Motivation O	LTL _f in Heuristic Search 000000	Finding Information	Exploiting Information O	Experiments 0000	Conclusion 00

Finding and Exploiting LTL Trajectory Constraints in Heuristic Search

Salomé Simon Gabriele Röger

University of Basel, Switzerland

SoCS 2015

Motivation	LTL _f in Heuristic Search	Finding Information	Exploiting Information	Experiments	Conclusion
•	000000		O	0000	00
Mativ	ation				

Goal

framework for describing information about the search space

- combining information from different sources
 ~> creating stronger heuristics
- decoupling the derivation and exploitation of information
 split work between different experts

Motivation

Finding Information

Exploiting Information

Experiments 0000

Linear Temporal Logic on Finite Traces (LTL_f)

- evaluated over a linear sequence of worlds
 - (= variable assignments)
- extends propositional logic with:

	LTL _f in Heuristic Search o●oooo	

ation Experime 0000 Conclusion 00

LTL_f Formulas in the Search Space

variable	\leftrightarrow	state variable or action
world	\leftrightarrow	node in search space (with incoming action)
world sequence	\leftrightarrow	path to a goal node

Finding Information

Exploiting Information

Experiments (

Conclusion

Feasibility for Nodes

Definition (Feasibility for nodes)

An LTL_f formula φ is feasible for n if for all paths ρ such that

- ρ is applicable in n,
- $\bullet\,$ the application of $\rho\,$ leads to a goal state, and

•
$$g(n) + c(\rho) = h^*$$

it holds that $w_{\rho}^{s} \models \varphi$.

(where $\boldsymbol{w_{\rho}^s} = \langle \{a_1\} \cup s[a_1], \{a_2\} \cup s[\langle a_1, a_2 \rangle], \dots, \{a_n\} \cup s[\rho], s[\rho] \rangle$)

Conclusion 00

Adding and Propagating Information during the Search

1 new information during the search

directly added to the corresponding node with conjunction

Conclusion 00

Adding and Propagating Information during the Search

Inew information during the search

directly added to the corresponding node with conjunction

Exploiting Information

Adding and Propagating Information during the Search

Inew information during the search

directly added to the corresponding node with conjunction

Finding Information

Exploiting Information

Experiments 0000 Conclusion

Adding and Propagating Information during the Search

I formulas can be propagated with progression to successor nodes

Theorem

Let φ be a feasible formula for a node n, and let n' be the successor node reached from n with action a. Then $\operatorname{progress}(\varphi, \{a\} \cup s(n'))$ is feasible for n'.

 Motivation
 LTL_f in Heuristic Search
 Finding Information
 Exploiting Information
 Experiments
 Con

 Adding and Propagating Information Information
 Operating Information
 Con
 Operating
 Con
 C

I formulas can be propagated with progression to successor nodes

Theorem

Let φ be a feasible formula for a node n, and let n' be the successor node reached from n with action a. Then $\operatorname{progress}(\varphi, \{a\} \cup s(n'))$ is feasible for n'.

Finding Information

Exploiting Information

Experiments 0000 Conclusion

Adding and Propagating Information during the Search

I formulas can be propagated with progression to successor nodes

Theorem

Let φ be a feasible formula for a node n, and let n' be the successor node reached from n with action a. Then $\operatorname{progress}(\varphi, \{a\} \cup s(n'))$ is feasible for n'.

Motivation LTL_f in Heuristic Search Finding Information Exploiting Information Experiments Control 0 00000● 000 0000 0000 0000

Adding and Propagating Information during the Search

Output of the second second

Theorem

Let n and n' be two search nodes such that g(n) = g(n') and s(n) = s(n'). Let further φ_n and $\varphi_{n'}$ be feasible for the respective node. Then $\varphi_n \wedge \varphi_{n'}$ is feasible for both n and n'.

Motivation LTL_f in Heuristic Search Finding Information Exploiting Information Experiments C 0 00000 000 0 0 0 0

Adding and Propagating Information during the Search

Outplicate elimination: conjunction of formulas of "cheapest" nodes is feasible

Theorem

Let n and n' be two search nodes such that g(n) = g(n') and s(n) = s(n'). Let further φ_n and $\varphi_{n'}$ be feasible for the respective node. Then $\varphi_n \wedge \varphi_{n'}$ is feasible for both n and n'.

Example

Motivation LTL_f in Heuristic Search Finding Information Exploiting Information Experiments C 0 00000 000 0 0 0 0

Adding and Propagating Information during the Search

Output of the second second

Theorem

Let n and n' be two search nodes such that g(n) = g(n') and s(n) = s(n'). Let further φ_n and $\varphi_{n'}$ be feasible for the respective node. Then $\varphi_n \wedge \varphi_{n'}$ is feasible for both n and n'.

Motivation LTL_f in Heuristic Search Finding Information Exploiting Information Experiments C 0 00000 000 0

Adding and Propagating Information during the Search

Outplicate elimination: conjunction of formulas of "cheapest" nodes is feasible

Theorem

Let n and n' be two search nodes such that g(n) = g(n') and s(n) = s(n'). Let further φ_n and $\varphi_{n'}$ be feasible for the respective node. Then $\varphi_n \wedge \varphi_{n'}$ is feasible for both n and n'.

Example

Motivation LTL_f in Heuristic Search Finding Information Exploiting Information Experiments C 0 00000● 000 0

Adding and Propagating Information during the Search

Outplicate elimination: conjunction of formulas of "cheapest" nodes is feasible

Theorem

Let n and n' be two search nodes such that g(n) = g(n') and s(n) = s(n'). Let further φ_n and $\varphi_{n'}$ be feasible for the respective node. Then $\varphi_n \wedge \varphi_{n'}$ is feasible for both n and n'.

Example

Exploiting Information

Experiments 0000 Conclusion

Encoding Information in LTL_f Formulas

Possible sources of information:

- domain-specific knowledge
- temporally extended goals
- here: information used in specialized heuristics
 - Landmarks and their orderings (Hoffmann et al. 2004, Richter et al. 2008)
 - Unjustified Action Applications (Karpas and Domshlak 2012)

Motivation O	LTL _f in Heuristic Search 000000	Finding Information ○●○	Experiments 0000	Conclusion
Landn	narks			

Fact Landmark: A fact that must be true at some point in every solution (Hoffmann et al. 2004) \rightarrow In LTL_f: $\Diamond l$

Further information about landmarks:

- First achievers: $l \lor \bigvee_{a \in FA_l} \Diamond a$
- Required again: $(\Diamond l)\mathcal{U}l'$
- Goal: $\bigwedge_{g \in G} \left((\Diamond g) \mathcal{U} \bigwedge_{g' \in G} g' \right)$

Motivation	LTL _f in Heuristic Search	Finding Information	Exploiting Information	Experiments	Conclusion
0	000000		O	0000	00
Unjust	ified Action A	Applications			

If an action is applied, its effects must be of some use (Karpas and Domshlak 2012)

I one of its effects is necessary for applying another action

One of its effects is a goal variable (that is not made false again)

$$\varphi_{a} = \bigvee_{e \in add(a) \setminus G} \left((e \land \bigwedge_{\substack{a' \in A \text{ with} \\ e \in add(a')}} \neg a') \mathcal{U} \bigvee_{\substack{a' \in A \text{ with} \\ e \in pre(a')}} a') \lor \right)$$
$$\bigvee_{e \in add(a) \cap G} \left((e \land \bigwedge_{\substack{a' \in A \text{ with} \\ e \in add(a')}} \neg a') \mathcal{U} \left(\textit{last} \lor \bigvee_{\substack{a' \in A \text{ with} \\ e \in pre(a')}} a') \right)$$

Motivation	LTL _f in Heuristic Search	E×ploiting Information	Experiments	Conclusion
O	000000	●	0000	00
Heuris	stics			

- Very rich temporal information possible
 → heuristics can use different levels of relaxation
- Proof of concept heuristic extracts landmarks from node-associated formulas
 - \rightarrow looses temporal information between landmarks

			Experiments ●000	
Exper	iment Setup			

Configurations:

- h_{LA}: standard admissible landmark heuristic (Karpas and Domshlak 2009)
- **2** h_{AL}^{LM} : LTL landmark extraction heuristic with sources:
 - Landmarks (First achievers, Required again, Goal)
- **3** $h_{\rm AL}^{\rm LM+UAA}$: LTL landmark extraction heuristic with sources:
 - Landmarks (First achievers, Required again, Goal)
 - Unjustified Action Applications
 - all heuristics use BJOLP landmark extraction and optimal cost partitioning
 - \bullet search algorithm: $h_{\rm LA}$ uses LM-A*, the others a slight variant we call LTL-A*

Motivation 0	LTL _f in Heuristic Search 000000	Finding Information	Exploiting Information O	Experiments 0●00	Conclusion
6					

Coverage

	h_{LA}	$h_{\rm AL}^{\rm LM}$	$h_{\rm AL}^{\rm LM+UAA}$
airport (50)	31	28	26
elevators-08 (30)	14	14	13
floortile (20)	2	2	4
freecell (80)	52	51	50
mprime (35)	19	19	20
nomystery (20)	18	17	16
openstacks-08 (30)	14	12	12
openstacks-11 (20)	9	7	7
parcprinter-08 (30)	15	14	14
parcprinter-11 (20)	11	10	10
pipesworld-tan (50)	9	10	10
scanalyzer-08 (30)	10	9	9
sokoban-08 (30)	22	21	22
tidybot (20)	14	14	13
other domains (931)	483	483	483
Sum (1396)	723	711	709

			Experiments 00●0	
Memo	ory Consumpti	on		

 $h_{
m LA}$ looses no task due to memory limit, but $h_{
m AL}^{
m LM}$ 11 in total

- \bullet airport: over 300% of memory usage compared to $h_{\rm LA}$
- average: 120%
- $\bullet\,$ approx. half the domains <100%

Exploiting Information

Experiments

Conclusion 00

Impact of Unjustified Action Applications

Comparison of expansions between $h_{\rm AL}^{\rm LM}$ and $h_{\rm AL}^{\rm LM+UAA}$:

Motivation 0	LTL _f in Heuristic Search 000000			Experiments 0000	Conclusion •0			
Conclusion								

- associate nodes in the search space with LTL_f formulas \rightarrow conditions for optimal plan
- separation between finding information and exploiting information
- allows to easily combine information from different sources
- concrete examples in this paper:
 - finding information: landmarks and unjustified action applications
 - exploiting information: extracting landmarks

Motivation 0	LTL _f in Heuristic Search 000000		Experiments 0000	Conclusion
Futur	e Work			

- better informed heuristics (less relaxation)
- encodings for other kinds of information
- strengthening other heuristics with the information of LTL_f trajectory constraints