (ECP 1997), Vol. 1348 of Lecture
Notes in Artificial Intelligence, pp. 221–233. Springer-Verlag.

Geier, T., & Bercher, P. (2011). On the decidability of HTN planning with task insertion. In
Walsh, T. (Ed.), Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI 2011), pp. 1955–1961. AAAI Press.

Geißer, F. (2018). On Planning with State-Dependent Action Costs. Ph.D. thesis, University
of Freiburg.

Geißer, F., Keller, T., & Mattmüller, R. (2015). Delete relaxations for planning with state-
dependent action costs. In Yang, Q., & Wooldridge, M. (Eds.), Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 1573–1579.
AAAI Press.

Geißer, F., Keller, T., & Mattmüller, R. (2016). Abstractions for planning with state-
dependent action costs. In Coles, A., Coles, A., Edelkamp, S., Magazzeni, D., &
Sanner, S. (Eds.), Proceedings of the Twenty-Sixth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2016), pp. 140–148. AAAI Press.

Geißer, F., & Speck, D. (2018). Prost-DD – Utilizing symbolic classical planning in THTS.
In Sixth International Probabilistic Planning Competition (IPC-6): Planner Abstracts,
pp. 13–16.

Geißer, F., Speck, D., & Keller, T. (2020). Trial-based heuristic tree search for mdps with
factored action spaces. In Harabor, D., & Vallati, M. (Eds.), Proceedings of the 13th
Annual Symposium on Combinatorial Search (SoCS 2020), pp. 38–47. AAAI Press.

Gerevini, A. E., Percassi, F., & Scala, E. (2024). An effective polynomial technique for
compiling conditional effects away. In Dy, J., & Natarajan, S. (Eds.), Proceedings
of the Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI 2024), pp.
20104–20112. AAAI Press.

Ghosh, K., Dasgupta, P., & Ramesh, S. (2015). Automated planning as an early verification
tool for distributed control. Journal of Automated Reasoning, 54 (1), 31–68.

Hansen, E. A., Zhou, R., & Feng, Z. (2002). Symbolic heuristic search using decision
diagrams. In Koenig, S., & Holte, R. C. (Eds.), Proceedings of the 5th International
Symposium on Abstraction, Reformulation and Approximation (SARA 2002), Vol.
2371 of Lecture Notes in Artificial Intelligence, pp. 83–98. Springer-Verlag.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4 (2), 100–107.

Haslum, P. (2011). Computing genome edit distances using domain-independent planning.
In ICAPS 2011 Scheduling and Planning Applications woRKshop, pp. 45–51.

1398

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

Haslum, P. (2013). Optimal delete-relaxed (and semi-relaxed) planning with conditional
effects. In Rossi, F. (Ed.), Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI 2013), pp. 2291–2297. AAAI Press.

Haslum, P., Ivankovic, F., Ramı́rez, M., Gordon, D., Thiébaux, S., Shivashankar, V., &
Nau, D. S. (2018). Extending classical planning with state constraints: Heuristics and
search for optimal planning. Journal of Artificial Intelligence Research, 62, 373–431.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26, 191–246.

Helmert, M. (2008). Understanding Planning Tasks – Domain Complexity and Heuristic
Decomposition, Vol. 4929 of Lecture Notes in Artificial Intelligence. Springer-Verlag.

Helmert, M. (2009). Concise finite-domain representations for PDDL planning tasks. Arti-
ficial Intelligence, 173, 503–535.

Helmert, M., & Domshlak, C. (2009). Landmarks, critical paths and abstractions: What’s
the difference anyway?. In Gerevini, A., Howe, A., Cesta, A., & Refanidis, I. (Eds.),
Proceedings of the Nineteenth International Conference on Automated Planning and
Scheduling (ICAPS 2009), pp. 162–169. AAAI Press.

Helmert, M., & Lasinger, H. (2010). The Scanalyzer domain: Greenhouse logistics as a
planning problem. In Brafman, R., Geffner, H., Hoffmann, J., & Kautz, H. (Eds.),
Proceedings of the Twentieth International Conference on Automated Planning and
Scheduling (ICAPS 2010), pp. 234–237. AAAI Press.

Hoffmann, J., & Edelkamp, S. (2005). The deterministic part of IPC-4: An overview. Journal
of Artificial Intelligence Research, 24, 519–579.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.

Holte, R. C. (2010). Common misconceptions concerning heuristic search. In Felner, A., &
Sturtevant, N. (Eds.), Proceedings of the Third Annual Symposium on Combinatorial
Search (SoCS 2010), pp. 46–51. AAAI Press.

Ivankovic, F., Gordon, D., & Haslum, P. (2019). Planning with global state constraints and
state-dependent action costs. In Lipovetzky, N., Onaindia, E., & Smith, D. E. (Eds.),
Proceedings of the Twenty-Ninth International Conference on Automated Planning
and Scheduling (ICAPS 2019), pp. 232–236. AAAI Press.

Ivankovic, F., & Haslum, P. (2015). Optimal planning with axioms. In Yang, Q., &
Wooldridge, M. (Eds.), Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI 2015), pp. 1580–1586. AAAI Press.

Jensen, R. M., Hansen, E. A., Richards, S., & Zhou, R. (2006). Memory-efficient symbolic
heuristic search. In Long, D., Smith, S. F., Borrajo, D., & McCluskey, L. (Eds.),
Proceedings of the Sixteenth International Conference on Automated Planning and
Scheduling (ICAPS 2006), pp. 304–313. AAAI Press.

Karpas, E., & Magazzeni, D. (2020). Automated planning for robotics. Annual Review of
Control, Robotics, and Autonomous Systems, 3, 417–439.

1399

Speck, Seipp & Torralba

Katz, M., Sohrabi, S., Samulowitz, H., & Sievers, S. (2018). Delfi: Online planner selection
for cost-optimal planning. In Ninth International Planning Competition (IPC-9):
Planner Abstracts, pp. 57–64.

Kebschull, U., Schubert, E., & Rosenstiel, W. (1992). Multilevel logic synthesis based on
functional decision diagrams. In Schweikert, D. G. (Ed.), Proceedings of the 29th
ACM/IEEE Design Automation Conference (DAC 1992), pp. 43–47.

Keller, T., & Eyerich, P. (2012). PROST: Probabilistic planning based on UCT. In Mc-
Cluskey, L., Williams, B., Silva, J. R., & Bonet, B. (Eds.), Proceedings of the Twenty-
Second International Conference on Automated Planning and Scheduling (ICAPS
2012), pp. 119–127. AAAI Press.

Keller, T., & Geißer, F. (2015). Better be lucky than good: Exceeding expectations in MDP
evaluation. In Bonet, B., & Koenig, S. (Eds.), Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI 2015), pp. 3540–3547. AAAI Press.

Keller, T., Pommerening, F., Seipp, J., Geißer, F., & Mattmüller, R. (2016). State-
dependent cost partitionings for Cartesian abstractions in classical planning. In Kamb-
hampati, S. (Ed.), Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI 2016), pp. 3161–3169. AAAI Press.

Kissmann, P., & Edelkamp, S. (2009). Solving fully-observable non-deterministic planning
problems via translation into a general game. In Mertsching, B., Hund, M., & Aziz, Z.
(Eds.), Proceedings of the 32nd Annual German Conference on Artificial Intelligence
(KI 2009), Vol. 5803 of Lecture Notes in Artificial Intelligence, pp. 1–8. Springer-
Verlag.

Kissmann, P., & Edelkamp, S. (2011). Improving cost-optimal domain-independent symbolic
planning. In Burgard, W., & Roth, D. (Eds.), Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence (AAAI 2011), pp. 992–997. AAAI Press.

Kissmann, P., Edelkamp, S., & Hoffmann, J. (2014). Gamer and Dynamic-Gamer – Symbolic
search at IPC 2014. In Eighth International Planning Competition (IPC-8): Planner
Abstracts, pp. 77–84.

Kissmann, P., & Hoffmann, J. (2013). What’s in it for my BDD? on causal graphs and
variable orders in planning. In Borrajo, D., Kambhampati, S., Oddi, A., & Fratini,
S. (Eds.), Proceedings of the Twenty-Third International Conference on Automated
Planning and Scheduling (ICAPS 2013), pp. 327–331. AAAI Press.

Kissmann, P., & Hoffmann, J. (2014). BDD ordering heuristics for classical planning. Jour-
nal of Artificial Intelligence Research, 51, 779–804.

Koehler, J., & Schuster, K. (2000). Elevator control as a planning problem. In Chien, S.,
Kambhampati, S., & Knoblock, C. A. (Eds.), Proceedings of the Fifth International
Conference on Artificial Intelligence Planning and Scheduling (AIPS 2000), pp. 331–
338. AAAI Press.

Koller, A., & Hoffmann, J. (2010). Waking up a sleeping rabbit: On natural-language
sentence generation with FF. In Brafman, R., Geffner, H., Hoffmann, J., & Kautz, H.
(Eds.), Proceedings of the Twentieth International Conference on Automated Planning
and Scheduling (ICAPS 2010), pp. 238–241. AAAI Press.

1400

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

Kominis, F., & Geffner, H. (2015). Beliefs in multiagent planning: From one agent to many.
In Brafman, R., Domshlak, C., Haslum, P., & Zilberstein, S. (Eds.), Proceedings of
the Twenty-Fifth International Conference on Automated Planning and Scheduling
(ICAPS 2015), pp. 147–155. AAAI Press.

Lai, Y., Pedram, M., & Vrudhula, S. B. K. (1996). Formal verification using edge-valued
binary decision diagrams. IEEE Transactions on Computers, 45 (2), 247–255.

Mattmüller, R., Geißer, F., Wright, B., & Nebel, B. (2018). On the relationship between
state-dependent action costs and conditional effects in planning. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence (AAAI 2018), pp. 6237–
6245. AAAI Press.

McDermott, D. (2000). The 1998 AI Planning Systems competition. AI Magazine, 21 (2),
35–55.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., &
Wilkins, D. (1998). PDDL – The Planning Domain Definition Language – Version
1.2. Tech. rep. CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision
and Control, Yale University.

McMillan, K. L. (1993). Symbolic Model Checking. Kluwer Academic Publishers.

Minato, S. (1993). Zero-suppressed BDDs for set manipulation in combinatorial problems.
In Dunlop, A. E. (Ed.), Proceedings of the 30th Design Automation Conference (DAC
1993), pp. 272–277.

Miura, S., & Fukunaga, A. (2017). Automatic extraction of axioms for planning. In Bar-
bulescu, L., Frank, J., Mausam, & Smith, S. F. (Eds.), Proceedings of the Twenty-
Seventh International Conference on Automated Planning and Scheduling (ICAPS
2017), pp. 218–227. AAAI Press.

Nebel, B. (2000). On the compilability and expressive power of propositional planning
formalisms. Journal of Artificial Intelligence Research, 12, 271–315.

Newell, A., & Simon, H. A. (1963). GPS: A program that simulates human thought. In
Feigenbaum, E. A., & Feldman, J. (Eds.), Computers and Thought, pp. 279–293.
Oldenbourg.

Nilsson, N. J. (1984). Shakey the robot. Tech. rep. 323, AI Center, SRI International. Menlo
Park, CA, USA.

Palacios, H., & Geffner, H. (2009). Compiling uncertainty away in conformant planning
problems with bounded width. Journal of Artificial Intelligence Research, 35, 623–
675.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley.

Pednault, E. P. D. (1989). ADL: Exploring the middle ground between STRIPS and the
situation calculus. In Brachman, R. J., Levesque, H. J., & Reiter, R. (Eds.), Proceed-
ings of the First International Conference on Principles of Knowledge Representation
and Reasoning (KR 1989), pp. 324–332. Morgan Kaufmann.

1401

Speck, Seipp & Torralba

Percassi, F., Scala, E., & Gerevini, A. E. (2024). Optimised variants of polynomial com-
pilation for conditional effects in classical planning. In Felner, A., & Li, J. (Eds.),
Proceedings of the 17th Annual Symposium on Combinatorial Search (SoCS 2024),
pp. 100–108. AAAI Press.

Pommerening, F., Helmert, M., Röger, G., & Seipp, J. (2015). From non-negative to general
operator cost partitioning. In Bonet, B., & Koenig, S. (Eds.), Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015), pp. 3335–
3341. AAAI Press.

Pommerening, F., Röger, G., & Helmert, M. (2013). Getting the most out of pattern
databases for classical planning. In Rossi, F. (Ed.), Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 2357–2364. AAAI
Press.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc.

Reffel, F., & Edelkamp, S. (1999). Error detection with directed symbolic model checking.
In Wing, J. M., Woodcock, J., & Davies, J. (Eds.), Proceedings of the World Congress
on Formal Methods in the Development of Computing Systems (FM 1999), Vol. 1708
of Lecture Notes in Computer Science, pp. 195–211. Springer-Verlag.

Röger, G., Pommerening, F., & Helmert, M. (2014). Optimal planning in the presence of
conditional effects: Extending LM-Cut with context splitting. In Schaub, T., Friedrich,
G., & O’Sullivan, B. (Eds.), Proceedings of the 21st European Conference on Artificial
Intelligence (ECAI 2014), pp. 765–770. IOS Press.

Rudell, R. (1993). Dynamic variable ordering for ordered binary decision diagrams. In Light-
ner, M. R., & Jess, J. A. G. (Eds.), Proceedings of the 1993 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD 1993), pp. 42–47.

Russell, S., & Norvig, P. (2003). Artificial Intelligence — A Modern Approach. Prentice
Hall.

Sanner, S. (2010). Relational dynamic influence diagram language (RDDL): Language
description..

Sanner, S., & McAllester, D. (2005). Affine algebraic decision diagrams (AADDs) and their
application to structured probabilistic inference. In Kaelbling, L. P., & Saffiotti, A.
(Eds.), Proceedings of the 19th International Joint Conference on Artificial Intelli-
gence (IJCAI 2005), pp. 1384–1390. Professional Book Center.

Scholl, C., Möller, D., Molitor, P., & Drechsler, R. (1999). BDD minimization using sym-
metries. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 18 (2), 81–100.

Segovia-Aguas, J., Jiménez, S., & Jonsson, A. (2018). Computing hierarchical finite state
controllers with classical planning. Artificial Intelligence, 62, 755–797.

Seipp, J. (2018). Fast Downward Scorpion. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, pp. 77–79.

1402

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

Seipp, J., & Helmert, M. (2018). Counterexample-guided Cartesian abstraction refinement
for classical planning. Journal of Artificial Intelligence Research, 62, 535–577.

Seipp, J., Pommerening, F., Sievers, S., & Helmert, M. (2017). Downward Lab. https:

//doi.org/10.5281/zenodo.790461.

Sievers, S., & Katz, M. (2018). Metis 2018. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, pp. 83–84.

Siminiceanu, R., & Roux, P. (2010). Model checking with edge-valued decision diagrams.
In Proceedings of the Second NASA Formal Methods Symposium (NFM 2010), pp.
222–226.

Somenzi, F. (2015). CUDD: CU decision diagram package – release 3.0.0.
https://github.com/ivmai/cudd. Accessed: 2023-09-19.

Speck, D. (2022). Symbolic Search for Optimal Planning with Expressive Extensions. Ph.D.
thesis, University of Freiburg.

Speck, D. (2023). SymK – A versatile symbolic search planner. In Tenth International
Planning Competition (IPC-10): Planner Abstracts.

Speck, D., Borukhson, D., Mattmüller, R., & Nebel, B. (2021). On the compilability and
expressive power of state-dependent action costs. In Goldman, R. P., Biundo, S., &
Katz, M. (Eds.), Proceedings of the Thirty-First International Conference on Auto-
mated Planning and Scheduling (ICAPS 2021), pp. 358–366. AAAI Press.

Speck, D., Dornhege, C., & Burgard, W. (2017). Shakey 2016 – How much does it take to
redo shakey the robot?. IEEE Robotics and Automation Letters, 2 (2), 1203–1209.

Speck, D., Geißer, F., & Mattmüller, R. (2018a). Symbolic planning with edge-valued
multi-valued decision diagrams. In de Weerdt, M., Koenig, S., Röger, G., & Spaan,
M. (Eds.), Proceedings of the Twenty-Eighth International Conference on Automated
Planning and Scheduling (ICAPS 2018), pp. 250–258. AAAI Press.

Speck, D., Geißer, F., & Mattmüller, R. (2018b). SYMPLE: Symbolic Planning based on
EVMDDs. In Ninth International Planning Competition (IPC-9): Planner Abstracts,
pp. 91–94.

Speck, D., Geißer, F., & Mattmüller, R. (2020). When perfect is not good enough: On the
search behaviour of symbolic heuristic search. In Beck, J. C., Karpas, E., & Sohrabi, S.
(Eds.), Proceedings of the Thirtieth International Conference on Automated Planning
and Scheduling (ICAPS 2020), pp. 263–271. AAAI Press.

Speck, D., Geißer, F., Mattmüller, R., & Torralba, Á. (2019). Symbolic planning with
axioms. In Lipovetzky, N., Onaindia, E., & Smith, D. E. (Eds.), Proceedings of
the Twenty-Ninth International Conference on Automated Planning and Scheduling
(ICAPS 2019), pp. 464–472. AAAI Press.

Speck, D., Höft, P., Gnad, D., & Seipp, J. (2023). Finding matrix multiplication algorithms
with classical planning. In Koenig, S., Stern, R., & Vallati, M. (Eds.), Proceedings
of the Thirty-Third International Conference on Automated Planning and Scheduling
(ICAPS 2023), pp. 411–416. AAAI Press.

1403

Speck, Seipp & Torralba

Speck, D., Mattmüller, R., & Nebel, B. (2020). Symbolic top-k planning. In Conitzer, V.,
& Sha, F. (Eds.), Proceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI 2020), pp. 9967–9974. AAAI Press.

Speck, D., Ortlieb, M., & Mattmüller, R. (2015). Necessary observations in nondetermin-
istic planning. In Hölldobler, S., Krötzsch, M., Peñaloza-Nyssen, R., & Rudolph, S.
(Eds.), Proceedings of the 38th Annual German Conference on Artificial Intelligence
(KI 2015), Vol. 9324 of Lecture Notes in Artificial Intelligence, pp. 181–193. Springer-
Verlag.

Speck, D., Seipp, J., & Torralba, Á. (2024). Code, benchmarks and data for the paper
“Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions”.
https://doi.org/10.5281/zenodo.12624111.

Speicher, P., Steinmetz, M., Backes, M., Hoffmann, J., & Künnemann, R. (2018). Stack-
elberg planning: Towards effective leader-follower state space search. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI 2018), pp.
6286–6293. AAAI Press.

Taitler, A., Alford, R., Espasa, J., Behnke, G., Fǐser, D., Gimelfarb, M., Pommerening, F.,
Sanner, S., Scala, E., Schreiber, D., Segovia-Aguas, J., & Seipp, J. (2024). The 2023
International Planning Competition. AI Magazine, 45 (2), 280–296.

Thiébaux, S., & Cordier, M.-O. (2001). Supply restoration in power distribution systems
— A benchmark for planning under uncertainty. In Cesta, A., & Borrajo, D. (Eds.),
Proceedings of the Sixth European Conference on Planning (ECP 2001), pp. 196–202.
AAAI Press.

Thiébaux, S., Hoffmann, J., & Nebel, B. (2005). In defense of PDDL axioms. Artificial
Intelligence, 168 (1–2), 38–69.

Torralba, Á. (2015). Symbolic Search and Abstraction Heuristics for Cost-Optimal Planning.
Ph.D. thesis, Universidad Carlos III de Madrid.

Torralba, Á. (2023). SymBD: A symbolic bidirectional search baseline. In Tenth Interna-
tional Planning Competition (IPC-10): Planner Abstracts.

Torralba, Á., Alcázar, V., Borrajo, D., Kissmann, P., & Edelkamp, S. (2014). SymBA*:
A symbolic bidirectional A* planner. In Eighth International Planning Competition
(IPC-8): Planner Abstracts, pp. 105–109.

Torralba, Á., Alcázar, V., Kissmann, P., & Edelkamp, S. (2017). Efficient symbolic search
for cost-optimal planning. Artificial Intelligence, 242, 52–79.

Torralba, Á., Linares López, C., & Borrajo, D. (2013). Symbolic merge-and-shrink for
cost-optimal planning. In Rossi, F. (Ed.), Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), pp. 2394–2400. AAAI Press.

Torralba, Á., Linares López, C., & Borrajo, D. (2018). Symbolic perimeter abstraction
heuristics for cost-optimal planning. Artificial Intelligence, 259, 1–31.

Torralba, Á., Speicher, P., Künnemann, R., Steinmetz, M., & Hoffmann, J. (2021). Faster
Stackelberg planning via symbolic search and information sharing. In Leyton-Brown,

1404

Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions

K., & Mausam (Eds.), Proceedings of the Thirty-Fifth AAAI Conference on Artificial
Intelligence (AAAI 2021), pp. 11998–12006. AAAI Press.

Vallati, M., Chrpa, L., Grześ, M., McCluskey, T. L., Roberts, M., & Sanner, S. (2015). The
2014 International Planning Competition: Progress and trends. AI Magazine, 36 (3),
90–98.

Yang, B., Bryant, R. E., O’Hallaron, D. R., Biere, A., Coudert, O., Janssen, G., Ranjan,
R. K., & Somenzi, F. (1998). A performance study of BDD-based model checking. In
Gopalakrishnan, G., & Windley, P. J. (Eds.), Proceedings of the Second International
Conference on Formal Methods in Computer-Aided Design (FMCAD 1998), pp. 255–
289. Springer.

Yu, Z., Han, C., & Ma, Y. (2014). Emergency decision making: A dynamic approach. In
Hiltz, S. R., Plotnick, L., Pfaf, M., & Shih, P. C. (Eds.), Proceedings of the Eleventh In-
ternational Conference on Information Systems for Crisis Response and Management
(ISCRAM 2014), pp. 245–249. ISCRAM Association.

1405

