On Weak Stubborn Sets in Classical Planning

Silvan Sievers¹ Martin Wehrle

¹University of Basel, Switzerland

IJCAI 2021, August 2021

- optimal classical planning
- ► A* search with safe pruning:
 - consider subset of applicable operators at expansion
 - guarantee optimality

- origin in model checking (Valmari, APN 1989)
- established safe pruning technique in planning
- several flavors: weak and strong stubborn sets (Valmari, APN 1989), generalized strong stubborn sets (Wehrle & Helmert, ICAPS 2014)

- recently introduced weak stubborn sets in planning are not stubborn sets in the original sense
- define (generalized) weak stubborn sets according to original definition
- analyze pruning power of the different types

- finite-domain state variables
- partial state: set of atoms
- operators o to modify states s:
 - o applicable in s if precondition of o satisfied
 - successor state o(s) incorporates effect of o

 o_1 weakly interferes with o_2 in state s if both operators are applicable in s and

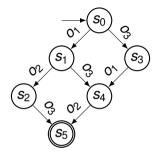
- o_1 disables o_2 in s: o_2 not applicable in $o_1(s)$, or
- o_1 and o_2 conflict in s: $o_2(o_1(s)) \neq o_1(o_2(s))$

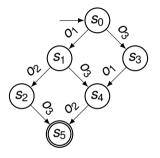
 o_1 weakly interferes with o_2 in state s if both operators are applicable in s and

- o_1 disables o_2 in s: o_2 not applicable in $o_1(s)$, or
- o_1 and o_2 conflict in s: $o_2(o_1(s)) \neq o_1(o_2(s))$

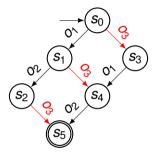
 o_1 interferes with o_2 in state s if

- o_1 weakly interferes with o_2 in s, or
- o₂ disables o₁

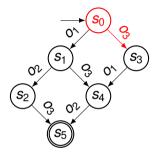

C1 T contains at least one operator from at least one strongly optimal plan


C2 for all $o \in T$ not applicable in s, T contains necessary enabling set for o

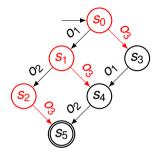
- C1 *T* contains at least one operator from at least one strongly optimal plan approximation: include disjunctive action landmark
- C2 for all $o \in T$ not applicable in s, T contains necessary enabling set for o


- C1 *T* contains at least one operator from at least one strongly optimal plan approximation: include disjunctive action landmark
- C2 for all $o \in T$ not applicable in *s*, *T* contains necessary enabling set for *o* approximation: include achievers of *o*

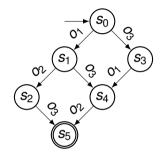
- C1 *T* contains at least one operator from at least one strongly optimal plan approximation: include disjunctive action landmark
- C2 for all $o \in T$ not applicable in *s*, *T* contains necessary enabling set for *o* approximation: include achievers of *o*
- C3 for all $o \in T$ applicable in *s*, *T* contains all o' which interfere with *o* in any state approximation: syntax-based interference

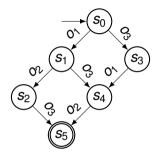


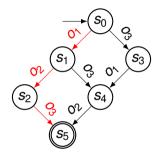
$$T = \{o_3\}$$
 GSSS in s_0 :



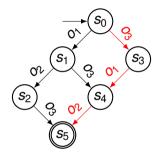
 $T = \{o_3\}$ GSSS in s_0 : C1 o_3 part of an optimal plan

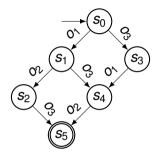

 $T = \{o_3\}$ GSSS in s_0 :


- C1 o₃ part of an optimal plan
- C2 nothing to do (o_3 is not inapplicable in s_0)


 $T = \{o_3\}$ GSSS in s_0 :

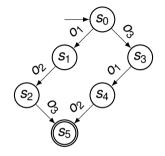
- C1 o₃ part of an optimal plan
- C2 nothing to do (o_3 is not inapplicable in s_0)
- C3 nothing to do: no operator interferes with o_3 in any state

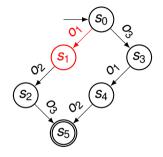



 $T = \{o_3\}$ satisfies the operator shifting property in s_0 :

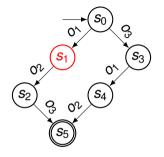
- $T = \{o_3\}$ satisfies the operator shifting property in s_0 :
 - o_3 can be shifted to the front in all plans for s_0

- $T = \{o_3\}$ satisfies the operator shifting property in s_0 :
 - o_3 can be shifted to the front in all plans for s_0

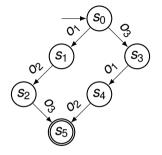

- $T = \{o_3\}$ satisfies the operator shifting property in s_0 :
 - o_3 can be shifted to the front in all plans for s_0
 - \triangleright o_3 is applicable in the intermediate state o_1


- previously called "weak stubborn sets" in planning
- use (syntax-based) approximations for C1 and C2 of GSSS

- previously called "weak stubborn sets" in planning
- use (syntax-based) approximations for C1 and C2 of GSSS
- replace condition C3 of GSSS:
 - C3 for all $o \in T$ applicable in *s*, *T* contains all o' which interfere with *o* in any state


- previously called "weak stubborn sets" in planning
- use (syntax-based) approximations for C1 and C2 of GSSS
- replace condition C3 of GSSS:
 - C3 for all $o \in T$ applicable in *s*, *T* contains all *o*' which interfere with *o* in any state

- previously called "weak stubborn sets" in planning
- use (syntax-based) approximations for C1 and C2 of GSSS
- replace condition C3 of GSSS:
 - C3 for all $o \in T$ applicable in *s*, *T* contains all *o*' which interfere with *o* in any state
 - C3' for all $o \in T$ applicable in *s*, *T* contains all *o*' s.t. *o* syntactically weakly interferes with *o*'



 $T = \{o_3\}:$ not a GSSS in $s_0: o_1$ disables o_3 in $s_0 (\rightsquigarrow T = \{o_1, o_3\})$

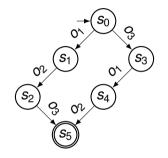
 $T = \{o_3\}:$

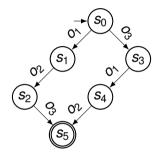
- ▶ not a GSSS in s_0 : o_1 disables o_3 in s_0 ($\rightsquigarrow T = \{o_1, o_3\}$)
- no longer satisfies operator shifting property: o₃ not applicable in s₁

 $T = \{o_3\}$:

- ▶ not a GSSS in s_0 : o_1 disables o_3 in s_0 ($\rightsquigarrow T = \{o_1, o_3\}$)
- no longer satisfies operator shifting property: o₃ not applicable in s₁
- CSS in s₀ (o₃ does not syntactically weakly interfere with o₁)

Contribution: Generalized Weak Stubborn Sets (GWSS)


replace condition C3 of GSSS:


Contribution: Generalized Weak Stubborn Sets (GWSS)

replace condition C3 of GSSS:

replace condition C3 of GSSS:

- C3 for all $o \in T$ applicable in s, T contains all o' which interfere with o in any state
- C3' for all $o \in T$ applicable in *s*, *T* contains all *o*' s.t. *o* weakly interferes with *o*' in any state, and additionally: *T* contains all disablers or enablers of *o* in any state

 $T = \{o_3\}$ not GWSS in s_0 : C3' requires including all disablers or all enablers of o_3 :

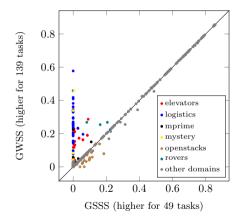
- including disablers $\rightsquigarrow T = \{o_1, o_3\}$ (= GSSS)
- including enablers $\rightsquigarrow T = \{o_2, o_3\}$

Contribution: Formal Results about Properties of GWSS

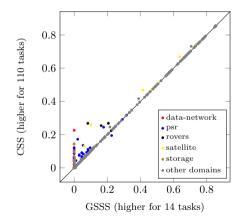
- safe pruning
- satisfy operator shifting property

Contribution: Formal Results about Properties of GWSS

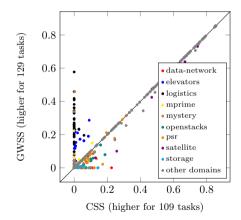
safe pruning


- satisfy operator shifting property
- exponentially higher pruning power than GSSS: choosing all disablers in condition C3' leads to GSSS

Contribution: Formal Results about Properties of GWSS


safe pruning

- satisfy operator shifting property
- exponentially higher pruning power than GSSS: choosing all disablers in condition C3' leads to GSSS
- comparison with CSS:
 - CSS stricter due to restriction to syntactic interference
 - CSS less restrictive due to not requiring operator shifting property
 - incomparable pruning power


Experimental Results: Strong vs. Weak

Experimental Results: Strong vs. Compliant

Experimental Results: Compliant vs. Weak

summary

- previously called "weak stubborn sets" not stubborn sets in the original sense
- generalized weak stubborn sets reflect generalized original definition
- GWSS higher pruning power than GSSS and incomparable pruning power with CSS

summary

- previously called "weak stubborn sets" not stubborn sets in the original sense
- generalized weak stubborn sets reflect generalized original definition
- GWSS higher pruning power than GSSS and incomparable pruning power with CSS

future work:

- find strategies for deciding to include disablers or enablers for GWSS
- investigate if relaxing the operator shifting property beyond CSS is possible