TL;DR

Setting

- optimal classical planning
- ► A^{*} search with safe pruning: consider subset of applicable operators at expansion
 - guarantee optimality

Contributions

- previously called "weak stubborn sets" (now: compliant stubborn sets) are not stubborn sets in Valmari's sense
- generalized weak stubborn sets (GWSS) reflect original definition and satisfy "operator shifting property"
- GWSS higher pruning power than GSSS and incomparable pruning power with CSS

SAS⁺ Planning Tasks

planning tasks $\Pi = \langle \mathcal{V}, \mathcal{O}, s_0, s_{\star} \rangle$

- \triangleright \mathcal{V} : finite-domain state variables v with domain $\mathcal{D}(v)$ ▶ atom: $\{v \mapsto p\}$, $p \in \mathcal{D}(v)$
 - (partial) state: set of atoms
- \triangleright \mathcal{O} : operators o with partial states precondition pre(o) and effect eff (o), and $cost(o) \in \mathbb{R}_0^+$
- o applicable if $pre(o) \subseteq s$
- \triangleright o(s): successor state updated according to eff(o)
- \blacktriangleright s₀: initial state
- \blacktriangleright s_{*}: partial goal state

State-based Interference

 o_1 weakly interferes with o_2 in state s if

- \triangleright o_1 disables o_2 in s: o_2 not applicable in $o_1(s)$, or
- ▶ o_1 and o_2 conflict in s: $o_2(o_1(s)) \neq o_1(o_2(s))$
- o_1 interferes with o_2 in state s if
- \triangleright o_1 weakly interferes with o_2 in s, or
- \blacktriangleright o₂ disables o₁

Syntax-Based Interference

 o_1 syntactically weakly interferes with o_2 if

- ▶ $\{v \mapsto p\} \in eff(o_1) \text{ and } \{v \mapsto p'\} \in pre(o_2)$ ("disables"), or ▶ $\{v \mapsto p\} \in eff(o_1) \text{ and } \{v \mapsto p'\} \in eff(o_2) (\text{``conflicts''})$
- o_1 syntactically interferes with o_2 if
- \triangleright o_1 syntactically wekly interferes with o_2 , or
- ▶ $\{v \mapsto p\} \in eff(o_2)$ and $\{v \mapsto p'\} \in pre(o_1)$ ("disables")

On Weak Stubborn Sets in Classical Planning

Silvan Sievers¹ Martin Wehrle

¹University of Basel, Switzerland

 (S_3)

Generalized Strong Stubborn Sets (GSSS)

Opt: all strongly optimal plans for state s; S_{Opt} : all states visited by plans in *Opt* Operator subset $T \subseteq \mathcal{O}$ GSSS in *s* if:

- C1 T contains at least one operator from at least one plan from Opt (approximation: include disjunctive action landmark for s)
- C2 for all $o \in T$ not applicable in s, T contains necessary enabling set for o and *Opt* (approximation: include achievers of *o*)
- C3 for all $o \in T$ applicable in s, T contains all o' which interfere with o in any state from S_{Opt} (approximation: syntax-based interference)

Generalized Weak Stubborn Sets (GWSS)

Like GSSS, but with C3' instead of C3

C3' for all $o \in T$ applicable in s, T contains all o' s.t. o weakly interferes with o' in any state from S_{Opt} , and additionally: for all $\{v \mapsto p\} \in pre(o)$, T either contains all disablers or enablers on $\{v \mapsto p\}$ of o in any state from S_{Opt}

Examples

 $T = \{o_3\}$: \blacktriangleright GSSS in s_0 satisfies the operator shifiting property in s₀

planning task with:

- $T = \{o_3\}$:

Experimental Results

Compliant Stubborn Sets (CSS)

previously called "weak stubborn sets" in the planning literature

operator subset $T \subseteq \mathcal{O}$ CSS in state s if:

- ► T contains disjunctive action landmark for s
- ▶ for all $o \in T$ not applicable in s, T contains necessary enabling set for *o* and all applicable operator sequences in s
- ▶ for all $o \in T$ applicable in s, T contains all o' s.t. o syntactically weakly interferes with o'

 $\blacktriangleright s_0 = \{ v \mapsto 0, X \mapsto 0, Y \mapsto 0, Z \mapsto 0 \}$ $\blacktriangleright s_{\star} = \{ X \mapsto 1, Y \mapsto 1, Z \mapsto 1 \}$ ▶ $pre(o_1) = \{v \mapsto 0\}, eff(o_1) = \{v \mapsto 1, X \mapsto 1\}$ ▶ $pre(o_2) = \{v \mapsto 1\}, eff(o_2) = \{v \mapsto 0, Y \mapsto 1\}$ ▶ $pre(o_3) = \{v \mapsto 0\}, eff(o_3) = \{Z \mapsto 1\}$

▶ not a GSSS in s_0 ($T = \{o_1, o_3\}$ GSSS because o_1 disables o_3 in s_0) \blacktriangleright no longer satisfies operator shifting property in s_0 \triangleright CSS in s_0 (o_3 does not syntactically weakly interfere with o_1)

▶ not a GWSS in s_0 : C3' requires including all disablers or all enablers of $\{v \mapsto 0\}$: disablers $\rightarrow T = \{o_1, o_3\}$ (= GSSS); enablers $\rightarrow T = \{o_2, o_3\}$

Operator Shifting Property

Operator subset $T \subseteq \mathcal{O}$ has the operator shifting property in state s if for all plans π for s, shifting the first operator o from π which is also in T to the front results in a plan π' for s, and ► *o* is applicable in all intermediate states before

its application when executing π .

Properties of GWSS

- safe pruning
- satisfy operator shifting property
- exponentially higher pruning power than GSSS:

choosing all disablers in condition C3' leads to GSSS

- comparison with CSS:
 - CSS stricter due to restriction to syntactic interference
 - CSS less restrictive due to not requiring operator shifting property
 - incomparable pruning power