On Weak Stubborn Sets in Classical Planning

Silvan Sievers¹ Martin Wehrle

¹University of Basel, Switzerland

IJCAI 2021, August 2021
Setting

- solving optimal classical planning tasks with A* search
Setting

- solving optimal classical planning tasks with A* search
- safe pruning with stubborn sets:
 - subset of the operators
 - restrict successor generation to applicable operators in stubborn set
 - guarantee preservation of at least one optimal plan
Setting

- solving optimal classical planning tasks with A* search
- safe pruning with stubborn sets:
 - subset of the operators
 - restrict successor generation to applicable operators in stubborn set
 - guarantee preservation of at least one optimal plan
- several flavors:
 - weak and strong stubborn sets (Valmari, APN 1989)
 - generalized strong stubborn sets (GSSS) (Wehrle & Helmert, ICAPS 2014)
Contributions

- investigation of previously called “weak stubborn sets” in planning:
 - not stubborn sets in the original sense
 - called compliant stubborn sets (CSS) from now on
Contributions

- investigation of previously called “weak stubborn sets” in planning:
 - not stubborn sets in the original sense
 - called compliant stubborn sets (CSS) from now on
- generalized weak stubborn sets (GWSS):
 - reflect the (generalized) original definition
 - safe pruning function
 - exponentially higher pruning power than GSSS
 - incomparable pruning power with CSS

Experimental evaluation: confirm theoretical results
Contributions

▶ investigation of previously called “weak stubborn sets” in planning:
 ▶ not stubborn sets in the original sense
 ▶ called compliant stubborn sets (CSS) from now on

▶ generalized weak stubborn sets (GWSS):
 ▶ reflect the (generalized) original definition
 ▶ safe pruning function
 ▶ exponentially higher pruning power than GSSS
 ▶ incomparable pruning power with CSS

▶ experimental evaluation: confirm theoretical results