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Abstract

Classical planning is the problem of finding a sequence of deterministic actions in a state space
that lead from an initial state to a state satisfying some goal condition. The dominant approach
to optimally solve planning tasks is heuristic search, in particular A∗ search combined with
an admissible heuristic. While there exist many different admissible heuristics, we focus on
abstraction heuristics in this thesis, and in particular, on the well-established merge-and-shrink
heuristics.

Our main theoretical contribution is to provide a comprehensive description of the merge-and-
shrink framework in terms of transformations of transition systems. Unlike previous accounts,
our description is fully compositional, i.e. can be understood by understanding each transforma-
tion in isolation. In particular, in addition to the name-giving merge and shrink transformations,
we also describe pruning and label reduction as such transformations. The latter is based on
generalized label reduction, a new theory that removes all of the restrictions of the previous defi-
nition of label reduction. We study the four types of transformations in terms of desirable formal
properties and explain how these properties transfer to heuristics being admissible and consis-
tent or even perfect. We also describe an optimized implementation of the merge-and-shrink
framework that substantially improves the efficiency compared to previous implementations.

Furthermore, we investigate the expressive power of merge-and-shrink abstractions by ana-
lyzing factored mappings, the data structure they use for representing functions. In particular, we
show that there exist certain families of functions that can be compactly represented by so-called
non-linear factored mappings but not by linear ones.

On the practical side, we contribute several non-linear merge strategies to the merge-and-
shrink toolbox. In particular, we adapt a merge strategy from model checking to planning,
provide a framework to enhance existing merge strategies based on symmetries, devise a simple
score-based merge strategy that minimizes the maximum size of transition systems of the merge-
and-shrink computation, and describe another framework to enhance merge strategies based on
an analysis of causal dependencies of the planning task.

In a large experimental study, we show the evolution of the performance of merge-and-shrink
heuristics on planning benchmarks. Starting with the state of the art before the contributions of
this thesis, we subsequently evaluate all of our techniques and show that state-of-the-art non-
linear merge-and-shrink heuristics improve significantly over the previous state of the art.
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Zusammenfassung

Klassisches Planen ist das Problem, in einem Zustandsraum eine Abfolge von deterministischen
Aktionen zu finden, welche von einem Anfangszustand zu einem Zustand führt, der eine Ziel-
bedingung erfüllt. Der häufigste Ansatz, Plannungsprobleme optimal zu lösen, ist heuristische
Suche, und insbesondere A∗-Suche in Kombination mit einer zulässigen Heuristik. Während es
viele verschiedene zulässige Heuristiken gibt, konzentrieren wir uns in dieser Dissertation auf
Abstraktionsheuristiken und insbesondere die bewährten Merge-and-shrink-Heuristiken.

Unser theoretischer Hauptbeitrag ist die umfassende Beschreibung des Merge-and-shrink-
Frameworks in Form von Transformationen von Transitionssystemen. Im Gegensatz zu frühe-
ren Darstellungen ist unsere Beschreibung modular, d.h. kann durch Verstehen aller isolierten
Transformationen verstanden werden. Insbesondere beschreiben wir nicht nur die namensge-
benden Merge- und Shrink-Transformationen, sondern auch Pruning und Label Reduction als
solche Transformationen. Letztere basiert auf einer verallgemeinerten Theorie von Label Re-
duction, welche alle Einschränkungen der vorherigen Definition von Label Reduction aufhebt.
Wir untersuchen die vier Typen von Transformationen im Hinblick auf wünschenswerte formale
Eigenschaften und erläutern, wie sich diese Eigenschaften auf Heuristiken auswirken, sodass
diese zulässig und konsistent oder sogar perfekt sind. Des Weiteren beschreiben wir eine opti-
mierte Implementierung des Merge-and-shrink-Frameworks, welche substanziell effizienter als
vorherige Implementierungen ist.

Weiterhin untersuchen wir die Ausdrucksstärke von Merge-and-shrink-Abstraktionen, indem
wir faktorisierte Abbildungen, die von Merge-and-shrink zur Darstellung von Funktionen ver-
wendeten Datenstrukturen, analysieren. Insbesondere zeigen wir, dass es bestimmte Familien
von Funktionen gibt, die sich mit sogenannten nicht-linearen faktorisierte Abbildungen kom-
pakt darstellen lassen können, nicht aber mit linearen.

Auf der praktischen Seite tragen wir mehrere nicht-lineare Mergestrategien zum Merge-and-
shrink-Portfolio bei. Insbesondere übertragen wir eine Mergestrategie aus dem Bereich der Mo-
dellprüfung zum Planen, beschreiben ein Framework zur Verbesserung existierender Merge-
strategien durch Verwendung von Symmetrien, entwickeln eine einfache wertbasierte Merge-
strategie zur Minimierung der maximalen Größe von Transitionssystemen während der Merge-
and-shrink-Berechnung und beschreiben ein weiteres Framework zur Verbesserung existierender
Mergestrategien, welches auf einer Analyse von Kausalabhängigkeiten des Planungsproblems
beruht.

In einer groß angelegten experimentellen Studie zeigen wir die Entwicklung der Performanz
von Merge-and-shrink-Heuristiken auf Planungs-Benchmarks auf. Beginnend mit dem Stand der
Technik vor den Beiträgen dieser Dissertation evaluieren wir anschließend alle unsere Techniken
und zeigen, dass nicht-lineare Merge-and-shrink-Heuristiken des neuesten Stands der Technik
signifikant besser sind als vorherige Merge-and-shrink-Heuristiken.
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1. Introduction

Automated planning (Ghallab, Nau, & Traverso, 2004) is one of the oldest disciplines of arti-
ficial intelligence. Planning deals with finding a sequence of actions that leads from an initial
situation of the world to some desirable goal situation, or to show that no such solution exists.
For example, a logistics planning task could be to transport several packages, which initially
are in different cities, to their destinations, using trucks to drive between cities or airplanes to
cover larger distances. Other so-called planning domains include, but are not limited to, single-
player games such as FreeCell or Sokoban, solving combinatorial puzzles like the 15-puzzle,
green-house logistics and other logistics-like problems, space applications such as navigation
and scheduling of a mars rover and scheduling of satellites, other scheduling tasks such as air-
port security or printing in large printer networks, controlling an elevator, and many more. The
key of domain-independent planing, however, is to solve such planning tasks of different do-
mains in a domain- and problem-agnostic way, i.e. only using the structural description of the
planning task at hand.

In this thesis, we deal with classical planning, which is the subset of planning that works with
planning tasks which are fully observable, deterministic, discrete, and single-agent problems,
which means that there is no adversary or other sources of non-determinism or uncertainty.
Furthermore, we are interested in finding optimal solutions, i.e. solutions that minimize cost.
Classical planning tasks can be compactly described and are often specified using the planning
description language PDDL (e.g. McDermott et al., 1998; Fox & Long, 2003; Edelkamp &
Hoffmann, 2004). Most modern planning systems ground the lifted PDDL representation of
planning tasks into STRIPS or SAS+ representations.

One of the most prominent approaches of domain-independent planners of the last decade is
(explicit) heuristic search (Bonet & Geffner, 2001). With this approach, planners cast the prob-
lem of solving a planning task as finding a path in the state space induced by the planning task.
To this end, they use a search algorithm in conjunction with a heuristic function (Pearl, 1984)
that estimates costs-to-go in the state space for search guidance. While the induced state spaces
are typically too large to be explicitly represented in memory and exhaustively searched, they
can be searched using the black box model of the state space provided by the compact descrip-
tion of the planning task. The most common approach is to use explicit (forward) search, which
represents states explicitly and uses data structures like queues and hash sets to store individual
states encountered during search. Many enhancements for and variations of standard forward
search algorithms have been suggested, e.g. symmetry-breaking (e.g. Fox & Long, 1999, 2002;
Pochter, Zohar, & Rosenschein, 2011; Domshlak, Katz, & Shleyfman, 2012, 2015), partial or-
der reduction (e.g. Valmari, 1989; Wehrle & Helmert, 2012; Wehrle, Helmert, Alkhazraji, &
Mattmüller, 2013), decoupled search (Gnad & Hoffmann, 2015), and many others.

Furthermore, there are alternatives to explicit heuristic search: symbolic (heuristic) search
(McMillan, 1993), in contrast to explicit search, expands sets of states simultaneously, using
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Binary Decision Diagrams (Bryant, 1986) to represent such sets of states, which is much more
efficient than explicitly representing sets of states. While blind symbolic search (often regression
or bidirectional search) is already powerful, it has also been combined with heuristics (e.g. Kiss-
mann & Edelkamp, 2011; Edelkamp, Kissmann, & Torralba, 2012; Torralba, Linares López, &
Borrajo, 2013, 2016; Torralba, Alcázar, Kissmann, & Edelkamp, 2017). Another alternative that
does not use heuristics at all is SAT-based planning (e.g. Rintanen, Heljanko, & Niemelä, 2006;
Rintanen, 2012), which casts planning tasks as satisfiability problems and uses off-the-shelf SAT
solvers to solve the encoded planning tasks.

In this thesis, we focus on explicit heuristic search, and since we want to solve planning
tasks optimally, we use the A∗ algorithm (Hart, Nilsson, & Raphael, 1968). An A∗ search finds
optimal paths in directed graphs if the heuristic used is admissible, i.e. underestimates the real
cost-to-go. A natural question to ask is how to come up with domain-independent (admissible)
heuristics. From research in classical planning of the recent decades, four major classes of
heuristics have emerged (Helmert & Domshlak, 2009). Delete relaxation heuristics are based on
a simplification of planning tasks that ignores all “negative” effects (e.g. Bonet & Geffner, 2001;
Hoffmann & Nebel, 2001; Hoffmann, 2005; Keyder, Hoffmann, & Haslum, 2014; Domshlak,
Hoffmann, & Katz, 2015). Critical path heuristics estimate the cost of reaching a subgoal of
a task by the cost of the most expensive subsets of the subgoal being reached (e.g. Haslum &
Geffner, 2000; Haslum, 2009). Landmark heuristics compute sets of actions of which at least
one action must be taken in any plan and estimate the cost-to-go by the cost of the actions (e.g.
Richter & Westphal, 2010; Helmert & Domshlak, 2009; Keyder, Richter, & Helmert, 2010;
Bonet & Helmert, 2010; Bonet & Castillo, 2011). Finally, abstraction heuristics (see below)
compute exact plan costs in an abstracted variant of the planning task which only represents
some aspects of the planning task, but not all of it.

Besides these four classes of heuristics, techniques such as operator cost partitioning can be
used to combine heuristics (Katz & Domshlak, 2008; Yang, Culberson, Holte, Zahavi, & Fel-
ner, 2008; Katz & Domshlak, 2010b, 2007; Edelkamp, 2006; Pommerening, Röger, & Helmert,
2013). More recently, there has been an increasing interest in general operator cost partitioning
(Pommerening, Helmert, Röger, & Seipp, 2015) and heuristics that can be defined in the opera-
tor counting framework (Pommerening, Röger, Helmert, & Bonet, 2014; Seipp, Pommerening,
& Helmert, 2015; Pommerening, Helmert, & Bonet, 2017), where constraints of different types
of heuristics can be combined. Another line of work investigates different types of cost parti-
tionings for Cartesian abstractions (Seipp, Keller, & Helmert, 2017b, 2017a; Seipp, 2017).

In this thesis, we focus on using (single) abstraction heuristics to solve planning tasks op-
timally. Lots of research has been devoted to devising abstraction heuristics such as pattern
databases (Culberson & Schaeffer, 1998; Edelkamp, 2001; Felner, Korf, & Hanan, 2004; Holte,
Felner, Newton, Meshulam, & Furcy, 2006; Felner, Korf, Meshulam, & Holte, 2007; Haslum,
Botea, Helmert, Bonet, & Koenig, 2007), implicit abstractions (Katz & Domshlak, 2010a),
heuristics based on abstraction refinement (e.g. Knoblock, 1994; Seipp & Helmert, 2013; Bäck-
ström & Jonsson, 2013), or, more generally, to finding admissible ways of combining abstrac-
tion heuristics (e.g. Felner et al., 2004; Holte et al., 2006; Yang et al., 2008; Katz & Domshlak,
2010b). The particular abstraction heuristic we investigate in this thesis is the class of merge-
and-shrink heuristics, originally introduced for directed model checking (Dräger, Finkbeiner,
& Podelski, 2006, 2009), and later adapted to planning (Helmert, Haslum, & Hoffmann, 2007;
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Helmert, Haslum, Hoffmann, & Nissim, 2014). Merge-and-shrink abstractions are a flexible
class of abstractions which dominate many other classes of classical planning heuristics in terms
of expressive power (Helmert & Domshlak, 2009), including the abstractions underlying pattern
databases (e.g. Helmert et al., 2014). Furthermore, they are among the few heuristic approaches
that can derive perfect heuristics in polynomial time in nontrivial cases (Nissim, Hoffmann, &
Helmert, 2011; Helmert et al., 2014), thus offering polynomial-time optimal planning algorithms
for these cases.

The merge-and-shrink algorithm operates on a factored transition system, i.e. a set of ex-
plicitly represented transition systems, also called factors, which together represent the product
transition system, such as the transition system induced by a planning task. For example, the
state space of a SAS+ planning task (Bäckström & Klein, 1991) can be described by a factored
transition system where each factor is an atomic transition system, describing how the operators
of the planning task affect a single state variable. The process of computing a merge-and-shrink
abstraction begins with the factored transition system consisting of all atomic transition systems
and then iteratively applies transformation steps to the current factored transition system until
only a single factor remains. In parallel, merge-and-shrink algorithms also keep track of the ab-
straction mapping from the given factored transition system to the current one, using so-called
factored mappings, which are tree-like data structures representing arbitrary functions defined
on variable assignments. In the end, the final factored mapping represents an abstraction from
the product transition system of the given factored transition system to the final factor.

One example of transformations used by the computation are merge steps, which combine two
factors into a single factor representing their joint behavior. Another example are shrink steps,
which replace a single factor by a local abstraction, i.e. a smaller transition system that over-
approximates the behavior of this factor. Merge steps and shrink steps are the most prominent
transformations underlying merge-and-shrink abstractions, as can be seen from the fact that the
approach is named after them. However, they are not the only important transformations in the
framework.

Starting with the first work on merge-and-shrink abstractions in classical planning (Helmert
et al., 2007), all practical merge-and-shrink implementations have additionally included pruning
steps that eliminate states that can be shown not to be part of any solution, and label reduction
steps that modify the labels of state transitions, for example by combining multiple labels into
one. Pruning was only treated as a side node in previous work and label reduction was origi-
nally implemented (but not described) as a crucial efficiency improvement for the computation
of merge-and-shrink heuristics in the Fast Downward planning system (Helmert, 2006). Later,
Nissim et al. (2011) showed that label reduction in conjunction with bisimulation-based shrink-
ing allows the computation of perfect heuristics in polynomial time for some planning domains.

In this thesis, we investigate the merge-and-shrink framework, making the contributions de-
scribed in the following section.

1.1. Contributions

The first and major contribution of this thesis is the introduction of generalized label reduction
to the merge-and-shrink framework, replacing the previous theory of label reduction (Helmert et
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al., 2014), which had several severe shortcomings. Firstly, the “old” label reduction is very com-
plicated, spanning 7 pages of definitions and theorems in the main paper plus more than 2 pages
of proofs in an appendix in order to establish the conditions under which label reduction can be
safely applied. Secondly, these conditions restrict safe application of label reductions to only
one branch of the “merge tree” that represents the order of merge transformations, which led all
previous merge-and-shrink algorithms to only use so-called linear merge strategies. Thirdly, the
old label reduction breaks the clean view of merge-and-shrink abstractions as composable trans-
formations of arbitrary factored transition systems because it requires keeping track of structured
information for each label based on the representation of the underlying planning operators. This
requires “looking into” the planning task and that the allowed label reductions also depend on
shrinking. In contrast to this old label reduction, generalized label reduction is easy to under-
stand, always safe to apply, and fully conforms to the view of merge-and-shrink transformations
as local transformations of arbitrary factored transition systems with no restrictions regarding
the “internal structure” of transitions.

Furthermore, we make the following theoretical, algorithmic, and practical contributions to
the merge-and-shrink framework, which are often based on generalized label reduction or non-
linear merge-and-shrink:

• We provide a comprehensive description of the merge-and-shrink framework in terms of
transformations of factored transition systems. In addition to the merge and shrink trans-
formations, we show how label reduction and pruning (usually of unreachable states or
states from which the goal cannot be reached) fit naturally as generic transformations of
factored transition systems. The main contribution here is the new theory of label reduc-
tion, but we also provide the first detailed and formal account of the prune transformation.
We study these four types of transformations in terms of formal properties, such as ex-
actly preserving the behavior of the joint transition system represented by the factored
transition system, overapproximating this behavior, or preserving/overapproximating the
behavior on the set of reachable states only.

• We discuss the efficient implementation of merge-and-shrink abstractions. Specifically,
we describe improvements over the previous implementation of merge-and-shrink in the
Fast Downward planning system (Helmert, 2006; Helmert et al., 2014) in terms of mem-
ory usage and runtime by collapsing locally equivalent labels of transition systems and
further simplifications made possible by the fact that the new theory of label reduction
permits treating labels as opaque objects rather than operators of a planning task.

• We analyze the expressive power of factored mappings, the data structures used by merge-
and-shrink to represent arbitrary functions defined on assignments over finite-domain vari-
ables, and prove that non-linear factored mappings are strictly more powerful than linear
ones by showing that there exist problem families that can be represented compactly with
general factored mappings but not with linear ones. We also give a precise bound that
quantifies the necessary blowup incurred by conversions from general factored mappings
to linear ones.

• We provide a literature overview of merge and shrink strategies that existed before our
addition of generalized label reduction to the merge-and-shrink framework. Furthermore,
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we review related work which is based on the theory of generalized label reduction or
more generally, which makes use of non-linear merge-and-shrink.

• We devise several new non-linear merge strategies that improve the state of the art of
merge-and-shrink heuristics:

– We transfer the concept of structural symmetries (Shleyfman, Katz, Helmert, Siev-
ers, & Wehrle, 2015) to factored transitions systems, defining factored symmetries.
We investigate under which conditions factored symmetry reduction (i.e. shrinking
based on factored symmetries) yields perfect heuristics and discuss the relationship
to the state-of-art shrink strategy based on bisimulation (Nissim et al., 2011). We de-
vise a framework to enhance existing merge strategies by altering them to preferably
merge transition systems that are symmetric under factored symmetries, increasing
the amount of opportunities for perfect shrinking based on bisimulation.

– We adapt the original merge strategy from model checking to planning, naming it
DFP after their authors (Dräger et al., 2006), which is a simple “score-based” merge
strategy that assigns a score to each merge candidate. As an alternative to the rather
complex precomputed MIASM strategy, we devise a score-based alternative to min-
imize the maximum size of transition systems of the merge-and-shrink computation.
We further describe tie-breaking strategies that can be used with such score-based
merge strategies.

– We describe how to combine a-priori information from the strongly connected com-
ponents (SCCs) of the causal graph with simple score-based merge strategies in the
SCC framework: in a first step, the factors of the factored transition system are par-
titioned according to the SCCs and then the score-based merge strategy is used to
first merge all factors within partitions before combining the resulting products.

• We perform a large experimental study:

– We evaluate the impact of label reduction, showing that it has a large positive in-
fluence on performance and that generalized label reduction increases performance
even further. We also show that the first non-linear merge strategy DFP outperforms
all previous linear ones.

– Using the framework to enhance merge strategies by using factored symmetries, we
show that the computation of symmetry-enhanced merge strategies is more efficient
and that they often produce heuristics of higher quality. We also evaluate alterna-
tive ways of using symmetries, such as pruning the A∗ search or using symmetric
lookups, and combine the techniques as well.

– We show that an optimized implementation that takes advantage of generalized label
reduction by treating labels as completely opaque tokens increases the efficiency of
the merge-and-shrink computation significantly.

– In an analysis of merge strategies, we show that there is an untapped potential of
merge strategies by evaluating all possible merge strategies on small planning tasks
and large sets of randomly sampled merge strategies on all planning benchmarks.
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Furthermore, we investigate the effects of tie-breaking on score-based merge strate-
gies, showing large variations of performance. We also evaluate the SCC framework
with different secondary merge strategies.

– Finally, we provide an overview of different state-of-the-art merge-and-shrink con-
figurations and also compare them to other abstraction heuristics and state-of-the-art
planners.

1.2. Publications

Most results presented in this thesis have been previously published, mostly in major conferences
on artificial intelligence or automated planning. This section lists these and other publications
in chronological order, however grouped by their relevance for this thesis. For each paper, we
briefly describe its contents and provide pointers to the sections where it is discussed in this
thesis.

The following papers are of central importance for this thesis, as they all directly deal with
merge-and-shrink abstractions:

• The paper Generalized Label Reduction for Merge-and-Shrink Heuristics (Sievers, Wehr-
le, Helmert; AAAI 2014) introduces the theory of generalized label reduction to the
merge-and-shrink framework and shows that it is more powerful than the previous the-
ory both conceptually and experimentally. In the paper, we also adapt the original merge
strategy from model checking to planning and evaluate it.

The paper won an Honorable Mention for the Outstanding Paper Award at AAAI
2014 (shared with three other candidates for the outstanding paper award).

We discuss generalized label reduction in Sections 3.6 and 3.8, describe DFP in Sec-
tion 5.4, and evaluate the impact of (generalized) label reduction and DFP in the experi-
ments in Section 6.2.

• The paper Factored Symmetries for Merge-and-Shrink Abstractions (Sievers, Wehrle, Hel-
mert, Shleyfman, Katz; AAAI 2015) defines factored symmetries of factored transition
systems based on the notion of symmetries as used previously in planning for symmetry-
based pruning in a forward state-space search. In the paper, we show that shrinking based
on so-called atomic factored symmetries is captured by shrinking based on bisimulation
and as such is information-preserving. Based on this insight, we devise a framework to
enhance existing merge strategies through using information about factored symmetries
so that the merge process is guided towards maximizing the amount of exact shrinking.

Section 5.3 is based on this paper in large parts, excluding the experimental evaluation
which we discuss in Section 6.3.

• The paper On the Expressive Power of Non-Linear Merge-and-Shrink Representations
(Helmert, Röger, Sievers; ICAPS 2015) investigates the representational power of merge-
and-shrink. It shows that non-linear merge-and-shrink representations (called factored
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mappings in this thesis) are strictly more powerful than linear ones in that they can com-
pactly represent problem families which linear merge-and-shrink cannot compactly rep-
resent. It further gives a precise bound that quantifies the necessary blowup incurred by
conversions from general factored mappings to linear ones.

Chapter 4 is based on this paper in large parts.

• The paper An Analysis of Merge Strategies for Merge-and-Shrink Heuristics (Sievers,
Wehrle, Helmert; ICAPS 2016) analyses all possible merge strategies on small planning
tasks as well as large sets of randomly sampled merge strategies on the entire bench-
mark set and shows an untapped potential of existing merge strategies. The paper further
investigates the influence of tie-breaking on the merge strategy DFP, evaluates a simple
score-based variant of the MIASM strategy, and finally describes a hybrid merge strat-
egy that uses precomputed information from the causal graph and the score-based merge
strategy DFP to achieve state-of-the-art performance among merge-and-shrink heuristics.

We discuss the new merge strategies and the tie-breaking criteria of this paper in more
detail in Section 5.4. Most of the paper is of experimental nature, and we present its
results in our experimental study in Section 6.6.

• The paper Merge-and-Shrink Abstractions for Factored Transition Systems (Sievers,
Wehrle, Helmert; in preparation for submission to JAIR) presents the merge-and-shrink
algorithm as a framework operating on factored transition systems and factored mappings.
We define transformations of (factored) transition systems and show which desirable prop-
erties they have and how these transfer to heuristics induced by the transformation being
admissible and consistent, or even perfect. We also provide an algorithmic view of the
transformations and discuss their implementation. The paper is based on the first paper of
this list, but it also includes a discussion of related work that appeared after the introduc-
tion of generalized label reduction and contains a larger experimental evaluation.

Chapter 3 of this thesis is based on this work-in-progress paper in large parts.

The following papers are more tangential to the central topic of this thesis, but still mentioned
or discussed:

• In the paper Efficient Implementation of Pattern Database Heuristics for Classical Plan-
ning (Sievers, Ortlieb, Helmert; SoCS 2012), we describe the efficient implementation of
PDBs in Fast Downward.

While this thesis does not investigate PDB heuristics, we briefly discuss the differences of
factored mappings to PDBs in Section 3.2.3, in particular with respect to their expressive
power. We also compare merge-and-shrink heuristics against abstraction heuristics based
on PDBs in Section 6.9.

• The paper Heuristics and Symmetries in Classical Planning (Shleyfman, Katz, Sievers,
Wehrle, Helmert; AAAI2015) introduces the notion of structural symmetries, subsuming
several previous definitions of symmetries for planning. We show that many heuristics
based on delete relaxation, landmarks, and critical paths are invariant under symmetry
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in the sense that, given two symmetric states, they are guaranteed to compute the same
estimate.

We introduce structural symmetries in Section 2.4 and evaluate their application for sym-
metry-based pruning and symmetric lookups, also in combination with factored symme-
tries, in Section 6.5.

• The paper An Empirical Case Study on Symmetry Handling in Cost-Optimal Planning
as Heuristic Search (Sievers, Wehrle, Katz, Helmert; KI 2015), among other abstraction
heuristics, evaluates the three alternatives of using symmetries for merge-and-shrink and
the combinations thereof: for pruning an A∗ search, for using symmetric lookups over
several merge-and-shrink heuristics, and for using factored symmetries to enhance the
merge-and-shrink heuristic.

We briefly compare these alternatives experimentally in Section 6.5.

Finally, for completeness, we also include a list of unrelated publications that were written in
parallel to the publications relevant to this thesis:

• In the paper Bounded Intention Planning Revisited (Sievers, Wehrle, Helmert; ECAI
2014), we show that the operator partitioning of bounded intention planning (Wolfe &
Russell, 2011) corresponds to strong stubborn sets (Valmari, 1989; Wehrle & Helmert,
2012, 2014) under certain conditions.

• We took part in the International Planning Competition (IPC) 2014 with three entries:

– Fast Downward Cedalion (Seipp, Sievers, Hutter; IPC Deterministic Part 2014) is an
automatically learned sequential portfolio of Fast Downward configurations for both
the satisficing and optimal setting. To let the learning algorithm also possibly choose
merge-and-shrink configurations, we added rudimentary support of conditional ef-
fects in merge-and-shrink, since this was a requirement of IPC 2014. The portfolio
we learned for the optimal deterministic competition indeed uses a merge-and-shrink
configuration, however it is still based on the previous theory of label reduction with
linear merge strategies, and hence we do not discuss this portfolio in more detail in
this thesis.

– Fast Downward Cedalion (Seipp, Sievers, Hutter; IPC Planning and Learning Part
2014) uses the same technique as above for the learning part.

– Fast Downward SMAC (Seipp, Sievers, Hutter; IPC Planning and Learning Part
2014) is a variant of Fast Downward Cedalion that learns a single best configura-
tion rather than a sequential portfolio.

All three planners are based on the same learning technique which we describe in the paper
Automatic Configuration of Sequential Planning Portfolios (Seipp, Sievers, Helmert, &
Hutter, 2015), see below.

Results:

– In the deterministic setting, Fast Downward Cedalion achieved the 7th place out of
20 competitors in the satisficing track, and the 8th place out of 17 competitors in the
optimal track.
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– Out of 11 competitors in the learning part, Fast Downward Cedalion won the second
place of the best quality award and the first place of the best learner award.

– Out of 11 competitors in the learning part, Fast Downward SMAC won the third
place of the best quality award and the third place of the best learner award.
It also won the first place of the best basic solver award, out of 5 competitors,
granted to non-portfolio planners.

• In the paper Automatic Configuration of Sequential Planning Portfolios (Seipp, Siev-
ers, Hutter; AAAI 2015), we describe Cedalion, a conceptually simple approach for the
idea of combining portfolios and algorithm configuration, that greedily searches for the
⟨parameter configuration, runtime⟩ pair which, when appended to the current portfolio,
maximizes the portfolio improvement per additional runtime spent. We provide theoret-
ical guarantees that Cedalion yields portfolios within a constant factor of optimal for the
training set distribution. In an experimental evaluation, we show that Cedalion produces
portfolios of Fast Downward configurations that compete with and even outperform com-
petitors in the satisficing, agile, and learning setting.

• The paper A Doppelkopf Player Based on UCT (Sievers, Helmert; KI 2015) introduces
the German card game doppelkopf as a benchmark for research on AI games and provides
a baseline player based on the UCT algorithm (Kocsis & Szepesvári, 2006).

• The planner abstract Fast Downward Aidos (Seipp, Pommerening, Sievers, Wehrle, Faw-
cett, Alkhazraji; UIPC 2016) describes our submission to the First Unsolvability Inter-
national Planning Competition. The three planners we submitted are portfolios, and the
automatically configured variant AIDOS 3 contains several configurations that use merge-
and-shrink with generalized label reduction. Since the two manually configured variants
AIDOS 1 & 2 do not contain merge-and-shrink configurations and perform better, and
since it is hard to quantify the contribution of merge-and-shrink heuristics in AIDOS 3,
we do not discuss this paper further in this thesis.

Aidos is the winner of the UIPC 2016, outperforming 10 competitors.

• In the paper Graph-Based Factorization of Classical Planning Problems (Wehrle, Sievers,
Helmert; IJCAI 2016), we propose a generic approach for factorizing a classical planning
problem into an equivalent problem with fewer operator and variable dependencies. Our
approach is based on variable factorization, which can be reduced to the well-studied
problem of graph factorization. While the state spaces of the original and the factorized
problems are isomorphic, the factorization offers the potential to exponentially reduce the
complexity of planning techniques like factored planning and partial order reduction.

Presumably, variable factorization can be formalized as a transformation of our transfor-
mation framework: it can be understood as “inverse merging”, however using the Carte-
sian product instead of the synchronized product used by the merge transformation.

• The paper Strengthening Canonical Pattern Databases with Structural Symmetries (Siev-
ers, Wehrle, Helmert, Katz; SoCS 2017) can be understood as a continuation of our work
on factored symmetries for merge-and-shrink in that it describes a way of using structural
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symmetries to enhance PDB heuristics. More precisely, we show how to strengthen the
canonical pattern databases heuristic by adding symmetric pattern databases, making the
resulting heuristic invariant under structural symmetry, thus making it especially attrac-
tive for symmetry-based pruning search methods. Further, we prove that this heuristic is
at least as informative as using symmetric lookups over the original heuristic. An experi-
mental evaluation confirms these theoretical results.

• In the paper Structural Symmetries of the Lifted Representation of Classical Planning
Tasks (Sievers, Röger, Wehrle, Katz; ICAPS 2017 HSDIP Workshop), we transfer the
notion of structural symmetries to lifted planning task representations, based on a gen-
eralizing concept of abstract structures we use to model planning tasks. We show that
symmetries are preserved by common grounding methods and shed some light on the re-
lation to previous symmetry concepts. We discuss promising applications for which this
paper lays the foundation.

1.3. Outline

This thesis is structured as follows. In Chapter 2, we describe the necessary background. In
particular, we define classical planning tasks and describe how we can use heuristic search to
solve them (optimally). Furthermore, we introduce the concepts of abstractions and symmetries.

Chapter 3 then describes the merge-and-shrink framework. We begin with defining trans-
formations of transition systems as a general concept and show that transformations can have
desirable properties. These properties in turn transfer to properties of heuristics induced by the
transformations. We then turn our attention to factored representations as used by the merge-
and-shrink framework: factored transition systems describe transition systems such as those
induced by planning tasks and factored mappings are data structures that are suited to represent
functions defined on assignments over finite-domain variables, such as mappings from states of
factored transition systems to states of single transition systems. Furthermore, we show that
our transformation framework can also operate directly on factored transition systems. We then
define the four merge-and-shrink transformations, showing for each which properties it has and
how it can efficiently be composed with other transformations. Armed with all ingredients of
the merge-and-shrink framework, we describe the merge-and-shrink algorithm in full detail.
Finally, we discuss generalized label reduction in the light of the previous theory of label reduc-
tion, describe an algorithm to compute label reductions, and provide the means for an optimized
implementation of merge-and-shrink based on generalized label reduction.

In Chapter 4, we show that non-linear factored mappings are strictly more powerful than linear
ones in the sense that they can compactly represent problem families which no linear factored
mapping can compactly represent. We also provide precise bounds on the necessary blowup
incurred by converting a non-linear factored mapping to a linear one.

Chapter 5 gives a complete overview of transformation strategies used in practical merge-and-
shrink algorithms. In particular, we discuss related work that was presented before and after the
addition of generalized label reduction. Furthermore, we describe our own contributions to the
merge-and-shrink toolbox in detail.
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In Chapter 6, we provide an extensive experimental study of merge-and-shrink heuristics,
showing the evolution of their performance starting with linear merge-and-shrink using the pre-
vious theory of label reduction and ending with state-of-the-art configurations that use the newest
non-linear merge strategies. The study includes an evaluation of the impact of label reduction,
the framework based on factored symmetries, the optimized implementation based on general-
ized label reduction, and all non-linear merge strategies we devised. We also compare against
other state-of-the-art planning techniques.

Finally, Chapter 7 concludes this thesis with a summary of our contributions and a discussion
of future work.
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2. Background

In this section, we describe the necessary background. In particular, we define classical planning
tasks and describe how we can use heuristic search to solve them (optimally). Furthermore, we
introduce the concepts of abstractions and heuristics induced by abstractions. Finally, we briefly
touch on the topic of symmetries and their use for heuristics and search algorithms.

2.1. Classical Planning and Transition Systems

The formalism we consider in this thesis for the presentation of planning tasks and heuristics
is the SAS+ formalism (Bäckström & Nebel, 1995), augmented with action costs. In our ex-
perimental study reported in Chapter 6, we use the STRIPS (Fikes & Nilsson, 1971) subset of
PDDL planning tasks, which can be efficiently translated into SAS+ tasks (e.g. Helmert, 2009).
For both formalizations of planning tasks, the problem of deciding whether a plan exists for a
task of a given but unspecified domain is PSPACE-complete (Bäckström & Nebel, 1995).

SAS+ planning tasks are based on finite-domain variables, which we define next.

Definition 2.1 (Variable, Fact). A finite-domain variable v is a variable which can take values
from its associated finite domain dom(v). A fact ⟨v, x⟩ is a pair consisting of a variable v and
one its values x ∈ dom(v).

Given a set V of finite-domain variables, we define states over V as assignments to the vari-
ables in V .

Definition 2.2 ((Partial) State). Let V be a set of finite-domain variables. A partial state s is
a partial function over V , mapping each variable v ∈ vars(s) to a value from dom(v). By
vars(s), we denote the domain of the partial function, i.e. the variables for which the partial
state is defined. If vars(s) = V , then s is called a state.

We write (partial) states s as sets of assignments to values for all variables in vars(s), e.g.
s = {v 7→ x,w 7→ y} for variables {v, w} = vars(s) and values x ∈ dom(v), y ∈ dom(w). By
s[v] we denote the value of v in s. We say that two partial states s and s′ comply if s[v] = s′[v]
for all variables v ∈ vars(s) ∩ vars(s′).

Planning tasks also have operators to modify states.

Definition 2.3 (Operator). Let V be a set of finite-domain variables. An operator o has an
associated partial state pre(o) over V called the precondition of o, an associated partial state
eff (o) over V called the effect of o, and an associated non-negative value cost(o) ∈ R+

0 , called
the cost of o.

We can now put the pieces together to define a planning task.

12



Definition 2.4 (Planning Task). A planning task (in the SAS+ formalism) is a tuple Π =
⟨V,O, s0, s⋆⟩ with the following components:

• V is a finite set of finite-domain variables.

• O is a finite set of operators.

• s0 is a state, called the initial state.

• s⋆ is a partial state, called the goal.

As we will see below, planning tasks induce transition systems, which we define next.

Definition 2.5 (Labeled Transition System). A labeled transition system (or transition system
for short) is a tuple Θ = ⟨S,L, c, T, s0, S⋆⟩ where S is a finite set of states, L is a finite set
of transition labels, c : L 7→ R+

0 is a label cost function, T ⊆ S × L × S is a set of labeled
transitions, s0 ∈ S is the initial state and S⋆ ⊆ S is the set of goal states.

In words, a transition system is a directed graph whose nodes correspond to states and whose
edges correspond to transitions between states. Transitions are labeled, and the label typically
identifies the cause of the transition in the state space, such as an event happening in a discrete-
event system or an action executed by a planning agent. Labels can induce multiple transitions
of a transition system, and they are associated with a cost incurred by the transition.

Let Θ = ⟨S,L, c, T, s0, S⋆⟩ be a transition system. We write s ℓ−→ s′ to denote a transition
⟨s, ℓ, s′⟩ from s to s′ with label ℓ, and we may write s ℓ−→ s′ ∈ Θ for s ℓ−→ s′ ∈ T , and
similarly, s ∈ Θ for s ∈ S, whenever Θ is not specified further. A path from s to s′ is a
sequence π = ⟨t1, . . . , tn⟩ of transitions such that there exist states s = s0, . . . , sn = s′ with
ti = ⟨si−1, ℓi, si⟩ ∈ T for all i ∈ {1, . . . , n}. The cost of such a path is the accumulated cost of
the labels of the transitions, i.e.

∑n
i=1 c(ℓi).

We can now define the semantics of a planning task in terms of its induced transition system.

Definition 2.6 (Induced Transition System). Let Π = ⟨V,O, s0, s⋆⟩ be a planning task. The
induced transition system Θ(Π) is defined as ⟨S,L, c, T, s0, S⋆⟩ with the following components:

• S is the set of states over V .

• L = O, i.e. L contains a label o for each operator o ∈ O.

• c is a cost function with c(o) = cost(o) for all o ∈ O.

• s ℓ−→ t ∈ T iff pre(ℓ) complies with s and t is the state complying with eff (ℓ) and
t[v] = s[v] for all v ̸∈ vars(eff (ℓ)).

• s0 is the initial state of the planning task.

• S⋆ = {s ∈ S | s complies with s⋆}.
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Π = ⟨V,O, s0, s⋆⟩ with
V = {vT , vP } with dom(vT ) = {A,B,C} and dom(vP ) = {A,B,C,T}
O = {DRIVE-A-B : pre(DRIVE-A-B) = {vT 7→ A} eff (DRIVE-A-B) = {vT 7→ B}

cost(DRIVE-A-B) = 1,
DRIVE-A-C : pre(DRIVE-A-C) = {vT 7→ A} eff (DRIVE-A-C) = {vT 7→ C}

cost(DRIVE-A-C) = 1,
DRIVE-B-A : pre(DRIVE-B-A) = {vT 7→ B} eff (DRIVE-B-A) = {vT 7→ A}

cost(DRIVE-B-A) = 1,
DRIVE-B-C : pre(DRIVE-B-C) = {vT 7→ B} eff (DRIVE-B-C) = {vT 7→ C}

cost(DRIVE-B-C) = 1,
DRIVE-C-A : pre(DRIVE-C-A) = {vT 7→ C} eff (DRIVE-C-A) = {vT 7→ A}

cost(DRIVE-C-A) = 1,
DRIVE-C-B : pre(DRIVE-C-B) = {vT 7→ C} eff (DRIVE-C-B) = {vT 7→ B}

cost(DRIVE-C-B) = 1,
LOAD-A : pre(LOAD-A) = {vT 7→ A, vP 7→ A} eff (LOAD-A) = {vP 7→ T}

cost(LOAD-A) = 1,
LOAD-B : pre(LOAD-B) = {vT 7→ B, vP 7→ B} eff (LOAD-B) = {vP 7→ T}

cost(LOAD-B) = 1,
LOAD-C : pre(LOAD-C) = {vT 7→ C, vP 7→ C} eff (LOAD-C) = {vP 7→ T}

cost(LOAD-C) = 1,
UNLOAD-A : pre(UNLOAD-A) = {vT 7→ A, vP 7→ T} eff (UNLOAD-A) = {vP 7→ A}

cost(UNLOAD-A) = 1,
UNLOAD-B : pre(UNLOAD-B) = {vT 7→ B, vP 7→ T} eff (UNLOAD-B) = {vP 7→ B}

cost(UNLOAD-B) = 1,
UNLOAD-C : pre(UNLOAD-C) = {vT 7→ C, vP 7→ T} eff (UNLOAD-C) = {vP 7→ C}

cost(UNLOAD-C) = 1}
s0 = {vT 7→ A, vP 7→ B}
s⋆ = {vP 7→ C}

Figure 2.1.: Simple logistics planning task with one truck, one package and three locations.

Intuitively, the states of the induced transition system are the states over the variables of the
planning task, and the labels identify the operators of the planning task. There is a transition
from s to t with label ℓ if the operator o identified by ℓ is applicable in s, i.e.. if the precondition
of o complies with s. The successor state t is defined as the state that complies with the effect
of o for all variables for which this effect is defined, and for all other variables, it complies with
the original state s. The initial state is the same as in the planning task and the set of goal states
contains all states complying with the goal condition of the planning task.

Solutions for planning tasks are called plans. A plan π for Π is a path from the initial state to
some goal state in Θ(Π), and its cost is the cost of the path. Optimal planning is the problem of
finding a cost-minimal plan for a given planning task or showing that no plan exists.

We now illustrate the above definitions of planning tasks and (induced) transition systems
with the help of our running example, which is a simple logistics planning task with one truck T
and one package P . There are three locations A, B, and C, and the truck T can move from and
to all locations. The package P can be loaded into and unloaded from truck T if both are at the
same location.

Figure 2.1 shows a typical SAS+ representation of the planning task using two variables vT
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Figure 2.2.: Induced transition system Θ(Π) of the example planning task Π of Figure 2.1.

and vP that encode the position of the truck and the package, respectively. The initial state is the
situation where the truck is at A and the package at B. The goal condition is a partial state which
states that the package is at C. It is undefined for vT , i.e. the truck can be at any of the locations
in a goal state. The truck can move with DRIVE operators with the obvious precondition and
effect on the position variable vT of the truck. To load the package into the truck, both have to be
at the same location, and the effect is that the package is in the truck, i.e. vP 7→ T. Analogously
for unloading, the package has to be in the truck, and the effect is that the package is at the same
location as the truck afterwards, i.e. vP 7→ X if vT 7→ X.

We illustrate transition systems as follows. We draw states as circles with labels identifying
the state. Transitions are shown as arrows, labeled with the label of the transitions. As our
example is invertible, i.e. for every operator, there is an operator inverting the effect, we draw
double-headed arrows to denote that the there are two transitions, one in each direction between
the neighboring states, each labeled with one of the two labels next to the arrow. We follow no
rule which of the labels correspond to which direction, hoping that it is clear from the context.
Goal states are marked with a double circle, and the initial state has an unlabeled arrow ingoing
from no source node.

Consider now Figure 2.2 which shows the induced transition system Θ(Π) of the planning
task. Ignore the dashed boxes for the moment. In this example, the states are labeled with
two letters, the first denoting the position of the truck and the second denoting the position of
the package. For example, the initial state AB of the figure corresponds to the state {vT 7→
A, vP 7→ B} where the truck is at A and the package at B. All states whose second component
reads C are goal states because the package is at C in such states. Looking at the transition
AB DRIVE-A-B−−−−−−→ BB, it is clear that the corresponding operator is applicable in the state AB
because the truck is at A, and that the state BB is the successor state because the truck is at B
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and the position of the package did not change.
Before closing this section, we also define the concept of the causal graph (Knoblock, 1994),

which most of the merge strategies we consider in Chapter 5 are based on.

Definition 2.7 (Causal Graph). Given a planning task Π = ⟨V,O, s0, s⋆⟩, the causal graph (CG)
for Π is the directed graph G = ⟨V, E⟩, where E contains the following edges: for all variables
v ̸= w ∈ V and operators o = ⟨pre(o), eff (o)⟩ ∈ O, if v ∈ pre(o) and w ∈ eff (o), there is an
edge ⟨v, w⟩ ∈ E, and if v, w ∈ eff (o), there are edges ⟨v, w⟩ ∈ E and ⟨w, v⟩ ∈ E.

The causal graph captures causal dependencies of a planning task: an edge between two
variables indicates that changing the value of one of the variables depends on the value of the
other one

In our example, the causal graph contains two nodes for the two variables vT and vP . There
is a single edge from vT to vP induced by the LOAD and UNLOAD operators because they have
a precondition on vT and an effect on vP .

2.2. Heuristic Search

As we address optimal classical planning through the means of (explicit) heuristic search, we
are not only interested in deriving merge-and-shrink abstractions, but also in defining heuristics
based on these abstractions. Hence, we briefly recall the concept of heuristics (e.g. Pearl, 1984).

Definition 2.8 (Heuristic). Let Θ be a transition system with states S. A heuristic for Θ is a
function hΘ : S → R+

0 ∪ {∞} that maps each state s ∈ S to a value, called the estimate or
heuristic value of s. It estimates the cost of reaching a goal state from s.

Heuristics can have desirable properties which we define next.

Definition 2.9 (Properties of Heuristics). Let Θ be a transition system with states S and label
cost function c. Then a heuristic hΘ for Θ is called

• perfect for state s ∈ Θ if it maps s to the true cost of a cheapest path from s to any goal
state of Θ or∞ if no such path exists. We write h∗Θ(s) for the perfect heuristic value of s.

• goal-aware for state s ∈ Θ if hΘ(s) = 0 or s is no goal state.

• consistent for transition s ℓ−→ t ∈ Θ if hΘ(s) ≤ c(ℓ) + hΘ(s
′).

• admissible for state s ∈ Θ if hΘ(s) ≤ h∗Θ(s).

If the heuristic is perfect for all states of Θ, we write h∗Θ and call it the perfect heuristic.
Analogously, hΘ is called goal-aware or admissible if it is goal-aware or admissible for all states
of Θ, and it is called consistent if it is consistent for all transitions of Θ. We also write h instead
of hΘ if the transition system is clear from context.

To solve planning tasks optimally, we use the A∗ algorithm (Hart et al., 1968). The A∗

algorithm is a best-first search that uses a priority queue which orders search nodes according to
the f -value of their state. The f -value of a state s is defined as the sum of the cost to reach s
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from the initial state (g-value) and the estimated cost to reach a goal state from s (h-value). Hart
et al. (1968) prove that A∗ produces optimal solutions if used with admissible heuristics and that
it never needs to reopen a node if the heuristic is also consistent. We argue that these claims
still hold for an even less restricted class of heuristics, namely heuristics which are admissible
only for the subset of reachable states or consistent only for transitions between reachable states,
because only such states can be encountered and hence evaluated by the heuristic in any forward
search, including A∗. As a consequence, the heuristic values of unreachable states do not matter,
and we can allow heuristics to estimate the cost-to-go of unreachable states with arbitrary values
without affecting the properties of the heuristic for all other states.

The following definition formally introduces the concepts of dead and alive states.

Definition 2.10 (Reachable, Relevant, Dead, and Alive States). Let Θ = ⟨S,L, c, T, s0, S⋆⟩ be
a transition system. A state s ∈ S is unreachable iff there exists no path from s0 to s, otherwise
it is reachable. It is irrelevant iff there exists no path from s to some state s′ ∈ S⋆, otherwise it is
relevant. A state s that is unreachable or irrelevant is called dead; otherwise it is reachable and
relevant and called alive.

Let Θ be a transition system with reachable states R. We call a heuristic hΘ forward-goal-
aware if it is goal-aware for all states s ∈ R; forward-consistent if it is consistent for all tran-
sitions between states s, t ∈ R; forward-admissible if it is admissible for all states s ∈ R; and
forward-perfect if it is perfect for all states s ∈ R.

The following proposition formulates our above argumentation concerning A∗ used with
heuristics that are admissible or consistent only for the subset of the reachable states, i.e. for-
ward-admissible heuristics.

Proposition 2.1. The A∗ algorithm produces optimal solutions if used with forward-admissible
heuristics. It never needs to reopen a node if the heuristic is also forward-consistent.

2.3. Abstractions

Since we deal with abstraction heuristics in this thesis, we define abstractions and heuristics
induced by abstractions in this section. In particular, we present two prominent abstraction
heuristics, namely pattern databases (e.g. Culberson & Schaeffer, 1998; Edelkamp, 2001) and
Cartesian abstractions (Seipp & Helmert, 2013). We describe merge-and-shrink abstractions
in Chapter 3, where we will also define abstractions in more detail when defining them as a
transformation with specific properties within the transformation framework used by the merge-
and-shrink algorithm.

Definition 2.11 (Abstraction Mapping, Induced Abstract Transition System). Let Θ = ⟨S,L, c,
T, s0, S⋆⟩ be a transition system. An abstraction mapping (or abstraction) of Θ is a function
α : S 7→ Sα, and the induced abstract transition system Θα is defined as ⟨Sα, L, c, Tα, sα0 , S

α
⋆ ⟩

where Tα = {⟨α(s), ℓ, α(t)⟩ | ⟨s, ℓ, t⟩ ∈ T}, sα0 = α(s0), and Sα
⋆ = {α(s) | s ∈ Sα

⋆ }.

An abstraction is a state mapping α that maps from the states of the given transition system
to states of the abstract transition system. The abstract transition system in turn is induced by
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Figure 2.3.: Induced abstract transition system Θ(Π)α of the induced transition system of the
example planning task Π of Figure 2.1.

α, i.e. the initial state is mapped to the abstract initial state, goal states are mapped to abstract
goal states, and for each transition between two states in the given transition system, there is an
abstract transition with the same label between the two abstract states. We call α an abstraction
because it usually maps to a set of abstract states that is smaller than the original set of states.

As example, consider again the logistics planning task of Figure 2.1. Figure 2.2, showing the
induced transition system Θ(Π), includes an example abstraction mapping α, illustrated with
the dashed boxes: all states within a single dashed box are mapped to the same abstract state,
labeled with the number shown next to the box. For example, α(AC) = α(BC) = α(CC) = 1,
and α(CA) = α(CB) = 3.

Figure 2.3 shows the induced abstract transition system Θ(Π)α. We observe that, for example,
all transitions between the states AC, BC, and CC in the original transition system induce self-
looping transitions at state 1, onto which the three original states are mapped. Furthermore, state
1 is a goal state because at least one of the original states mapped to it is a goal state. (In this
case, all of the original states are goal states.) The state 0 is the initial state because the original
initial state AB is mapped to 0.

Definition 2.12 (Abstraction Heuristic). Let Θ be a transition system and let α be an abstraction
of Θ. Then the abstraction heuristic for Θ induced by α is defined as hαΘ(s) = h∗Θα(s) for all
states s of Θ.

Informally speaking, an abstraction heuristic for a transition system and an abstraction α
computes perfect heuristic values in the abstract transition system induced by the abstraction
α. Abstraction heuristics as defined above are admissible and consistent, a well-known result
(Helmert, Haslum, & Hoffmann, 2008) that we repeat in Chapter 3, adapted to our notion of
transformations.

In our example, the value of the abstraction heuristic hαΘ(Π) for the initial state is 3, be-
cause in Θ(Π)α, any optimal plan starting in state α(AB) = 0, e.g. ⟨LOAD-A,DRIVE-A-C,
UNLOAD-C⟩, has cost 3.

In the following, we restrict our attention to a particular class of abstractions, called projec-
tions, which form the basis for pattern database heuristics.

Definition 2.13 (Projection and PDB Heuristic). Let Π = ⟨V,O, s0, s⋆⟩ be a planning task and
let S be the set of states over V . Let P ⊆ V , called a pattern, and let S′ be the set of states
over P . A projection is a function πP : S 7→ S′ where πP (s) = s|P . An abstraction heuristic
induced by a projection πP is called a PDB heuristic, written hπP or hP for short.

Intuitively, a projection is an abstraction that perfectly preserves all aspects of a planning
task described with variables in the pattern and disregards all other aspects. Typically, a PDB
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heuristic is precomputed by computing all heuristic values for all states S′ over the pattern P
and storing them in a one-dimensional table (called the pattern database, from which stems
the name of the heuristic). With a perfect hash function that can be efficiently computed (e.g.
Sievers, Ortlieb, & Helmert, 2012), this PDB then allows simple lookups of heuristic values
during search.

We remark that for SAS+ planning tasks Π as we consider them here, we can compute the
abstract transition system induced by the projection by applying the syntactic projection onto
Π, denoted by Π|P , which means to “ignore” all information not pertaining to variables from
P , and then computing the transition system of Π|P . Further note that the example abstraction
shown above and illustrated in Figures 2.2 and 2.3 is not a projection, because, for example,
values A and B of variable vT are not distinguished in the abstraction, but value C is perfectly
distinguishable. For the abstraction to be a projection, either all or no values of vT have to be
distinguishable.

This example also shows the main limitation of PDBs: they are limited to either entirely or
not at all taking a variable into consideration. Merge-and-shrink heuristics are more flexible
than PDB heuristics in that they allow arbitrary combinations of both variables and values, and
they subsume PDB heuristics, although possibly incurring a polynomial overhead (e.g. Helmert
et al., 2014). We compare the representations underlying PDB heuristics and merge-and-shrink
heuristics in Section 3.2.3.

Despite this limitation, PDB heuristics have a long success story both for heuristic search
and planning and there is a large amount of research addressing questions such as how to se-
lect patterns, how to combine several PDB heuristics, or how to efficiently compute and store
PDB heuristics (e.g. Felner et al., 2004; Holte et al., 2006; Edelkamp, 2006; Felner et al., 2007;
Haslum et al., 2007; Sievers et al., 2012). For example, Haslum et al. (2007) define a simple
criterion for PDBs to be additive, which means that their heuristic values can be summed up
without violating admissibility. Based on this type of additivity, for a set of patterns (pattern col-
lections) C, they define the canonical PDB (CPDB) heuristic as follows. Let A be the maximal
(w.r.t. set inclusion) additive subsets of C. Then the CPDB heuristic for C is defined as

hC(s) = max
B∈A

∑

P∈A
hP (s)

Intuitively, the heuristic computes the sum whenever this is admissible and the maximum other-
wise. Haslum et al. also present a hill climbing procedure that performs a search in the space of
pattern collections, aiming at obtaining pattern collections which yield the best results with the
CPDB heuristic. The combination of hill climbing with the CPDB heuristic is commonly called
iPDB.

A different type of abstraction heuristics are the so-called Cartesian abstraction heuristics
(Seipp & Helmert, 2013). A set of states is called Cartesian if it can be written as the Cartesian
product of subsets of the domain of each variable, and an abstraction is called Cartesian if
all abstract states induced by the abstraction are Cartesian sets. This means that in a simple
example with two binary variables v, w that can take values in {0, 1}, an abstraction that maps
{v 7→ 0, w 7→ 0} and {v 7→ 1, w 7→ 1} into an abstract state s and {v 7→ 0, w 7→ 1} and {v 7→
1, w 7→ 0} into another abstract state t is not Cartesian because neither s nor t are Cartesian sets
of states: s uses all values of the two variable domains (hence {0, 1} × {0, 1} is a candidate for
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a Cartesian set describing s), however the states {v 7→ 0, w 7→ 1} and {v 7→ 1, w 7→ 0} are not
mapped to s. In contrast, the abstraction example described above (cf. Figures 2.2 and 2.3) is
Cartesian because all abstract states are Cartesian sets. For example, the abstract state 3 is the
Cartesian set {C} × {A,B}, and the abstract state 0 is the Cartesian set {A,B} × {A,B}.

The advantage of Cartesian abstractions is their increased granularity compared to PDBs and
that they allow efficient refinement steps of the counter-example guided abstraction refinement
(CEGAR) algorithm (e.g. Clarke, Grumberg, & Peled, 1999), which, starting from the coarsest
abstraction that maps all states into a single state, iteratively refines the abstraction by splitting
abstract states (Seipp & Helmert, 2013). While Cartesian abstractions subsume PDBs, merge-
and-shrink abstractions are more general than Cartesian abstractions because they can represent
every abstraction function. However, it is unknown whether merge-and-shrink abstractions can
compactly represent every Cartesian abstraction, i.e. with at most a polynomial overhead, simi-
larly to how they subsume PDBs (Seipp & Helmert, 2013).

Like PDBs, Cartesian abstraction heuristics are also more powerful if used in an ensemble:
Seipp and Helmert (2014) suggest computing a set of diverse Cartesian abstractions by guiding
the abstraction refinement process with different strategies, and to use saturated cost partitioning
on the abstractions to ensure that their combination remains admissible. In our experimental
study in Chapter 6, we compare against both iPDB and a state-of-the-art heuristic that is a
combination of several cost partitionings over a diverse set of abstractions, including PDBs and
Cartesian abstractions (Seipp, 2017).

2.4. Symmetries

While the application of symmetries outside of merge-and-shrink is not the focus of this thesis,
factored symmetries as we define them for the merge-and-shrink framework in Section 5.3 are
inspired by the notion of symmetries as they have been successfully applied in classical planning.
Examples include symmetry-based pruning (e.g. Fox & Long, 1999, 2002; Pochter et al., 2011;
Domshlak et al., 2012, 2015), state space transformations (e.g. Riddle, Douglas, Barley, &
Franco, 2016), performing symmetric lookups (e.g. Felner, Zahavi, Schaeffer, & Holte, 2005;
Felner et al., 2011; Sievers, Wehrle, Helmert, & Katz, 2015), and enhancing heuristics through
the incorporation of information on symmetries (Sievers, Wehrle, Helmert, Shleyfman, & Katz,
2015; Sievers, Wehrle, Helmert, & Katz, 2017). Most of these techniques are based on ground
representations of planning tasks, such as STRIPS or SAS+, but recently, there have also been
efforts to investigate symmetries of lifted representations such as PDDL (Riddle et al., 2016;
Sievers, Röger, Wehrle, & Katz, 2017).

To lay the foundation of factored symmetries as we discuss them later, we formally introduce
structural symmetries for SAS+ planning tasks in this section. Shleyfman et al. (2015) showed
that structural symmetries subsume several of previous concepts of symmetries. We further
describe two applications of structural symmetries in classical planning which is also evaluate
in our experimental study in Section 6.5.

We borrow the definition of structural symmetries for SAS+ planning tasks and some of the
following text from Sievers, Wehrle, Helmert, and Katz (2017).

Definition 2.14 (Structural Symmetry). Let Π = ⟨V,O, s0, s⋆⟩ be a planning task, and let F be
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the set of facts over V . A structural symmetry for Π is a permutation σ : V∪F ∪O → V∪F ∪O,
where

1. σ(V) = V and σ(F ) = F such that σ(⟨v, d⟩) = ⟨v′, d′⟩ implies v′ = σ(v);

2. σ(O) = O such that for o ∈ O, σ(pre(o)) = pre(σ(o)), σ(eff (o)) = eff (σ(o)),
cost(σ(o)) = cost(o);

3. σ(s⋆) = s⋆;

where σ({x1, . . . , xn}) := {σ(x1), . . . , σ(xn)}, and for a partial state s, s′ := σ(s) is the
partial state obtained from s such that for all v ∈ vars(s), σ(⟨v, s[v]⟩) = ⟨v′, d′⟩ implies
s′[v′] = d′.

Structural symmetries are also called goal-stable automorphisms because they preserve the
structure of the planning task with respect to goal states and paths to goal states.

We remark that given a structural symmetry σ, its application to sets or tuples X is naturally
defined as the set or tuple of element-wise applications of σ. The set of all structural symmetries
ΓΠ of a planning task Π forms a group under the composition operation. In practice, a set of
structural symmetries that generates (a subgroup of) the symmetry group ΓΠ can be efficiently
computed using off-the-shelf tools for discovery of automorphisms in explicit graphs (Pochter
et al., 2011; Shleyfman et al., 2015). For simplicity, in what follows, by a symmetry group Γ we
refer to a subgroup of the symmetry group ΓΠ of the planning task Π.

As an example, consider again the simple logistics task of Figure 2.1, this time extended to in-
clude a second truck U . This extended task contains an additional variable vU with dom(vU ) =
dom(vT ). Furthermore, there is a copy of each operator for truck U , e.g. DRIVEU -A-B, where
the occurrences of vT are replaced by vU . Finally, the domain of variable vP has an additional
value U. Intuitively, the two trucks T and U are interchangeable in every aspect of the planning
task. Formally, this modified task exhibits a structural symmetry σ that permutes the two trucks.
For example, σ(vT ) = vU and σ(⟨vT ,X⟩) = ⟨vU ,X⟩ for all X ∈ dom(vT ). σ also permutes the
operators, e.g. σ(DRIVE-A-B) = DRIVEU -A-B, with their preconditions and effects.

The most prominent application of symmetries in planning in recent years is symmetry-based
pruning of a forward search such as A∗. In a nutshell, symmetry-based pruning search algorithms
use symmetries to prune some of the symmetric states encountered during search if previously
seen symmetric states have been reached with the same or lower cost. Due to the structure-
preserving property of goal-stable automorphisms, a plan from state s exists iff the plan under
symmetry (hence of the same cost) exists from the symmetric state s′. This kind of pruning
preserves optimality.

One algorithm that implements such symmetry-based pruning and that we consider in our ex-
perimental study is orbit space search (OSS) (Domshlak et al., 2015). It performs an A∗ search,
however replaces all encountered states by their so-called canonical symmetric representatives
(e.g. the lexicographically smallest state of the set of all symmetric states), thus implicitly per-
forming duplicate detection against all symmetric states. To extract a solution after successful
termination of the search, the states and operators of the computed plan need to be mapped back
to the states and operators that were originally generated during search. For details, we refer to
the original paper.
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The second alternative we consider for using symmetries during search is to perform sym-
metric lookups, which means to maximize heuristic values over a set of symmetric states for a
given state s that should be evaluated. More precisely, for a given heuristic h, a state s and a
symmetry group Γ, the symmetric lookup heuristic over h is defined as hSL(s) := maxs∈S h(s),
where S := {s, s1, . . . , sm} is a set of states symmetric to s under structural symmetries from
Γ, including s itself. S can be chosen arbitrarily to trade off computation time against informa-
tiveness of the symmetric lookups, i.e. m = 0 is possible as well as computing the set of all
states symmetric to s under Γ.
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3. The Merge-and-Shrink Framework

In this central chapter of the thesis, we present the merge-and-shrink framework. The first
section, Section 3.1, describes the transformation framework for transition systems, including
desirable properties of transformations and how they transfer to heuristics being admissible or
perfect. While this section is rather independent of the merge-and-shrink framework, we still
include it here because it is a central building block of the merge-and-shrink framework in our
formalization. Section 3.2 then describes factored representations of transition systems and
(state) mappings, which are the second central concept of the merge-and-shrink framework. It
further links planning tasks to factored transition systems and explains the merge-and-shrink
algorithm using factored representations. Armed with the transformation framework and fac-
tored representations, the forthcoming four sections describe the individual transformations of
the merge-and-shrink framework, i.e. shrinking, merging, pruning and label reduction. Then, in
Section 3.7, we describe the merge-and-shrink algorithm in full detail. Finally, Section 3.8 dis-
cusses generalized label reduction: we compare the new theory with the previous theory of label
reduction, describe an algorithm to compute label reductions, and explain how merge-and-shrink
based on generalized label reduction can be efficiently implemented.

This chapter in large parts stems from our work-in-progress paper planned to be submitted to
JAIR.

3.1. Transformations of Transition Systems

At the core of the merge-and-shrink approach is the notion of transformations, which relate the
original transition system to a transformed one through state and label mappings. In this section,
we study such transformations, in particular discussing desirable properties of transformations
which translate into desirable properties of heuristics based on such transformations, such as
admissibility or perfection.

Definition 3.1 (Transformation). Let Θ be a transition system with states S and labels L, and
let Θ′ be a transition system with states S′ and labels L′. A transformation of Θ into Θ′ is a
tuple ⟨Θ′, σ, λ⟩, where Θ′ is called the transformed transition system, σ : S → S′ is called the
state mapping, and λ : L→ L′ is called the label mapping.

In words, a transformation of a transition system specifies the transformed transition system,
provides a state mapping relating the states of the given transition system to the states of the
transformed one, and analogously defines a label mapping relating the label sets.

Transformations can be used to compute mappings between transition systems. In particular,
we can use them to compute abstractions of transition systems. For instance, the merge-and-
shrink framework repeatedly applies transformations to a given transition system to obtain an
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abstract transition system, which can in turn be used to derive a heuristic function for the original
transition system (among other uses).

Definition 3.2 (Heuristic Induced by a Transformation). Let τ = ⟨Θ′, σ, λ⟩ be a transformation
of a transition system Θ into transition system Θ′. The heuristic for Θ induced by τ , hτΘ (or hτ

for short), is defined as hτΘ(s) = h∗Θ′(σ(s)).

In other words, the heuristic value of a state s of Θ is the perfect heuristic value of the trans-
formed state σ(s) in the transformed transition system Θ′.

3.1.1. Properties of Transformations

We now define desirable properties of transformations of transition systems. In the following,
for a function f : A→ B, by f−1 we denote the inverse function from elements of the image B
of f to subsets of the preimage A of f , defined as f−1(b) = {a ∈ A | f(a) = b}. The inverse
function may also be applied to sets B′ ⊆ B using the definition f−1(B′) = {a ∈ A | f(a) ∈
B′}.

Definition 3.3 (Properties of Transformations). Let τ = ⟨Θ′, σ, λ⟩ be a transformation of a
transition system Θ = ⟨S,L, c, T, s0, S⋆⟩ into a transition system Θ′ = ⟨S′, L′, c′, T ′, s′0, S

′
⋆⟩.

The following list defines properties that τ may have, along with a short-hand name for each
property. (For example, we say that τ satisfies INDS if τ is state-induced, as defined in the first
list entry.)

INDS τ is state-induced if σ is surjective, i.e. if ∀s′ ∈ S′ ∃s ∈ S: s ∈ σ−1(s′).

INDL τ is label-induced if λ is surjective, i.e. if ∀ℓ′ ∈ L′ ∃ℓ ∈ L: ℓ ∈ λ−1(ℓ′).

CONST τ is transition-conservative if ∀s ℓ−→ t ∈ T : σ(s) λ(ℓ)−−→ σ(t) ∈ T ′.

INDT τ is transition-induced if ∀s′ ℓ′−→ t′ ∈ T ′ ∃s ℓ−→ t ∈ T : s ∈ σ−1(s′)∧ t ∈ σ−1(t′)∧ℓ ∈
λ−1(ℓ′).

REFT τ is transition-refinable if ∀s′ ℓ′−→ t′ ∈ T ′ ∀s ∈ σ−1(s′) ∃s ℓ−→ t ∈ T : t ∈ σ−1(t′)∧ℓ ∈
λ−1(ℓ′).

CONSG τ is goal-conservative if ∀s ∈ S⋆: σ(s) ∈ S′
⋆.

INDG τ is goal-induced if ∀s′ ∈ S′
⋆ ∃s ∈ S⋆: s ∈ σ−1(s′).

REFG τ is goal-refinable if ∀s′ ∈ S′
⋆ ∀s ∈ σ−1(s′): s ∈ S⋆.

CONSC τ is cost-conservative if ∀ℓ ∈ L: c′(λ(ℓ)) ≤ c(ℓ).

INDC τ is cost-induced if ∀ℓ′ ∈ L′ ∃ℓ ∈ L: ℓ ∈ λ−1(ℓ′) ∧ c(ℓ) = c′(ℓ′)

REFC τ is cost-refinable if ∀ℓ′ ∈ L′ ∀ℓ ∈ λ−1(ℓ′): c(ℓ) = c′(ℓ′).

Based on these basic properties, we define the following derived properties, where A = B+C
means that τ has property A if it has properties B and C:
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• conservative: CONS = CONST + CONSG + CONSC

• induced: IND = INDS + INDL + INDT + INDG + INDC

• refinable: REF = REFT + REFG + REFC

Conservative transformations (CONS) are also called abstractions or homomorphisms. Ab-
stractions that are also induced (CONS + IND) are called induced abstractions or strict homo-
morphisms. Abstractions that are refinable (CONS + REF) are called exact transformations.
An exact induced transformation combines all three properties (CONS + IND + REF).

Finally, we introduce variants of CONST and CONSG for a subset Q ⊆ S of the states:

CONSQ
T τ is transition-conservative for Q if ∀s ℓ−→ t ∈ T with s, t ∈ Q: σ(s) λ(ℓ)−−→ σ(t) ∈ T ′.

CONSQ
G τ is goal-conservative for Q if: ∀s ∈ (S⋆ ∩Q): σ(s) ∈ S′

⋆.

All derived properties can be analogously applied with respect to a subsetQ ⊆ S of the states.
For example, τ is conservative forQ (CONSQ) if it satisfies CONSQ

T +CONSQ
G +CONSC, and

it is a strict homomorphism for Q if it is CONSQ + IND.

Informally speaking, a transformation τ of a transition system Θ into transition system Θ′

is an abstraction (homomorphism) if all behaviors possible in Θ are preserved by τ : every
transition of Θ has a corresponding abstract transition in Θ′ (CONST) of the same or lower cost
(CONSC), and every goal state has a corresponding abstract goal state (CONSG). As we will
show, this is sufficient for deriving admissible and consistent heuristics from τ .

Among these homomorphisms, strict homomorphism are in some sense the most accurate
ones: while they include all transitions and goal states that a homomorphism must include, they
do not include any additional transitions (INDT) or goal states (INDG) beyond those required by
the homomorphism property. They must not contain any abstract states (INDS) or labels (INDL)
beyond those that the state and label mapping map to. Finally, transformed label costs must
correspond to the cost of some original label (INDC), which together with cost-conservativeness
implies that the cost of a transformed label must be the minimum cost of its preimage labels. It
is not difficult to show that for every state mapping σ and label mapping λ, there exists a unique
transition system Θ′ such that τ = ⟨Θ′, σ, λ⟩ is a strict homomorphism, namely the induced
abstract transition system from Definition 2.11. Hence, strict homomorphisms are uniquely
described by their state and label mappings, and we say that Θ′ is the transition system induced
by σ and λ. Induced abstractions are practically desirable because they provide the strongest
possible heuristics among all abstractions with the same state and label mappings. They are also
theoretically desirable because they can be fully understood and analyzed in terms of the state
and label mapping.

Exact transformations are conservative “in both directions”: intuitively, refinability means
that all behaviors possible in Θ′ are also possible in Θ. All transformed transitions s′ ℓ′−→ t′ can
be mapped back to original transitions s ℓ−→ t for all preimages s of s′ (REFT), all preimages
of goal states are goal states (REFG), and the label mapping does not affect the label costs
(REFC). Together with the abstraction property, this implies that Θ and Θ′ behave in essentially
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(a) Original transition system.
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2 3

yz

x c′(x) = 4
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(b) Arbitrary transformation (not an abstraction).
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c′(x) = 2
c′(yz) = 2

(c) Abstraction (not a strict homomorphism).
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xy

xy
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c′(xy) = 3
c′(z) = 2

(d) Strict homomorphism (not exact).

02

1

3
x

yz

c′(x) = 4
c′(y) = 3
c′(z) = 2

(e) Exact transformation.

Figure 3.1.: Four different transformations of the transition system in part (a). The captions of
part (b)–(e) indicate the properties of the transformation.

the same way. To make this formal, we will prove that heuristics based on exact transformations
are perfect.

We remark that we define transition-refinability in such a way that given a transition s′ ℓ′−→ t′

of Θ′, Θ has a corresponding transition for all preimages s of s′ and some preimage t of t′.
One could alternatively consider a definition where Θ must have a transition for all t and some
s. Both definitions give rise to notions of abstract paths being refinable to concrete paths, but
the alternative definition does not lead to a perfect heuristic. One could of course also require
corresponding transitions to exist for all s and all t, but this is unnecessarily restrictive as our
weaker property already leads to a perfect heuristic.

Figure 3.1 illustrates four example transformations with different properties. The original
transition system is shown in part (a) of the figure. All other parts of the figures show a transfor-
mation of this transition system. We use undecorated numbers and letters to denote states and
labels of the original transition system and overlined symbols to denote states and labels of the
transformed transition systems. If a state s of the original transition systems is mapped to some
state of the transformed transition system, then the name of the state includes s. For example,
a transformed state whose preimage consists of states 0 and 3 is denoted by 03. We proceed
analogously for labels. All transformations are state-induced and label-induced, so there are no
transformed states and labels other than those that the original state and labels map to.

Figure 3.1b shows the first transformation, an example of a non-abstraction transformation.
Indeed, it satisfies none of the properties of a conservative transformation. It is not goal-
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conservative because 3 is not a goal state even though 3 is. It is not transition-conservative
because the transformed transition system has no transition corresponding to 0 x−→ 3. Finally, it
is not cost-conservative because the cost of yz is higher (5) than the costs of y and z (4 and 3).

Figure 3.1c shows an abstraction: all transitions induce abstract transitions, all goal states
induce abstract goal states, and all labels are mapped to labels of the same or lower cost. If we
removed the transitions from 12 to 03, it would no longer be an abstraction (violating CONST),
but it would still be an abstraction for the subset of reachable states. The transformation is no
strict homomorphism because the transition 03 yz−→ 03 is not induced by any original transi-
tion (violating INDT) and also because the label cost 2 of x differs from the cost 4 of its only
preimage label x (violating INDC).

Figure 3.1d shows a strict homomorphism: all states, labels, transitions, goal states and label
costs are induced by the original transition system. The transformation is not exact for several
reasons: for example, it is not transition-refinable because the transition 01 z−→ 01 has no match-
ing original transition for the preimage 0 of 01, as neither 0 z−→ 0 nor 0 z−→ 1 are transitions of
the original transition system. The transformation is also not cost-refinable because the cost of
label xy (3) is lower than the cost of x (4).

Finally, Figure 3.1e shows an exact induced transformation: it is conservative, induced and
refinable.

Bäckström and Jonsson (2013) describe a similar framework to model abstractions as trans-
formations from a labeled digraph G to a labeled digraph G′. As in our case, transformations
must specify how the states and labels of the two digraphs are related. A major difference is that
while in our case the states and labels of the two digraphs are related by functions, Bäckström
and Jonsson consider more general relations. A transformation in their setting is represented by
a set-valued function f that maps states of G to sets of states of G′ (with further constraints that
essentially specify that f defines a bijection between equivalence classes of the states of G and
G′), and an arbitrary relation R between the labels of G and the labels of G′.

For example, this notion of transformation allows mapping a single state to multiple states,
and it is reversible in the sense that for each transformation from G to G′, there exists an inverse
transformation from G′ to G. We restrict ourselves to (functional) state and label mappings be-
cause these are simpler and sufficient for our purposes. A further difference is that the transition
graph formalism used by Bäckström and Jonsson does not include notions of initial states, goal
states or label costs, although of course these can be associated with transition graphs externally.

Bäckström and Jonsson also study properties of transformations, some of which are quite sim-
ilar to properties we defined, the main difference being that most of their properties do not con-
sider labels but only depend on the relationship between states. In some more detail, Bäckström
and Jonsson define several “method properties” for the state mapping f , including M↑, meaning
that f is functional (rather than set-valued); R↑, meaning in our notation that if s ℓ−→ t ∈ G, then
there is s′ ℓ′−→ t′ ∈ G′ such that R(ℓ, ℓ′); and C↑, meaning in our notation that if R(ℓ, ℓ′) and
s ℓ−→ t ∈ G, then there is s′ ℓ′−→ t′ ∈ G′ such that s′ ∈ f(s) and t′ ∈ f(t). They call a trans-
formation a homomorphism if it satisfies M↑R↑C↑.1 Our property CONST corresponds to this
notion of homomorphism, while our definition of homomorphism requires additional conditions

1Bäckström and Jonsson use concatenation to denote the combination of properties where we use the “+” symbol.
Moreover, for any symbol X where X↑ and X↓ are properties, their combination is abbreviated as X↕.
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on goal states and label costs, which are not present in their formalism.
Bäckström and Jonsson further define the converse properties R↓ and C↓ in the obvious way

and call a transformation satisfying M↑R↕C↕ a strong homomorphism. This corresponds to
adding INDT to CONST. Again, for a transformation to be a strong (strict) homomorphism in
our sense, we require additional conditions on goal states and label costs.

Despite these differences the approach by Bäckström and Jonsson is very similar in spirit and
execution to ours. Indeed, it was one of the major inspirations for our definition of transforma-
tions between transition systems as well as for the more general idea of studying the merge-and-
shrink framework in terms of a family of transformation properties.

3.1.2. Composition of Transformations

We now consider composing transformations.

Definition 3.4 (Composition of Transformations). Let τ = ⟨Θ′, σ, λ⟩ be a transformation of a
transition system Θ into a transition system Θ′, and let τ ′ = ⟨Θ′′, σ′, λ′⟩ be a transformation of
Θ′ into a transition system Θ′′. The composition of τ ′ and τ is the transformation of Θ into Θ′′

defined as τ ′ ◦ τ := ⟨Θ′′, σ′ ◦ σ, λ′ ◦ λ⟩.

It is easy to verify that the composition of two transformations is indeed a transformation.
The following theorem shows that a composed transformation inherits the common properties
of its component transformations.

Theorem 3.1. Let X be any of the properties of transformations from Definition 3.3. Let τ
be a transformation of transition system Θ into transition system Θ′ with property X, and let
τ ′ be a transformation of Θ′ into transition system Θ′′ with property X. Then the composed
transformation τ ′′ = τ ′ ◦ τ also satisfies X.

For the properties that are restricted to a subset of states (CONSQ
T and CONSQ

G), if τ satisfies
the property for the subset Q of states of Θ and τ ′ satisfies it for the subset Q′ of the states of
Θ′, then τ ′′ satisfies the property for the subset Q′′ = Q ∩ σ−1(Q′) of states of Θ.

Proof. Let Θ = ⟨S,L, c, T, s0, S⋆⟩, Θ′ = ⟨S′, L′, c′, T ′, s′0, S
′
⋆⟩, and Θ′′ = ⟨S′′, L′′, c′′, T ′′, s′′0,

S′′
⋆ ⟩. Let τ = ⟨Θ′, σ, λ⟩ and τ ′ = ⟨Θ′′, σ′, λ′⟩. Then τ ′′ = ⟨Θ′′, σ′′, λ′′⟩ with σ′′ = σ′ ◦ σ and
λ′′ = λ′ ◦ λ.

INDS The composition of surjective functions is surjective.

INDL The composition of surjective functions is surjective.

CONSQ
T Let Q′′ = Q ∩ σ−1(Q′). Consider s, t ∈ Q′′ and ℓ ∈ L with s ℓ−→ t ∈ T . Because τ

has property CONSQ
T forQ′′ ⊆ Q, we have that σ(s) λ(ℓ)−−→ σ(t) ∈ T ′. Because τ ′ has

property CONSQ
T for σ(Q′′) ⊆ Q′, we have that σ′(σ(s)) λ′(λ(ℓ))−−−−−→ σ′(σ(t)) ∈ T ′′,

which is σ′′(s) λ′′(ℓ)−−−→ σ′′(t) ∈ T ′′. Hence we get that ∀s, t ∈ Q′′ ∀ℓ ∈ L : s ℓ−→ t ∈
T ⇒ σ′′(s) λ′′(ℓ)−−−→ σ′′(t) ∈ T ′′, which shows that τ ′′ has property CONSQ

T for Q′′.

CONST Follows from CONSQ
T for Q = S and Q′ = S′. We obtain Q′′ = Q ∩ σ−1(Q′) =

S ∩ σ−1(S′) = S ∩ S = S.
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INDT Consider s′′ ℓ′′−→ t′′ ∈ T ′′. Then, because τ ′ has property INDT, there exists s′ ℓ′−→
t′ ∈ T ′ with s′ ∈ σ′−1(s′′), t′ ∈ σ′−1(t′′) and ℓ′ ∈ λ′−1(ℓ′′). Because s′ ℓ′−→ t′ ∈ T ′

and τ has property INDT, there exists s ℓ−→ t ∈ T with s ∈ σ−1(s′), t ∈ σ−1(t′)
and ℓ ∈ λ−1(ℓ′). Putting everything together, we obtain that given s′′ ℓ′′−→ t′′ ∈ T ′′,
there exists s ℓ−→ t ∈ T with s ∈ σ−1(σ′−1(s′′)) = σ′′−1(s′′), t ∈ σ−1(σ′−1(t′′)) =
σ′′−1(t′′) and ℓ ∈ λ−1(λ′−1(ℓ′′)) = λ′′−1(ℓ′′), which shows that τ ′′ has property
INDT.

REFT Consider s′′ ℓ′′−→ t′′ ∈ T ′′. If σ′′−1(s′′) = ∅, the property is vacuously true. (We
universally quantify over an empty set.) Otherwise, consider s′ ∈ σ′−1(s′′) and s ∈
σ−1(s′). Then, because τ ′ has property REFT, there exists s′ ℓ′−→ t′ ∈ T ′ with t′ ∈
σ′−1(t′′) and ℓ′ ∈ λ′−1(ℓ′′). Because s′ ℓ′−→ t′ ∈ T ′ and τ has property REFT, there
exists s ℓ−→ t ∈ T with t ∈ σ−1(t′) and ℓ ∈ λ−1(ℓ′). Putting everything together, we
obtain that given s′′ ℓ′′−→ t′′ ∈ T ′′, for all s ∈ σ−1(σ′−1(s′′)) = σ′′−1(s′′), there exists
s ℓ−→ t ∈ T with t ∈ σ−1(σ′−1(t′′)) = σ′′−1(t′′) and ℓ ∈ λ−1(λ′−1(ℓ′′)) = λ′′−1(ℓ′′),
which shows that τ ′′ has property REFT.

CONSQ
G Let Q′′ = Q ∩ σ−1(Q′). Consider s ∈ Q′′ ∩ S⋆. Because τ has property CONSQ

G
for Q′′ ⊆ Q, we have that σ(s) ∈ S′

⋆. Because τ ′ has property CONSQ
G for σ(Q′′) ⊆

Q′, we have that σ′′(s) = σ′(σ(s)) ∈ S′′
⋆ , and hence τ ′′ has property CONSQ

G for
Q ∩ σ−1(Q′).

CONSG Follows from CONSQ
G for Q = S and Q′ = S′. We obtain Q′′ = Q ∩ σ−1(Q′) =

S ∩ σ−1(S′) = S ∩ S = S.

INDG Consider s′′ ∈ S′′
⋆ . Then, because τ ′ has property INDG, there exists s′ ∈ S′

⋆ with
s′ ∈ σ′−1(s′′). Because s′ ∈ S′

⋆ and τ has property INDG, there exists s ∈ S⋆ with
s ∈ σ−1(s′). Hence, put together, we obtain that given s′′ ∈ S′′

⋆ , there exists s ∈ S⋆
with s ∈ σ−1(σ′−1(s′′)) = σ′′−1(s′′), which shows that τ ′′ has property INDG.

REFG Consider s′′ ∈ S′′
⋆ . If σ′′−1(s′′) = ∅, the property is vacuously true. (We universally

quantify over an empty set.) Otherwise, consider s′ ∈ σ′−1(s′′) and s ∈ σ−1(s′).
Then, because τ ′ has property REFG, we have s′ ∈ S′

⋆, and because τ has property
REFG, we have s ∈ S⋆. Put together, we obtain that given s′′ ∈ S′′

⋆ , for all s ∈
σ−1(σ′−1(s′′)) = σ′′−1(s′′), we have s ∈ S⋆, which shows that τ ′′ has property
REFG.

CONSC Consider ℓ ∈ L. Because τ has property CONSC, c′(λ(ℓ)) ≤ c(ℓ). Because τ ′ has
property CONSC, c′′(λ′(λ(ℓ)) ≤ c′(λ(ℓ)). Hence c′′(λ′′) = c′′(λ′(λ(ℓ)) ≤ c(ℓ),
which shows that τ ′′ has property CONSC.

INDC Consider ℓ′′ ∈ L′′. Because τ ′ has property INDC, there exists ℓ′ ∈ λ′−1(ℓ′′) with
c′(ℓ′) = c′′(ℓ′′). Because τ has property INDC, there exists ℓ ∈ λ−1(ℓ′) with c(ℓ) =
c′(ℓ′). Put together, there exists ℓ ∈ λ−1(λ′−1(ℓ′′)) = λ′′−1(ℓ′′) with c(ℓ) = c′′(ℓ′′),
which shows that τ ′′ has property INDC.
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REFC Consider ℓ′′ ∈ L′′. If λ′′−1(ℓ′′) = ∅, the property is vacuously true. (We universally
quantify over an empty set.) Otherwise, consider ℓ′ ∈ λ′−1(ℓ′′) and ℓ ∈ λ−1(ℓ′).
Then, because τ ′ has property REFC, c′(ℓ′) = c′′(ℓ′′), and because τ has prop-
erty INDC, c(ℓ) = c′(ℓ′). Put together, we obtain that given ℓ′′ ∈ L′′, for all
ℓ ∈ λ−1(λ′−1(ℓ′′)) = λ′′−1(ℓ′′), c(ℓ) = c′′(ℓ′′), which shows that τ ′′ has property
REFC.

3.1.3. Effect of Properties of Transformations on Heuristics

The properties of transformations affect the properties of heuristics induced by these transforma-
tions. In this section, we study this relationship, with an emphasis on admissible and consistent
heuristics and on perfect heuristics.

In the following, for a path π = ⟨s0 ℓ1−→ s1, . . . , sn−1
ℓn−→ sn⟩ in a transition system Θ, we

say that π is within Q ⊆ S if si ∈ Q for all 0 ≤ i ≤ n. The empty path from s ∈ Q to s is
considered to be within Q. If τ = ⟨Θ′, σ, λ⟩ is a transformation of Θ, we write τ(π) for the
transformed path ⟨σ(s0) λ(ℓ1)−−−→ σ(s1), . . . , σ(sn−1)

λ(ℓn)−−−→ σ(sn)⟩. Note that in general τ(π)
may include transitions that are not transitions of Θ′. We call τ(π) a legal path if it is actually a
path in Θ′.

Conversely, if π′ = ⟨s′0 ℓ′1−→ s′1, . . . , s
′
n−1

ℓ′n−→ s′n⟩ is a path in Θ′, by τ−1(π′) we denote the
refined paths of π′, i.e. τ−1(π′) = {⟨s0 ℓ1−→ s1, . . . , sn−1

ℓn−→ sn⟩ | si ∈ σ−1(s′i) for all 0 ≤
i ≤ n and ℓi ∈ λ−1(ℓ′i) for all 1 ≤ i ≤ n}. Again, in general, paths in τ−1(π′) may include
transitions that are not transitions of Θ. An element of τ−1(π′) is called a legal path if it is
actually a path in Θ.

The first theorem establishes how conservative transformations affect the existence and cost
of paths and plans in the transformed transition system.

Theorem 3.2. Let Θ be a transition system with states S and label costs c, and let τ = ⟨Θ′, σ, λ⟩
be a transformation of Θ into transition system Θ′ with label costs c′. Let Q ⊆ S, and let π be
a path within Q in Θ. Then:

1. If τ is transition-conservative for Q (CONSQ
T ), then τ(π) is a legal path within σ(Q) in

Θ′.

2. If τ is transition- and goal-conservative for Q (CONSQ
T + CONSQ

G) and π is an s-plan,
then τ(π) is a σ(s)-plan within σ(Q) for Θ′.

3. If τ is cost-conservative (CONSC), then c′(τ(π)) ≤ c(π).

Proof. 1. Let π = ⟨s0 ℓ1−→ s1, . . . , sn−1
ℓn−→ sn⟩ be a path within Q in Θ. We have τ(π) =

⟨σ(s0) λ(ℓ1)−−−→ σ(s1), . . . , σ(sn−1)
λ(ℓn)−−−→ σ(sn)⟩. Because τ is transition-conservative

for Q, all elements of τ(π) are transitions of Θ′, and hence τ(π) is a legal path in Θ′.
Moreover, because all states of π are in Q, all states of τ(π) are in σ(Q).
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2. Let π be an s-plan within Q for Θ, ending in goal state s′ ∈ Q. From the previous part,
we get that τ(π) is a legal path within σ(Q) in Θ′, beginning in state σ(s) and ending in
state σ(s′). Because τ is goal-conservative for Q, σ(s′) is a goal state, and hence τ(π) is
a σ(s)-plan within σ(Q) for Θ′.

3. Let π = ⟨s0 ℓ1−→ s1, . . . , sn−1
ℓn−→ sn⟩. Then τ(π) = ⟨σ(s0) λ(ℓ1)−−−→ σ(s1), . . . ,

σ(sn−1)
λ(ℓn)−−−→ σ(sn)⟩, and we get c′(τ(π)) =

∑n
i=1 c

′(λ(ℓi)) ≤
∑n

i=1 c(ℓi) = c(π),
where the inequality holds because τ is cost-conservative.

This theorem shows that conservative transformations preserve the existence of paths and
plans and do not lead to an increase in plan cost. This directly translates to admissibility and
consistency of heuristics based on such transformations.

Theorem 3.3. Let Θ be a transition system with reachable states R, and let τ be a transforma-
tion of Θ. The heuristic hτ for Θ induced by τ is

1. forward-goal-aware if τ is goal-conservative for R (CONSR
G),

2. forward-consistent if τ is transition-conservative for R and cost-conservative (CONSR
T +

CONSC),

3. forward-admissible if τ is conservative for R (CONSR),

4. goal-aware if τ is goal-conservative (CONSG),

5. consistent if τ is transition-conservative and cost-conservative (CONST + CONSC), and

6. admissible if τ is conservative (CONS).

Proof. Let Θ = ⟨S,L, c, T, s0, S⋆⟩ and Θ′ = ⟨S′, L′, c′, T ′, s′0, S
′
⋆⟩. We prove the claims 1.–

3. and observe that the same proofs can be used for the claims 4.–6. by replacing the set of
reachable states R with the set of all states S.

1. Let s ∈ R be a goal state of Θ. Then σ(s) is a goal state of Θ′ due to CONSR
G. Therefore,

hτ (s) = h∗Θ′(σ(s)) = 0.

2. Let s ℓ−→ t be a transition of Θ with s ∈ R. (This also implies t ∈ R.) We get hτ (s) =
h∗Θ′(σ(s)) ≤ c′(λ(ℓ)) + h∗Θ′(σ(t)) ≤ c(ℓ) + h∗Θ′(σ(t)) = c(ℓ) + hτ (t), where the first
inequality holds because σ(s) λ(ℓ)−−→ σ(t) is a transition of Θ′ (due to CONSR

T ) and the
perfect heuristic h∗Θ′ is consistent, and the second inequality holds because c′(λ(ℓ)) ≤ c(ℓ)
(due to CONSC).

3. Follows from the previous two claims because (forward-) goal-awareness and (forward-)
consistency implies (forward-) admissibility.
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In summary, conservative transformations (abstractions) give rise to admissible and consistent
heuristics. If a transformation is only conservative on the set of reachable states, we obtain
forward-admissibility and forward-consistency (i.e. admissibility and consistency for the set of
reachable states). We remark that the theorem can be generalized to other subsets Q of states
than the set of reachable states as long as we are only interested in paths or plans within Q.

In the following, we explore conditions under which transformations give rise to perfect
heuristics. As a first step, we study some key properties of refinable transformations.

Theorem 3.4. Let Θ be a transition system with label costs c, and let τ = ⟨Θ′, σ, λ⟩ be a
transformation of Θ into transition system Θ′ with label costs c′. Let π′ be a path from state s′

to state t′ in Θ′, and let s ∈ σ−1(s′). Then:

1. If τ is transition-refinable (REFT), then there exists a legal path π ∈ τ−1(π′) from s to
some state t ∈ σ−1(t′) in Θ.

2. If τ is transition-refinable and goal-refinable (REFT + REFG) and π′ is an s′-plan for
Θ′, then there exists an s-plan π ∈ τ−1(π′) for Θ.

3. If τ is cost-refinable (REFC), then c(π) = c′(π′) for all π ∈ τ−1(π′).

Proof. 1. The proof is by induction over the length of π′, denoted by |π′|. Base case: |π′| =
0, which implies π′ = ⟨⟩ and s′ = t′. Set t = s. Then π = ⟨⟩ ∈ τ−1(π′) is a legal path
from s ∈ σ−1(s′) to t = s ∈ σ−1(s′) = σ−1(t′). Inductive step: assume that the property
holds for |π′| = n and consider π′ with |π′| = n + 1. Let |π′| = π′u′ ◦ ⟨u′ ℓ′−→ t′⟩, i.e. π′

consists of a length-n path from s′ to some state u′, followed by a transition from u′ to
t′ with label ℓ′.2 By the induction hypothesis, there exists a legal path πu ∈ τ−1(π′u′) in
Θ from s to some state u ∈ σ−1(u′). Because of REFT, Θ has a transition u ℓ−→ t with
ℓ ∈ λ−1(ℓ′) and t ∈ σ−1(t′). Let π = πu ◦ ⟨u ℓ−→ t⟩. We observe that π ∈ τ−1(π′) and π
is a path from s to t ∈ σ−1(t′) in Θ, concluding the proof.

2. Because of part 1., there exists a legal path π ∈ τ−1(π′) from s to some state t ∈ σ−1(t′)
in Θ. Because π′ is a plan, t′ is a goal state of Θ′. With REFG and t ∈ σ−1(t′), we obtain
that t is a goal state of Π, and hence π is an s-plan.

3. Let ⟨ℓ′1, . . . , ℓ′n⟩ be the sequence of labels in π′. From the definition of refined paths, the
sequence of labels in π is of the form ⟨ℓ1, . . . , ℓn⟩ with ℓi ∈ λ−1(ℓ′i) for all 1 ≤ i ≤ n.
From REFC, we get c(ℓi) = c′(ℓ′i) for all 1 ≤ i ≤ n. We obtain c(π) =

∑n
i=1 c(ℓi) =∑n

i=1 c
′(ℓ′i) = c′(π′), concluding the proof.

The theorem shows that with refinable transformations, plans in the transformed transition
system can be “transformed back” into plans of the original transition system, at the same cost.
This result is roughly converse to Theorem 3.2, and it implies that the shortest path costs in
the transformed transition system under a refinable transformation can never be lower than the
corresponding shortest path costs in the original transition system. This leads to the following
result.

2We use the symbol “◦” to denote concatenation of sequences.

32



Theorem 3.5. Let Θ be a transition system with reachable states R, and let τ be a transforma-
tion of Θ. The heuristic hτ for Θ induced by τ is

1. lower-bounded by h∗ (h∗(s) ≤ hτ (s) for all states s) if τ is refinable (REF),

2. forward-perfect if τ is exact for R (CONSR + REF), and

3. perfect if τ is exact (CONS + REF).

Proof. Let τ = ⟨Θ′, σ, λ⟩. Part 1. follows directly from Theorem 3.4: for states s with hτ (s) =
∞, there is nothing to show. If hτ (s) = k < ∞, then Θ′ has a σ(s)-plan π′ of cost k. Because
s ∈ σ−1(σ(s)), Theorem 3.4.2 shows that Θ has an s-plan π ∈ τ−1(π′), and Theorem 3.4.3
shows that the cost of this plan is k. Therefore h∗(s), the cost of an optimal s-plan, is at most k.

Parts 2. and 3. follow from part 1. and the forward-admissibility/admissibility results of The-
orem 3.3 because h∗(s) ≤ hτ (s) (part 1.) and hτ (s) ≤ h∗(s) (admissibility) imply hτ (s) =
h∗(s).

The main message of this theorem is that exact transformations give rise to perfect heuristics.
Of course, this is no coincidence: we chose the name “exact” for conservative and refinable
transformations precisely for this reason.

Earlier, we discussed the relationship of our definition of transformations and their properties
to earlier work by Bäckström and Jonsson (2013). Similar relationships can be identified for the
results in this section.

Bäckström and Jonsson study several “metric” properties for concepts related to path costs.
Because their notion of transition systems does not include costs, for the discussion of metric
properties they augment transition systems with cost functions c between arbitrary pairs of states.
Their cost functions are unrelated to the transition labels and only loosely related to the transition
structure: in principle, they consider arbitrary cost functions with the only requirement that
c(s, t) =∞ iff there is no path from state s to state t. In particular, there is no requirement that
path costs are based on transition costs; it is permissible to have c(s, s) > 0 or for c to violate
the triangle inequality. However, all their results relevant to this discussion are with respect to a
more limited class of cost functions induced by weights on transitions in the natural way, which
is much closer to our model. The main difference is that we associate costs with transition labels,
while Bäckström and Jonsson associate costs directly with transitions.

Bäckström and Jonsson do not include goal states in their formalization, so they study notions
of admissibility and consistency for distances between arbitrary pairs of states rather than from
a given state to the nearest goal state. Their main result on admissibility and consistency is
that their notion of homomorphisms (transformations with property M↑R↑C↑ in their notation,
corresponding to our property CONST as discussed in Section 3.1.1) gives rise to admissible
and consistent heuristics if we additionally require the equivalent of property CONSC for their
way of modeling transition costs. This result (Theorem 15 in their paper) is analogous to our
Theorem 3.3.

Of course, the observation that homomorphisms induce admissible and consistent heuristics
is a very well known basic property of abstractions, so at a high level, this is neither a new
contribution by Bäckström and Jonsson nor is it a new contribution by us. Rather, in both works
the value of the results comes from the way that these well known observations are connected
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to a general model of transformations. In this sense, proving that abstractions induce admissible
and consistent heuristics in both works acts as a sanity test that (in both cases) the notions of
“abstractions” and “induced heuristics” were defined in a reasonable way.

Theorem 3.3 also notes that at least forward-admissibility and forward-consistency are guar-
anteed if the homomorphism property is only guaranteed for the set of reachable states. In the
work of Bäckström and Jonsson, there are no distinguished initial and goal states and hence no
concept of “reachable states”. However, they do discuss and prove some results for a variant
of admissibility that only applies to finite heuristic values (roughly speaking, if the heuristic
value is finite, it must be admissible, but inadmissible infinite estimates are permitted), which is
similar in spirit.

Bäckström and Jonsson do not discuss conditions for perfect heuristics, so their work does
not contain a result equivalent to Theorem 3.5, which establishes that conservative and refinable
transformations induce perfect heuristics. However, they do cover several notions of refinability,
leading to results with some similarity to our Theorem 3.4.3 Specifically, they consider proper-
ties of transformations under which every path in the transformed transition system is downward
state refinable (in the following refinable for short), studying several variants of refinability.

Expressed in our notation, the three main variants of refinability they consider can be de-
scribed as follows for a given transformation τ = ⟨Θ′, σ, λ⟩ of transition system Θ:

• trivial refinability (PT↓ in the notation of Bäckström and Jonsson): for every path from s′

to t′ in Θ′, there exists a path from some s ∈ σ−1(s′) to some t ∈ σ−1(t′) in Θ.

• weak refinability (PW↓): for every path s′0 → · · · → s′k in Θ′, there exist states s0 ∈
σ−1(s′0), . . . , sk ∈ σ−1(s′k) such that there exist paths from si−1 to si in Θ for all 1 ≤
i ≤ k.

• strong refinability (PS↓): for every path s′0 → · · · → s′k in Θ′ and for all states s0 ∈
σ−1(s′0), . . . , sk ∈ σ−1(s′k), there exist paths from si−1 to si in Θ for all 1 ≤ i ≤ k.

Bäckström and Jonsson (2012) show that strong refinability implies weak refinability, which
in turn implies trivial refinability, while the converse statements do not hold. One major dif-
ference between these notions and our notion of refinability employed in Theorem 3.4 is that
Bäckström and Jonsson treat transition systems as unlabeled digraphs for the purposes of refine-
ment; transition labels are ignored. Also, their notions are centered on paths, not transitions,
which in particular means that a single transition may be refined into an arbitrary long path.

Both of these choices mean that their notion of refinement cannot be used for quantitative
properties of heuristics like the relationship hτ (s) ≥ h∗(s) that holds for our notion of refine-
ment. However, refinement in the style of Bäckström and Jonsson can in principle be used for
a qualitative variation of this property based on reachability, namely that hτ (s) = ∞ whenever
h∗(s) =∞, i.e. perfect dead end detection. Of the above three notions of refinability, only strong
refinability guarantees perfect dead end detection: weak refinability (and by implication trivial
refinability) is too weak because of the existential quantification over s0 ∈ σ−1(s′0). Strong
refinability does guarantee perfect dead end detection, but is more restrictive than necessary for

3Some of the following results are due to an earlier, more detailed treatment of refinement by the same authors
(Bäckström & Jonsson, 2012).
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this purpose: it suffices to require that for every path from s′ to t′ in Θ′ and all s ∈ σ−1(s′),
there exists a path from s to some t ∈ σ−1(t′) in Θ. This condition is equivalent to a fourth
(unnamed) variant of refinability in the work of Bäckström and Jonsson (2012, 2013), which
they denote by P↓.

We conclude our discussion of transformations with a brief summary of the main results. We
have seen that conservative transformations (abstractions) give rise to admissible and consistent
heuristics, while exact (conservative and refinable) transformations give rise to perfect heuristics.
In the weaker case where the abstraction property only holds for the reachable states, we still
obtain the “forward” versions of these heuristic properties. These relationships between trans-
formation properties and heuristic properties, together with the earlier observation that induced
abstractions are in a formal sense the “most informative” abstractions, are the reason why we
consider conservativeness, inducedness and refinability desirable properties of transformations.
In Sections 3.3–3.6, we will come back to these properties of transformations in the context
of the merge-and-shrink framework. In particular, this will allow us to conclude under which
conditions the merge-and-shrink transformations give rise to admissible or perfect heuristics.

3.2. Factored Representations

In this section, we define the factored representations used by the merge-and-shrink framework.
We first define factored transition systems and explain how classical planning is an example
where factored transition systems occur. Then we also describe the so-called factored mappings
that can be used to represent functions defined on states of a factored transition system, such as
abstraction mappings or heuristic functions. Factored transition systems and factored mappings
can be used together for factored transformations, which in turn represent transformations as we
have discussed them in the previous section. Finally, we sketch the general merge-and-shrink
algorithm, making use of the factored representations defined before.

3.2.1. Factored Transition Systems

We first define factored transition systems.

Definition 3.5 (Factored Transition System). A factored transition system is a finite set F =
{Θ1, . . . ,Θn} of transition systems where each transition system Θi ∈ F has the same set of
labels L and the same label cost function c, i.e. Θi = ⟨Si, L, c, T i, si0, S

i
⋆⟩ for all 1 ≤ i ≤ n.

Informally speaking, a factored transition system consists of transition systems, also called
factors, sharing the same labels with the same cost. Figure 3.2 shows an example factored
transition system with two factors. We will give some intuition for the two factors in the next
section where we describe how planning tasks induce factored transition systems.

The main purpose of factored transition systems is to give a concise representation of large
transition systems by means of their product systems, which we define next.

Definition 3.6 (Product System). Let F = {Θ1, . . . ,Θn} be a factored transition system with
Θi = ⟨Si, L, c, T i, si0, S

i
⋆⟩ for all 1 ≤ i ≤ n. The product system (also called synchronized

product) of F is defined as
⊗
F := ⟨S⊗, L, c, T⊗, s⊗0 , S

⊗
⋆ ⟩, where S⊗ =

∏n
i=1 S

i, T⊗ =
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Figure 3.2.: Example of a factored transition system. Also: induced factored transition system
of the example planning task of Figure 2.1.

{⟨s1, . . . , sn⟩ ℓ−→ ⟨t1, . . . , tn⟩ | si ℓ−→ ti ∈ T i for all 1 ≤ i ≤ n}, s⊗0 = ⟨s10, . . . , sn0 ⟩, and
S⊗
⋆ =

∏n
i=1 S

i
⋆.4

In words, the product system is the transition system which is implicitly represented through
the synchronized behavior of the factored transition system. States in the product system corre-
spond to combinations of states of its factors. Labels are used to synchronize the factors of the
factored transition system via the labeled transitions: there is a transition between two states in
the product system iff all factors have a transition between the corresponding component states
labeled with the same label. A state is an initial/goal state in the product if all its components
are initial/goal states in the respective factors.

Let F = {Θ1, . . . ,Θn} be a factored transition system. Similarly to the notations for transi-
tion systems, we write ⟨s1, . . . , sn⟩ ∈ ⊗

F to denote states of
⊗
F , and also ⟨s1, . . . , sn⟩ ℓ−→

⟨t1, . . . , tn⟩ ∈ ⊗
F to denote transitions of

⊗
F . Sometimes, we also interpret states of⊗

F as assignments of the factors to their states, i.e. we may write a state s of
⊗
F as

{Θ 7→ t | Θ ∈ F, t ∈ S with S states of Θ}.5
Consider the factored transition system with the two factors shown in Figure 3.2. Ignore the

dashed boxes for the moment. Figure 3.3 shows the product system of this factored transition
system (note that the transition system is identical to the induced transition system of the exam-
ple planning task shown in Figure 2.2). However, the “names” of states are not formally correct:
for example, state AB should formally be written as ⟨A,B⟩ to properly refer to the product state
of the product system. In the following, we will consider transition systems as equivalent if
they only differ in the names of states. With this convention, the product operation is associa-
tive and commutative. To exemplify the definition of the product, we see that in the first factor
there is a transition A DRIVE-A-B−−−−−−→ B, and in the second factor there is a self-looping transition
B DRIVE-A-B−−−−−−→ B, and hence in the product there must be a transition AB DRIVE-A-B−−−−−−→ BB. Fig-
ure 3.3 indeed shows such a transition. The goal states of the product system are all those where
the second component reads C because only state C is a goal state in the second factor, and all

4The notation
∏n

i=1 A
i stands for the Cartesian product of the sets Ai, i.e.

∏n
i=1 A

i := A1 × · · · ×An.
5 The notation of states of product systems is not quite clean because we define F as a set and not a tuple, and thus

factors of F are not indexed. However, we think that it is clear what we mean and that the notation is sometimes
more readable than that using sets of assignments of factors (which will be useful when we reason about FMs).
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Figure 3.3.: Product system of the factored transition system shown in Figure 3.2.

states are goal states in the first factor.

3.2.2. Factored Representations of Planning Tasks

While the concepts we present in this chapter apply to arbitrary factored transition systems, we
illustrate them through their application to classical planning. We already defined planning tasks
in Section 2.1, cf. Definition 2.4, and showed that they induce transition systems which define
their semantics.

Planning tasks also induce a factored representation of the induced transition system in a
natural way. Before defining the induced factored transition system of a planning task, we first
need to define atomic factors of a planning task.

Definition 3.7 (Atomic Factor). Let Π = ⟨V,O, s0, s⋆⟩ be a planning task. The atomic factor
for variable v ∈ V is the transition system Θ(v) = ⟨dom(v),O, c, T, s0[v], S⋆⟩ where c is the
cost function mapping each label ℓ ∈ O to the cost cost(ℓ) of the operator, T = {d ℓ−→ d′ |
(v ̸∈ vars(pre(ℓ)) ∨ pre(ℓ)[v] = d) ∧ ((v ̸∈ vars(eff (ℓ)) ∧ d = d′) ∨ eff (ℓ)[v] = d′)}, and
S⋆ = {s⋆[v]} if v ∈ vars(s⋆) and S⋆ = dom(v) otherwise.

Informally speaking, an atomic factor represents the behavior of a single state variable of
a planning task, with states of the factor corresponding to possible values of its variable. As
such, atomic factors are closely related to the concept of domain transition graphs (Jonsson &
Bäckström, 1998), with the difference that atomic factors represent all operators of the planning
task, including self-looping transitions for operators that do not change the value of the variable.

Definition 3.8 (Induced Factored Transition System). The induced factored transition system of
a planning task Π with variables V is the set F (Π) := {Θ(v) | v ∈ V}.
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The factored transition system shown in Figure 3.2 above is the induced factored transition
system of the example planning task of Figure 2.1. The transition system shown in Figure 3.2a
is the atomic factor for variable vT , and the one in Figure 3.2b is the atomic factor for variable
vP .

An important observation is that the product system of the induced factored transition system
of a planning task is isomorphic (modulo names of states) to the induced transition system of
the planning task. We already have seen this with our example planning task: the product of
the induced factored transition system shown in Figure 3.2 corresponds to the induced transition
system shown in Figure 2.2 (which we included again in this section in Figure 3.3).

3.2.3. Factored Mappings

In addition to compactly describing transition systems, we also need a way to compactly describe
mappings (functions) defined on the states of a transition system. For example, we might need to
represent an abstraction mapping that relates the states of a large (“concrete”) transition system
to the states of a smaller (“abstract”) transition system, or we might want to represent a heuristic
function.

In the merge-and-shrink framework, such mappings are represented with a tree-like data struc-
ture we call factored mappings. They can be used for all functions which are defined over assign-
ments to a set of finite-domain variables, such as the state variables of a planning task. Factored
mappings have previously also been called “cascading tables” (Helmert et al., 2014; Torralba,
2015) and “merge-and-shrink representations” (Helmert, Röger, & Sievers, 2015). Below, we
repeat the definition by Helmert et al. (2015) adapted to our notations.

Definition 3.9 (Factored Mapping). Factored mappings (FMs) over a set of finite-domain vari-
ables V are inductively defined as follows. An FMM has an associated finite value set vals(M)
̸= ∅ and an associated tableMtab.M is either atomic or a merge.

• If M is atomic, then it has an associated state variable v ∈ V . Its table is a function
Mtab : dom(v)→ vals(M).

• IfM is a merge, then it has a left component FMML and a right component FMMR.
Its table is a functionMtab : vals(ML)× vals(MR)→ vals(M).

In words, FMs can be viewed as binary trees with merges as inner nodes and atomic FMs
as leaves. Leaves have an associated variable and define mappings from values of this variable
to some set of values. Inner nodes determine how the mappings of their children should be
combined. IfM is an FM defined over variables V , we write vars(M) ⊆ V for the associated
variables of all the (atomic) leaf components ofM.

Definition 3.10 (Represented Function). LetM be an FM over a set of finite-domain variables
V . In the following, we use the symbol M to denote both the FM and the function it repre-
sents. M represents a functionM mapping assignments α of vars(M) to vals(M), which is
inductively defined as follows:

• IfM is atomic with associated variable v, thenM(α) :=Mtab(α(v)).
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Figure 3.4.: An FM representing an abstraction mapping of the induced transition system of the
example planning task of Figure 2.1.

• IfM is a merge, thenM(α) :=Mtab(ML(α),MR(α)).

Informally speaking, FMsM over finite-domain variables V represent functions defined on
assignments over the subset vars(M) of variables relevant to the FM. To compute the function
value of a merge FM, the FM first recursively computes the values computed by its component
FMs, and then uses these values to index its associated 2-dimensional table function to look up
the result. The recursion ends at atomic FMs, which look up the values stored for the assignment
to their associated variable in their associated 1-dimensional table.

Our definition of FMs is slightly more general than earlier definitions (Helmert et al., 2015),
which require that an FM may only contain one atomic FM for each variable. (That is, in the
tree representation of the FM, all leaves refer to different variables.) FMs that follow this restric-
tion are called orthogonal. We permit non-orthogonal FMs because there is no strong reason to
disallow them, even though existing work on merge-and-shrink abstractions only considers the
orthogonal case. (A small exception is Section 7.1 of Helmert et al., 2014, which briefly men-
tions representing additive heuristic ensembles as a non-orthogonal merge-and-heuristic.)

Consider the (orthogonal) example FM shown in Figure 3.4. Each node is labeled with the
FM it corresponds to and connected to its table via a dotted line. The visualization does not
show the value sets, which can be inferred from the tables if we assume that they do not contain
unused values. In the example, vals(MT ) = {0, 1}, vals(MP ) = {0, 1, 2}, and vals(MTP ) =
{0, 1, 2, 3, 4}.

To illustrate the represented function of our example, consider the variable assignment α =
{vT 7→ A, vP 7→ T}. We can computeMTP (α) as follows:

MTP (α)

1
=Mtab

TP (MT (α),MP (α))

2
=Mtab

TP (Mtab
T (α(vT )),Mtab

P (α(vP )))

3
=Mtab

TP (Mtab
T (A),Mtab

P (T))
4
=Mtab

TP (0, 2)

5
= 2

In the first step, the variable assignment is passed down to the components of MTP . In the
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second and third step, the variable assignment is projected onto the variables of the atomic FMs
MT andMP . The recursion ends at the atomic FMs and they return the values stored in their
tables according to the given variable assignment in step 4. Finally, in the fifth step, these values
are used to index the table ofMTP , which gives 2 as the final result.

The FMMTP shown in Figure 3.4 represents an abstraction of the example planning task of
Figure 2.1 on page 14. The dashed boxes in Figures 3.3 and 3.2 on pages 37 and 36 aggregate
states that the example FMs map to the same abstract state. (Recall that we have already seen
this abstraction in the background section: Figure 2.3 shows the abstract induced abstract tran-
sition system after applying the abstraction to the transition system of Figure 3.3.) For example,
MT (A) =MT (B) = 0, and hence states A and B are included in a dashed box annotated with
the number 0 in Figure 3.2a. To continue the example of the computation above, the merge FM
MTP maps the value 0 computed by MT and the value 2 computed by MP to the value 2,
which means that all states where the truck is at A or B (specified throughMT ) and the package
is in the truck (specified throughMP ) are aggregated, as indicated by the dashed box around
the states AT and AB in Figure 3.3. The dashed box is annotated with the number 2 to show that
MTP (AT) =MTP (AB) = 2.

When using FMs to represent abstraction mappings, each component FM can be viewed as an
individual abstraction, so that the overall mapping is defined as a combination of many abstrac-
tions. In the example, we cannot distinguish whether truck T is at A or B becauseMT maps
them to the same value, and similarly we cannot distinguish whether P is at A or B because
MP drops this distinction. The merge FMMTP then further abstracts these two abstractions
by dropping the distinction of the truck being at A, B, or C if the package is at the goal location
C (both ⟨0, 1⟩ and ⟨1, 1⟩ are mapped to the same value 1).

We briefly discuss the relationship of FMs to pattern databases (PDBs) (Culberson & Scha-
effer, 1998; Edelkamp, 2001) in the following. Recall that PDBs are lookup tables that store
one entry for each possible variable assignment over the variables in its pattern. They can be
represented as FMs by using one leaf for each variable in the pattern, combining these leaves
with merges in any way (the precise shape of the tree does not matter), and using bijective ta-
ble functions for every component FM except the root FM, whose table function encodes the
heuristic function.

The main difference between the two representations is that PDBs only involve a single table
lookup, whereas FMs use nested lookups. The overall space complexity of the representations
and the lookup time are of the same magnitude in both cases. In particular, the lookup time for a
PDB is O(|P |) because we need to compute a perfect hash value for the given assignment to P ,
and the FM requires |P | table lookups for the leaves and |P | − 1 table lookups for the merges,
each taking constant time. With suitably efficient hash functions (e.g. Sievers et al., 2012), PDBs
can be expected to have an advantage in terms of the constant factors involved.

The advantage of FMs becomes apparent when we do not use bijective table functions, which
makes it possible to apply abstractions “along the way” and hence obtain potentially much
smaller representations for the same abstraction heuristic compared to a PDB. For example,
a PDB-style abstraction heuristic that uses information about all state variables in a complex
planning task is practically infeasible because it requires computing and storing heuristic values
for all states of the task. In contrast, merge-and-shrink heuristics based on FMs commonly use
information about all state variables. It is not difficult to prove that FMs are more general than
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PDBs in the sense that there exist functions that FMs can compactly represent but PDBs cannot
(e.g. Nissim et al., 2011; Helmert et al., 2014). For a full discussion of the general representa-
tional power and the required size of FMs, we refer to Chapter 4.

3.2.4. Factored Transformations

Analogously to how factored transition systems represent their product systems compactly and
how FMs represent mappings compactly, we can also use factored transformations to represent
transformations between factored transition systems compactly. A factored transformation trans-
forms a factored transition system and provides the state mapping through a set of FMs. Hence
factored transformations exclusively work on the factored representation of transition systems,
without the need to explicitly represent the potentially prohibitively large product system.

Definition 3.11 (FM Defined on a Factored Transition System). An FM defined on a factored
transition system F is an FM whose variables are the factors of F , and the domain of each
variable Θ ∈ F is the set of states of Θ.

The most simple FM defined on F is the projection FM, written πΘ, whose table projects a
given state of F , i.e. a set of assignments of the factors of F to their states, to its associated
variable Θ. Formally: πΘ is an atomic FM defined on F with variable Θ and a table function
that, for any state s = {Θ 7→ s[Θ] | Θ ∈ F} of F , is defined as πtab

Θ (s) = s[Θ]. Projection
FMs are useful to define identity mappings on factors of a factored transition system: their tables
represent the identity function from states of Θ to states of Θ. We use projection FMs for those
parts of factored transformations that do not change the factors of a factored transition system.

We further say that an FM σ is associated with a transition system Θ, written σΘ, if it maps to
the states S of Θ, i.e. vals(σΘ) = S. Since vals(πΘ) = S for the states S of Θ, the projection
FM πΘ is associated with Θ.

In the following, we write Σ for sets of FMs and σ (instead ofM as before) for single FMs of
such a set Σ of FMs for a clear distinction (both σ and Σ represent state mappings). Using FMs
defined on a factored transition system that are associated with the factors of the transformed
factored transition system, we can represent the state mappings of factored transformations of
F , as the following definition states.

Definition 3.12 (Factored Transformation). A factored transformation of a factored transition
system F with label set L into a factored transition system F ′ with label set L′ is a tuple τF =
⟨F ′,Σ, λ⟩, where

• F ′ is called the transformed factored transition system,

• Σ is an indexed collection (σΘ′)Θ′∈F ′ of FMs6 called the state mapping, where each FM
σΘ′ is defined on F and associated with Θ′ (i.e.maps to the states of Θ′), and

• λ : L→ L′ is called the label mapping.

The transformation induced by τF is a transformation of
⊗
F into

⊗
F ′ which is defined as

τ = ⟨⊗F ′, σ, λ⟩, where σ(s) = {Θ′ 7→ σΘ′(s) | Θ′ ∈ F ′} for all states s ∈⊗
F .

6That is, it is a collection of FMs, consisting of one FM σΘ′ for each Θ′ ∈ F ′.
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Factored transformations generalize (non-factored) transformations in a natural way: they
consist of the same components (a transformed transition system, a state mapping, and a label
mapping), but use factored representations for transition systems and state mappings. In the
following, we may refer to factored transformations as transformations where this does not lead
to ambiguities.

In a factored transformation of F into F ′ with |F | = n and |F ′| = m, the state mapping Σ
can be understood as a function with n inputs and m outputs. The m outputs are represented by
having a different FM associated with each of the m factors of F ′, and the n inputs correspond
to the n (input) variables of each FM (all FMs are defined on F and hence have the factors of
F as associated variables). Such n-to-m functions compose naturally, and this composition can
also be implemented directly based on the FM representations: if Σ′ is another state mapping
for a factored transformation of F ′ into a factored transition system F ′′ with |F ′′| = k, then
Σ′ ◦ Σ can be represented as a collection of FMs where each element σ′′Θ′′ can be constructed
from the tree representation of σ′Θ′′ by replacing each leaf associated with factor Θ′ with the tree
representation of σΘ′ . Equipped with this observation, it is easy to formalize the composition of
factored transformations.

Proposition 3.1. Let τF = ⟨F ′,Σ, λ⟩ be a factored transformation of a factored transition
system F into a factored transition system F ′ with Σ = (σΘ′)Θ′∈F ′ , and let τ ′F = ⟨F ′′,Σ′, λ′⟩
be a factored transformation of F ′ into a factored transition system F ′′ with Σ′ = (σ′Θ′′)Θ′′∈F ′′ .
Then τ ′′F = ⟨F ′′,Σ′′, λ′′⟩ is a factored transformation of F into F ′′, where λ′′ = λ′ ◦ λ and
Σ′′ = Σ′ ◦ Σ with Σ′′(s) = (σ′Θ′′((σΘ′)Θ′∈F ′(s)))Θ′′∈F ′′ for all states s ∈ F . We also write
τ ′F ◦ τF for τ ′′F .

Algorithm 1 shows pseudocode for the construction of the set Σ′′ = Σ′ ◦Σ of FMs of a com-
posed factored transformation, given the two sets Σ,Σ′ of FMs used for the two component fac-
tored transformations. The outer function, COMPOSESETSOFFMS, iterates over the elements of
Σ′, i.e. the FMs of the second factored transformation (line 3). As stated above, starting from the
representation of each such σ′Θ′′ mapping to one factor Θ′′ of the transformed factored transition
system F ′′, the algorithm builds the composed FM σ′′Θ′′ associated with the factor Θ′′ and stores
it at Σ′′[Θ′′] (line 4). Constructing σ′′Θ′′ is done in the function COMPOSEELEMENT in line 8
as follows. If σ′Θ′′ is a merge, the algorithm recursively “follows the tree” underlying σ′Θ′′ by
computing a merge FM consisting of the same components as those of σ′Θ′′ , however composed
with Σ, and the same table function as σ′Θ′′ (line 9). Otherwise, if σ′Θ′′ is atomic, the recursion
ends and instead of also copying the leaves of σ′Θ′′ , the algorithm uses the relevant outputs of
the FMs of Σ: in line 12, it copies the FM Σ[var(σ′Θ′′)] of Σ associated with the variable of σ′Θ′′ ,
i.e. Σ[var(σ′Θ′′)] is the FM in Σ that computes a result relevant to the input of σ′Θ′′ , and adapts
the table of that copy by applying the table function of σ′Θ′′ to it (line 13), i.e. the resulting FM
σnew is defined on F and maps to states of Θ′′ as desired.

We illustrate the composition just described with the example shown in Figure 3.5. There are
three variables v1, v2, and v3, each with domain {0, 1}, and hence the original factored transition
system F consists of three factors Θv1, Θv2, Θv3. The transformed factored transition system
of the first transformation, F ′, consists of three factors Θ′

1, Θ′
2, and Θ′

3. As we will see, Θ′
1 and

Θ′
2 are the products of two atomic factors, however further abstracted, and Θ′

3 is a (unmodified)
merge of two atomic factors. F ′′, the transformed factored transition system of the second
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Algorithm 1 Composition of sets of FMs in a composed factored transformation.

Input: Set Σ of FMs defined on F and associated with the factors of F ′, and set Σ′ of FMs
defined on F ′ and associated with the factors of F ′′.

Output: Set Σ′′ = Σ′ ◦ Σ of FMs defined on F and associated with the factors of F ′′.
1: function COMPOSESETSOFFMS(Σ,Σ′)
2: Σ′′ = ∅
3: for σ′Θ′′ ∈ Σ′ do

▷ Build the FM Σ′′[Θ′′] (also written σ′′Θ′′) by composing σ′Θ′′ (associated with
Θ′′ ∈ F ′′) with Σ.

4: Σ′′[Θ′′]← COMPOSEELEMENT(Σ, σ′Θ′′)
5: end for
6: return Σ′′

7: end function
8: function COMPOSEELEMENT(Σ, σ′Θ′′)
9: if σ′Θ′′ is a merge with components σL and σR then

▷ Build the merge FM from the given components and table.
10: return MERGEFM(COMPOSEELEM.(Σ, σL),COMPOSEELEM.(Σ, σR), σ′tab

Θ′′ )
11: else

▷ var(σ′Θ′′) is the associated variable of the atomic FM σ′Θ′′ and hence a factor of
F .

12: σnew ← COPYOF(Σ[var(σ′Θ′′)])
▷ Apply σ′tab

Θ′′ to σtab
new.

13: σtab
new ← COMPOSETABLE(σ′tab

Θ′′ , σtab
new)

14: return σnew
15: end if
16: end function
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(c) Σ′ ◦ Σ: set of FMs of the composed factored transformation.

Figure 3.5.: Illustration of the composition of sets of FMs as used in factored transformations.

transformation, consists of two factors Θ′′
1 and Θ′′

2 . As we will see, Θ′′
1 is the (unmodified)

product of Θ′
1 and Θ′

2 and Θ′′
2 is an abstraction of Θ′

3. Before explaining how the FMs of these
transformations can be composed using Algorithm 1, we discuss the two transformations and
their FMs in detail.

In part (a) of the figure, we see three FMs forming the set Σ, representing the state mapping
of the first factored transformation, i.e. the mapping from states from F to states of F ′. We omit
tables of leaves that represent the identity function on the variables of the leaves. The three FMs
σΘ′

1
, σΘ′

2
, and σΘ′

3
are defined on F and associated with the factors Θ′

1, Θ′
2, and Θ′

3 of F ′. They
are all merge FMs with two (different) atomic component FMs, where the first two FMs (σΘ′

1

and σΘ′
2
) represent non-identity mappings on the product of their component factors, and the

third FM (σΘ′
3
) represents the identity mapping on the product of its component factors. Since

the variables of the FMs are not disjoint, this is an example of a non-orthogonal set of FMs. (For
this reason, σΘv1 , σΘv2 , and σΘv3 are not unique but rather should be understood as different
copies of the same FMs.)

The FMs of the second transformation, defined on F ′ and representing the state mapping
from F ′ to F ′′, are shown in part (b), again omitting tables of leaves that represent the identity
function on the variables of the leaves: σΘ′′

1
is associated with factor Θ′′

1 and is a merge with
components σΘ′

1
and σΘ′

2
and hence variables Θ′

1 and Θ′
2, representing the identity mapping of

on the product of its two component factors. σΘ′′
2

is associated with factor Θ′′
2 and is atomic with

variable Θ′
3, representing an abstraction of its factor. Note that since we consider the second
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transformation in isolation here, σΘ′
1

and σΘ′
2

of Σ′ are not the same FMs as those of the same
name in Σ: the two FMs are merges in Σ, mapping from states of F to Θ′

1 and Θ′
2, whereas the

two FMs are atomic in Σ′, representing identity mappings on the states of Θ′
1 and Θ′

2.
We now describe how to compute the composition. Part (c) shows the set Σ′′ of composed

FMs, using C(. . . ) to show that the FMs are copies of the FMs in Σ and Σ′. To compute σΘ′′
1

of
Σ′′, Algorithm 1 starts with the representation of σΘ′′

1
of Σ′ by calling COMPOSEELEMENT(Σ,

σΘ′′
1
). Since σΘ′′

1
of Σ′ is a merge, the algorithm returns in line 9, computing the result as the

merge of the components of σΘ′′
1

of Σ′, however recursively composed with Σ. Both recursive
calls end recursion in the next layer, where the FMs σΘ′

1
and σΘ′

2
of Σ (the FMs in Σ associated

with the associated variables Θ′
1 and Θ′

2 of σΘ′
1

and σΘ′
2

of Σ′) are used by copying them and
applying the table function of σΘ′

1
and σΘ′

2
of Σ′ to the copies. Hence the resulting FM σΘ′′

1

of Σ′′ has the same root table as σΘ′′
1

of Σ′, however its components (since they are atomic and
hence leaves) have been replaced with copies of σΘ′

1
and σΘ′

2
of Σ. In this example, σΘ′

1
and

σΘ′
2

of Σ′′ have the same tables as σΘ′
1

and σΘ′
2

of Σ because σΘ′
1

and σΘ′
2

of Σ′ have tables
representing the identity function on their variables.

To compute σΘ′′
2

of Σ′′, the algorithm calls COMPOSEELEMENT(Σ, σΘ′′
2
) with σΘ′′

2
of Σ′.

Since σΘ′′
2

of Σ′ is atomic, the algorithm copies the FM σΘ′
3

of Σ (which is associated with
Θ′

3, the associated variable of σΘ′′
2

of Σ′), and applies the table of σΘ′′
2

of Σ′ to that copy. The
resulting FM σΘ′′

2
of Σ′′ hence is a modified copy of σΘ′

3
of Σ: the table of σΘ′′

2
of Σ′ has been

applied to the table of σΘ′
3

of Σ, which now maps ⟨1, 1⟩ to 2 rather than to 3 as in the first
transformation.

To conclude the example, in both cases, the resulting FMs are the trees that result from re-
placing the leaves of the FMs of the second transformation with the correct FMs of the first
transformation, namely those that map to states of the factor for which an associated FM should
be composed, but with the tables of the copies modified through applying the table function of
the FM of the second transformation.

To summarize the concept of factored and non-factored transformations, Figure 3.6 illustrates
the relationship between non-factored and factored transformations, and the compositions of
both. It shows factored transformations and their compositions on the left and the induced
transformations and their compositions on the right. We conclude that for the final result, it
does not matter whether we work on a factored representation or a non-factored representation
of a transition system; in the end, we can always obtain a transformation of the originally given
transition system (or the product of the originally given factored transition system) into the
transformed transition system.

3.2.5. Merge-and-Shrink Algorithm

Armed with factored representations of transition systems, (state) mappings, and transforma-
tions, we are now ready to present the merge-and-shrink algorithm in its general form.

Given a factored transition system F , such as a factored transition system induced by a plan-
ning task, the goal of the merge-and-shrink algorithm is to compute a heuristic for the product
system

⊗
F of F . It does so by computing an induced abstraction (for the reachable states)

of
⊗
F , which induces a heuristic for

⊗
F . This means the algorithm has to compute both

the transition system induced by the abstraction and the abstraction function itself, i.e. a state
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Figure 3.6.: Illustration of the composition of transformations, factored transformations, and the
relationship between factored and non-factored (compositions of) transformations.

mapping from the given to the abstract transition system. Since transition systems of practi-
cal interest are usually too large to be explicitly represented, the merge-and-shrink framework
directly operates on the factored representation of all involved components. In particular, it rep-
resents the input transition system as a factored transition system and then repeatedly modifies
this factored transition system through a sequence of factored transformations until only one
factor is left. To represent the state mapping, the algorithm also maintains a set of FMs that
jointly represent the mapping from the original factored transition system to the current one.

Algorithm 2 shows pseudocode of the merge-and-shrink framework. During the initializa-
tion, the algorithm first copies the input factored transition system F ′ for further modifications
(line 2). It then computes the set Σ of projection FMs πΘ′ for each factor Θ′ of F ′ (line 3),
which thus represent the identity state mapping on F ′. As a last step of the initialization, the
algorithm also computes the identity mapping λ on the labels L of F ′ (line 4). Since F ′ = F
after the initialization, ⟨F ′,Σ, λ⟩ is a (trivial or identity) factored transformation of F into F ′

at this point. This is also the invariant of the algorithm: after applying a transformation, it is
guaranteed that ⟨F ′,Σ, λ⟩ is a factored transformation of F into the current F ′.

The algorithm continues with the main loop, where in each iteration, it selects a transformation
⟨F ′′,Σ′, λ′⟩ of the current factored transition system F ’ in line 6. It “applies the transformation
to F ′”, which means to compose it with the current factored transformation ⟨F ′,Σ, λ⟩ (lines
7–9), hence ensuring that the invariant is restored. If there is only one factor Θ′ left in F ′, and
hence only one FM σΘ′ left in Σ that is defined on F and associated with Θ′, the algorithm
returns these two elements. As we will see in the following sections, the merge-and-shrink
transformations all satisfy properties such that the final transition system Θ′ is an abstraction
of

⊗
F , and σΘ′ is the abstraction function, mapping from states of

⊗
F to states of Θ′. The
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Algorithm 2 Merge-and-shrink algorithm operating on factored representations.

Input: Factored transition system F .
Output: Transition system Θ and FM σ mapping from states of

⊗
F to states of Θ.

1: function MERGEANDSHRINK(F )
▷ Copy the input factored transition system.

2: F ′ ← F
▷ For each factor Θ′ of F ′, compute the projection FM πΘ′ that projects states of F ′ to

the component states of Θ. Σ represents the identity mapping on F ′.
3: Σ← {πΘ′ | Θ′ ∈ F ′}

▷ Initialize λ as the identity function on labels L of F ′.
4: λ← idL
5: while |F ′| > 1 do
6: ⟨F ′′,Σ′, λ′⟩ ← SELECTTRANSFORMATION(F ′,Σ, λ)

▷ Update the current transformation ⟨F ′,Σ, λ⟩ to be the composition of the current
with the selected transformation ⟨F ′′,Σ′, λ′⟩.

7: F ′ ← F ′′

8: Σ← Σ′ ◦ Σ
9: λ← λ′ ◦ λ

10: end while
11: Θ′ ← the single element of F ′

12: σΘ′ ← the single element of Σ
13: return ⟨Θ′, σΘ′⟩
14: end function
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merge-and-shrink heuristic for F is the heuristic for hσΘ′⊗
F induced by

⊗
F and σΘ′ .

There are four types of transformations that the algorithm can choose from in SELECTTRANS-
FORMATION which we describe in more detail in the following sections: merge transformations
combine two factors of F ′ into one, reducing the size of F ′ by 1; shrink transformations ap-
ply abstractions to one of the factors of F ′; prune transformations “discard” (a subset of the)
dead states; and label reductions map the common label set of F ′ to a smaller set. Each of the
transformation types also represents a parameter of the merge-and-shrink framework: a merge
strategy specifies which two factors to merge, and similarly, a shrink strategy, a prune strategy
and a label reduction strategy determine how exactly to shrink, prune and reduce labels when-
ever such a transformation shall be applied. We will collectively refer to these as transformation
strategies.

Furthermore, a concrete instantiation of the algorithm also has to specify which transforma-
tion to choose in each iteration, and it may provide further global parameters that influence the
behavior of the transformation strategies, such as a global limit on the number of permitted
abstract states. In Section 3.7, we describe a specific instantiation of the merge-and-shrink algo-
rithm in detail and also provide more details on transformation strategies and other parameters
of the algorithm.

Before proceeding with the merge-and-shrink transformations in the following sections, we
briefly comment on two key aspects of such transformations that we need to consider: firstly,
we need to define how each factored transformation works, i.e. what kind of state and label
mappings it applies and how the transformed factored transition system is defined. Secondly,
we must be able to compose the factored transformation with any previous transformation. To
do so efficiently, we need to build upon the state and label mapping of the previous factored
transformations. While this is simple for label mappings, which are (non-factored) functions
that can just be composed, this can be more involved for composing sets of FMs, as we have
discussed before. In particular, for an efficient computation of the merge-and-shrink algorithm,
it will be important to not copy all of the FMs each time we compose two sets of FMs that are
part of two factored transformations that should be composed.

3.3. Shrink Transformation

In this section, we define the shrink transformation of the merge-and-shrink framework. For
a transition system Θ = ⟨S,L, c, T, s0, S⋆⟩ and a state mapping α defined on S, the transi-
tion system induced by Θ and α is defined as Θα = ⟨α(S), L, c, {⟨α(s), ℓ, α(t)⟩ | ⟨s, ℓ, t⟩ ∈
T}, α(s0), α(S⋆)}⟩. (These definitions match our definition of abstraction mappings and in-
duced abstract transition systems as we used them to define abstractions in the background sec-
tion on page 17.)

Definition 3.13 (Shrink Transformation). Let F be a factored transition system, and let Θ ∈ F .
Let α be a state mapping for Θ. A shrink transformation is a factored transformation τF =
⟨F ′,Σ, λ⟩ of F into a factored transition system F ′, where:

• F ′ = (F \ {Θ}) ∪ {Θα}.
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• Σ = (σΘ′)Θ′∈F ′ is an indexed collection of FMs, where each FM σΘ′ is defined on F
and associated with Θ′ ∈ F ′: σΘ′ := πΘ′ for all Θ′ ∈ F ′ with Θ′ ̸= Θα, and σΘα is an
atomic FM with variable Θ and σtab

Θα(s) := α(s[Θ]).

• λ = id is the identity label mapping.

In words, a shrink transformation applies a state mapping α to a single factor Θ of a given
factored transition system F , not changing the labels at all. The transformed factored transition
system F ′ is identical to the original one except for the single factor Θ to which the state map-
ping is applied, which is replaced by Θα, i.e. the transition system induced by Θ and α. The
set Σ of FMs representing the state mapping from F to F ′ consists of projection FMs for all
unmodified factors, since these projection FMs represent the identity function on the level of
single factors (their tables are identity functions on the domain of their variable, a factor of F , to
their associated factor in F ′, which are identical). The FM associated with the modified factor
represents the function which applies the state mapping α to a state of F projected onto Θ. This
means that for a given state s of F , interpreted as an assignment over its factors, Σ maps s to
a state s′ by mapping all component states of variables different from Θ to themselves, and by
mapping the component state sΘ of s in Θ to the state α(sΘ) of Θα.

We call such a transformation shrinking because we usually choose a state mapping α that
maps the states of Θ to some smaller set, hence effectively reducing the number of states in
the transformed (factored) transition system. In that way, shrinking offers a controlled way to
effectively reduce the size of the factors of a factored transition system. This is useful since
computing products as the merge transformation quickly grows large factors. The way in which
the state mapping α reduces the states of a factor determines how big the loss of information is,
hence offering a trade-off between heuristic quality and size of individual factors.

We now consider composing a shrink transformation with a previous transformation, as it is
required by the merge-and-shrink framework. While we already defined a general procedure
for composing sets of FMs of two factored transition systems, shown in Algorithm 1, a shrink
transformation can be composed with a previous transformation more efficiently. Instead of
copying all FMs of the previous transformation and then applying the table functions of the
atomic FMs of Σ (all of which except one are identity functions) to the copies, we can directly
reuse all FMs associated with factors that are not affected by the transformation. Also the FM
of the previous transformation that is associated with the factor for which α is defined can be
reused, however its table function needs to be updated by applying the state mapping α to it.

Formally, let F be the original input factored transition system to the merge-and-shrink algo-
rithm, and let F ′ be a factored transition system that results from applying a previous trans-
formation τF = ⟨F ′,Σ, λ⟩ to F with Σ = (σΘ′)Θ′∈F ′ . Let further τ ′F = ⟨F ′′,Σ′, λ′⟩ be
a shrink transformation of F ′ into factored transition system F ′′, based on a state mapping
α : Θshrink → Θα

shrink for some Θshrink ∈ F ′. Then we can compute Σ′′ as the composition
of Σ′ with Σ as follows: Σ′′ = (σ′′Θ′′)Θ′′∈F ′′ , where σ′′Θ′′ = σΘ′′ if Θ′′ ̸= Θα

shrink (because
then Θ′′ = Θ′ for some Θ′ ∈ F ′, and hence σΘ′′ ∈ Σ), and σ′′Θα

shrink
= σΘshrink , however with

σ′′tab
Θα

shrink
(s) := α(σtab

Θshrink
).

In the example of Figure 3.5 on page 44 that illustrates the composition of sets of FMs, the
second transformation illustrates, among others, the application of a state mapping to a single
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bines states 0 and 1 into a new state 0, and re-
names 2 to 1 and 3 to 2.

Figure 3.7.: Example of a shrink transformation that applies a state mapping to the factor Θ(vP )
of the induced factored transition system of the example planning task of Figure 2.1.

FM as done by shrink transformations: the FM σΘ′′
2

applies a state mapping to Θ′
3 that combines

states 2 and 3 into a single state 2 in the transformed factor. In the text of the example, we
explained the composition of that particular FM with the sets of FMs of the previous transfor-
mation, however using the general algorithm and not the above approach tailored to compose a
shrink transformation.

Consider the factored transition system induced by the example planning task of Figure 2.1.
An example shrink transformation τ applies a state mapping α to the atomic factor Θ(vP ),
combining states 0 and 1 (which correspond to values A and B of variable vP ). Figure 3.7a
shows the atomic factor Θ(vP ) (top) and the associated FM σΘ(vP ) representing the identity
state mapping (bottom). In Figure 3.7b, we see the shrunk transition system τ(Θ(vP )) (top) and
the transformed associated FM τ(σΘ(vP )) (bottom). In the shrunk transition system, states 0 and
1 are combined into a new state 0, and states 2 and 3 are renamed to 1 and 2 for continuous
numbering. The transitions are transformed accordingly, i.e. each original transition induces a
transition in the transformed transition system. In the transformed associated FM, we see that
both values A and B are now mapped to the new state 0 of the shrunk transition system, and also
C and T are mapped to 1 and 2 to correspond to the states of the shrunk transition system.

Theorem 3.6. Let F be a factored transition system. A shrink transformation τF of F into a fac-
tored transition system F ′ is a strict homomorphism, i.e. satisfies CONS + IND. It additionally
satisfies REFC.

Proof. Let τF be based on a state mapping α defined on some Θshrink ∈ F , where Θα
shrink ∈

F ′ is the transition system induced by Θshrink and α, i.e. τF = ⟨F ′,Σ, λ⟩ with λ = id and
Σ = (σΘ′)Θ′∈F ′ where σΘ′(s) = πΘ′ for all Θ′ ∈ F ′ with Θ′ ̸= Θα

shrink, and σtab
Θα

shrink
(s) =

α(s[Θshrink]). Let τ = ⟨⊗F ′, σ, λ⟩ be the transformation of
⊗
F into

⊗
F ′ induced by τF. In
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the following, we show that the induced transformation satisfies each of the claimed properties
CONST, CONSG, CONSC, INDS, INDL, INDT, INDG, INDC, and REFC. Since λ = id, we
simplify the notation by dropping the use of λ for transformed transitions.

• Consider a state s′ ∈ ⊗
F ′. By the definition of products, s′[Θ′] is a state of Θ′ for all

Θ′ ∈ F ′. Because α is surjective, there exists a state sΘ of Θshrink with α(sΘshrink) =
s′[Θα

shrink]. For all other Θ′ ∈ F ′, i.e. Θ′ ̸= Θα
shrink, there exists exactly one Θ ∈ F with

Θ = Θ′, and hence s′[Θ′] is a state of Θ. Put together, with setting s = {Θ 7→ s′[Θ′] |
Θ ∈ F,Θ′ ∈ F ′,Θ ̸= Θshrink,Θ

′ ̸= Θα
shrink,Θ

′ = Θ} ∪ {Θshrink 7→ sΘshrink} for some
sΘshrink ∈ α−1(s′[Θα

shrink]), we have that s is a state of
⊗
F with σ(s) = s′, which shows

that σ is surjective and thus τ satisfies INDS.

• Consider a transition s ℓ−→ t ∈⊗
F . By the definition of products, s[Θ] ℓ−→ t[Θ] ∈ Θ for

all Θ ∈ F . Furthermore, for all Θ′ ∈ F ′ with Θ′ ̸= Θα
shrink, there exists exactly one Θ ∈ F

with Θ = Θ′, and hence we have σΘ′(s) ℓ−→ σΘ′(t) ∈ Θ′ because σΘ′ is the projection
onto Θ′ and Θ′ = Θ. For Θα

shrink, we also have that σΘα
shrink

(s) ℓ−→ σΘα
shrink

(t) ∈ Θα
shrink

because Θα
shrink is the transition system induced by Θshrink and α, and σΘα

shrink
is defined

based on α and the projection onto Θshrink. Together, this implies that σΘ′(s) ℓ−→ σΘ′(t) ∈
Θ′ for all Θ′ ∈ F ′, and hence by the definition of products, σ(s) ℓ−→ σ(t) ∈⊗

F ′, which
shows that τ satisfies CONST.

• Consider a transition s′ ℓ−→ t′ ∈⊗
F ′. By the definition of products, s′[Θ′] ℓ−→ t′[Θ′] ∈ Θ′

for all Θ′ ∈ F ′. Because Θα
shrink is induced by Θshrink and α, there exists sΘshrink

ℓ−→
tΘshrink ∈ Θshrink with α(sΘshrink) = s′[Θα

shrink] and α(tΘshrink) = t′[Θα
shrink]. For all other

Θ′ ∈ F ′, i.e. Θ′ ̸= Θα
shrink, there exists exactly one Θ ∈ F with Θ = Θ′, and hence

s′[Θ′] ℓ−→ t′[Θ′] ∈ Θ. Put together, with setting s = {Θ 7→ s′[Θ′] | Θ ∈ F,Θ′ ∈ F ′,Θ ̸=
Θshrink,Θ

′ ̸= Θα
shrink,Θ

′ = Θ} ∪ {Θshrink 7→ sΘshrink} for some sΘshrink ∈ α−1(s′[Θα
shrink]),

and analogously t = {Θ 7→ t′[Θ′] | Θ ∈ F,Θ′ ∈ F ′,Θ ̸= Θshrink,Θ
′ ̸= Θα

shrink,Θ
′ =

Θ} ∪ {Θshrink 7→ tΘshrink} for some tΘshrink ∈ α−1(t′[Θα
shrink]), we have that s ℓ−→ t ∈⊗

F
with σ(s) = s′ and σ(t) = t′, which shows that τ satisfies INDT.

• Consider a goal state s ∈ ⊗
F . By the definition of products, s[Θ] is a goal state of Θ

for all Θ ∈ F . Furthermore, for all Θ′ ∈ F ′ with Θ′ ̸= Θα
shrink, there exists exactly one

Θ ∈ F with Θ = Θ′, and hence we have that σΘ′(s) is a goal state of Θ′ because σΘ′ is
the projection onto Θ′ and Θ′ = Θ. For Θα

shrink, we also have that σΘα
shrink

(s) is a goal state
of Θα

shrink because Θα
shrink is the transition system induced by Θshrink and α, and σΘα

shrink
is

defined based on α and the projection onto Θshrink. Together, this implies that σΘ′(s) is
a goal state of Θ′ for all Θ′ ∈ F ′, and hence by the definition of products, σ(s) is a goal
state of

⊗
F ′, which shows that τ satisfies CONSG.

• Consider a goal state s′ ∈ ⊗
F ′. By the definition of products, s′[Θ′] is a goal state of

Θ′ for all Θ′ ∈ F ′. Because Θα
shrink is induced by Θshrink and α, there exists a goal state

sΘshrink of Θshrink with α(sΘshrink) = s′[Θα
shrink]. For all other Θ′ ∈ F ′, i.e. Θ′ ̸= Θα

shrink,
there exists exactly one Θ ∈ F with Θ = Θ′, and hence s′[Θ′] is a goal state of Θ.
Put together, with setting s = {Θ 7→ s′[Θ′] | Θ ∈ F,Θ′ ∈ F ′,Θ ̸= Θshrink,Θ

′ ̸=
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Figure 3.8.: Transition system Θ and transition system Θα induced by state mapping α mapping
states s and t to u′.

Θα
shrink,Θ

′ = Θ} ∪ {Θshrink 7→ sΘshrink} for some sΘshrink ∈ α−1(s′[Θα
shrink]), we have that

s is a goal state of
⊗
F with σ(s) = s′, which shows that τ satisfies INDG.

• Finally, it is easy to see that τF satisfies INDL, CONSC, INDC, and REFC because λ = id
and hence labels (and their cost) are not changed.

This theorem states that shrink transformations are strict homomorphisms that additionally
preserve costs. Together with Theorem 3.3, an immediate consequence is that the heuristic for
the factored transition system induced by a shrink transformation is admissible and consistent. If
we did not define the shrink transformation to replace a factor by the transition system induced
by the state mapping, but allowed to use a non-surjective state mapping, then shrink transforma-
tions would not be (state-)induced and thus only be a non-strict homomorphism. However, as
discussed before, induced abstractions are in some sense the best abstractions we can have, and
hence it is a positive result that shrink transformations based on surjective state mappings are
strict homomorphisms.

To see that a shrink transformation in general is not exact, consider the following counter
example: let Θ be the only factor of some factored transition system, shown in Figure 3.8a. Let
α be a state mapping of a shrink transformation τ that maps s and t to v and u to w. In the
transition system Θα induced by Θ and α, shown in Figure 3.8b, v is a goal state and there is a
transition v ℓ−→ w. τ does not satisfy REFT because v ℓ−→ w cannot be refined for all preimages
s, t of v, i.e. there is no transition from t labeled ℓ in Θ. τ does not satisfy REFG because not
all preimages s, t of the goal state v are goal states in Θ.

However, it is desirable and possible to find criteria for shrinking such that shrink transforma-
tions also satisfy REFT and REFG, turning them into exact transformations. One such criterion
is bisimulation (Milner, 1990).

Definition 3.14 (Bisimulation). Let Θ = ⟨S,L, c, T, s0, S⋆⟩ be a transition system. An equiva-
lence relation ∼ on S is a bisimulation for Θ if

1. s ∼ t implies that either s, t ∈ S⋆ or s, t ̸∈ S⋆, and

2. for every pair of states s, t ∈ S with s ∼ t, and for every label ℓ ∈ L, if ⟨s, ℓ, s′⟩ ∈ T ,
then there exists t′ with ⟨t, ℓ, t′⟩ ∈ T and s′ ∼ t′.
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Figure 3.9.: Transition system Θ and transition system Θα induced by state mapping α, based
on bisimulation, mapping states u and v to x′.

Intuitively, states are bisimilar if they are both goal states or both non-goal states, and outgoing
transitions labeled with the same label lead to bisimilar states. Figure 3.9a shows an example
transition system Θ where states u and v are bisimilar, i.e. u ∼ v, because both have outgoing
transitions labeled with the same label (ℓ3) that lead to bisimilar states (here: the same state w).
On the other hand, s and t are not bisimilar (s ̸∼ t) because their outgoing transitions, although
leading to bisimilar states, are labeled with different labels.

Shrinking based on bisimulation (Nissim et al., 2011) applies a transformation based on a
state mapping that combines only bisimilar states of a factor. Nissim et al. (2011) show that this
kind of shrinking is information-preserving. We repeat this result, adapted to our transformation
framework.

Theorem 3.7. Let F be a factored transition system. Let τF be a shrink transformation of F
into a factored transition system F ′ based on a state mapping α defined on some Θshrink ∈ F ,
where Θα

shrink ∈ F ′ is the transition system induced by Θshrink and α. Furthermore, let α be
based on bisimulation, i.e. α(s) = α(t) for all states s, t ∈ Θshrink iff s and t are bisimilar. Such
a transformation τF is exact, i.e. satisfies CONS + IND + REF.

Proof. Let τF = ⟨F ′,Σ, λ⟩ with Σ = (σΘ′)Θ′∈F ′ and σΘ′(s) = πΘ′ for all Θ′ ∈ F ′ with
Θ′ ̸= Θα

shrink, and σtab
Θα

shrink
(s) = α(s[Θshrink]). Let τ = ⟨⊗F ′, σ, λ⟩ be the transformation of⊗

F into
⊗
F ′ induced by τF. Since shrink transformations are strict homomorphisms that

satisfy REFC, we only need to show that the induced transformation τ satisfies REFT and
REFG.

• Consider a transition s′ ℓ−→ t′ ∈⊗
F ′. By the definition of products, s′[Θ′] ℓ−→ t′[Θ′] ∈ Θ′

for all Θ′ ∈ F ′. Because Θα
shrink is induced by Θshrink and α, and because α combines only

states that are bisimilar, for all sΘshrink ∈ α−1(s′[Θα
shrink]), there exists sΘshrink

ℓ−→ tΘshrink ∈
Θshrink with α(tΘshrink) = t′[Θα

shrink] (and sΘshrink and tΘshrink are bisimilar, cf. point 2. of the
definition of bisimulation). For all other Θ′ ∈ F ′, i.e. Θ′ ̸= Θα

shrink, there exists exactly
one Θ ∈ F with Θ = Θ′, and hence for the only preimage s′[Θ′] ∈ Θ of s′[Θ′] ∈ Θ′,
s′[Θ′] ℓ−→ t′[Θ′] ∈ Θ because Θ = Θ′. Put together, for all states s ℓ−→ t ∈⊗

F with s =
{Θ 7→ s′[Θ′] | Θ ∈ F,Θ′ ∈ F ′,Θ ̸= Θshrink,Θ

′ ̸= Θα
shrink,Θ

′ = Θ}∪{Θshrink 7→ sΘshrink}
with sΘshrink ∈ α−1(s′[Θα

shrink]), and thus with σ(s) = s′, there exists s ℓ−→ t ∈⊗
F with

t = {Θ 7→ t′[Θ′] | Θ ∈ F,Θ′ ∈ F ′,Θ ̸= Θshrink,Θ
′ ̸= Θα

shrink,Θ
′ = Θ} ∪ {Θshrink 7→
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tΘshrink} for some tΘshrink ∈ α−1(t′[Θα
shrink]), and thus with σ(t) = t′, which shows that τ

satisfies REFT.

• Consider a goal state s′ ∈ ⊗
F ′. By the definition of products, s′[Θ′] is a goal state

of Θ′ for all Θ′ ∈ F ′. Because Θα
shrink is induced by Θshrink and α, and because alpha

combines only bisimilar states, all preimage states of goal states are goal states, i.e. all
states sΘshrink ∈ α−1(s′[Θα

shrink]) of are goal states. For all other Θ′ ∈ F ′, i.e. Θ′ ̸= Θα
shrink,

there exists exactly one Θ ∈ F with Θ = Θ′, and hence s′[Θ′] ∈ Θ is the only preimage
state of s′[Θ′] ∈ Θ′, and because Θ = Θ′, it is a goal state. Put together, all states s =
{Θ 7→ s′[Θ′] | Θ ∈ F,Θ′ ∈ F ′,Θ ̸= Θshrink,Θ

′ ̸= Θα
shrink,Θ

′ = Θ}∪{Θshrink 7→ sΘshrink}
with sΘshrink ∈ α−1(s′[Θα

shrink]) are goal states of
⊗
F with σ(s) = s′, which shows that

τ satisfies REFG.

Figure 3.9a shows a transition system Θ and Figure 3.9b shows the transition system Θα

induced by Θ and a state mapping α based on bisimulation. It is easy to verify that the states
and transitions of the induced transition system can be refined to the corresponding states and
transitions of the original transition system Θ. In particular, for the transition x′ ℓ−→ w′, we have
that for all preimages v, u of the state x′, there exist transitions labeled with ℓ3 that lead to w, a
preimage of w′: both v ℓ3−→ w and u ℓ3−→ w are transitions of Θ.

3.4. Merge Transformation

In this section, we define the merge transformation of the merge-and-shrink framework.

Definition 3.15 (Merge Transformation). Let F be a factored transition system, and let Θ1,Θ2

∈ F . A merge transformation is a factored transformation τF = ⟨F ′,Σ, λ⟩ of F into a factored
transition system F ′, where:

• F ′ = (F \ {Θ1,Θ2}) ∪ {Θ⊗} with Θ⊗ = Θ1 ⊗Θ2.

• Σ = (σΘ′)Θ′∈F ′ is an indexed collection of FMs, where each FM σΘ′ is defined on F and
associated with Θ′ ∈ F ′: σΘ′ := πΘ′ for all Θ′ ∈ F ′ with Θ′ ̸= Θ⊗, and σΘ⊗ is a merge
FM with two atomic component FMs σΘ1 := πΘ1 and σΘ2 := πΘ2 , and a table defined
as σtab

Θ⊗(s) := ⟨s[Θ1], s[Θ2]⟩ for all states s of F .

• λ = id is the identity label mapping.

Informally speaking, the merge transformation replaces two factors of the given factored tran-
sition system by their product system, leaves all other factors unchanged, and does not change
the set of labels. The set Σ of FMs representing the state mapping from F to F ′ consists of pro-
jection FMs for all unmodified factors, since these projection FMs represent the identity function
on the level of single factors (their tables are identity functions on the domain of their variable,
a factor of F , to their associated factor in F ′, which are identical). The FM associated with
the modified factor is a merge FM with two projection FMs for the merged factors Θ1 and Θ2
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as its components, and its table is the identity function for merge FMs, i.e. it maps each pair
of values of its component FMs, which correspond to states of Θ1 and Θ2, to a unique value
corresponding to their product state in Θ⊗.

We now consider composing a merge transformation with a previous transformation, as it is
required by the merge-and-shrink framework. While we already defined a general procedure
for composing sets of FMs of two factored transition systems, shown in Algorithm 1, a merge
transformation can be composed with a previous transformation more efficiently. Instead of
copying all FMs of the previous transformation and then applying the table functions of the
atomic FMs of Σ (all of which except one are identity functions) to the copies, we can directly
reuse all FMs associated with factors that are not affected by the transformation. Also the two
FMs of the previous transformation that are associated with the factors that are being merged
can be reused: instead of copying them and constructing the merge FM based on the two copies,
we can directly use the two FMs (even without the need to modify their table functions because
the leaf FMs of the merge FM represent the identity function).

Formally, let F be the original input factored transition system to the merge-and-shrink algo-
rithm, and let F ′ be a factored transition system that results from applying a previous transfor-
mation τF = ⟨F ′,Σ, λ⟩ to F with Σ = (σΘ′)Θ′∈F ′ . Let further τ ′F = ⟨F ′′,Σ′, λ′⟩ be a merge
transformation of F ′ into factored transition system F ′′ with F ′′ = F ′ \ {Θ′

1,Θ
′
2} ∪ {Θ⊗}.

Then we can compute Σ′′ as the composition of Σ′ with Σ as follows: Σ′′ = (σ′′Θ′′)Θ′′∈F ′′ ,
where σ′′Θ′′ = σΘ′′ if Θ′′ ̸= Θ⊗ (because then Θ′′ = Θ′ for some Θ′ ∈ F ′, and hence σΘ′′ ∈ Σ),
and σ′′Θ⊗ is the merge FM with components σΘ′

1
and σΘ′

2
and table function as defined by the

merge transformation.
In the example of Figure 3.5 on page 44 that illustrates the composition of sets of FMs, the

second transformation illustrates, among others, merging two FMs: the FM σΘ′′
1

represents a
merge of the factors Θ′

1 and Θ′
2. In the text of the example, we explained the composition of

that particular FM with the sets of FMs of an arbitrary previous transformation, however using
the general algorithm and not the above approach tailored to compose a merge transformation.

Consider the factored transition system of the example planning task of Figure 2.1 that con-
sists of the atomic factor Θ(vT ) with associated FM σΘ(vT ), and the factor τ(Θ(vP )) with
associated FM τ(σΘ(vP )) as in the shrinking example in Figure 3.7. Figures 3.10a and 3.10b
show the two factors (top) with their associated FMs (bottom). In the factored transition sys-
tem transformed by a merge transformation, shown in Figure 3.10c (top) with the associated
FM (bottom), the two factors are replaced by their product Θ⊗ := Θ(vT ) ⊗ τ(Θ(vP )) (cf. the
illustration of computing products in Section 3.2 on page 35), and the associated FM σΘ⊗ is the
merge FM of the two component FMs σΘ(vT ) and τ(σΘ(vP )), with a table function that maps
each pair of component values to a unique value, i.e. maps each pair of states of the replaced
factors to their product state in the product system. (To better allow identifying product states
by their component states, the figure indicates the component states x and y of the product states
by showing pairs ⟨x, y⟩ below or above the product state. Of course, the state mapping can also
be read from the table of σΘ⊗ .)

As a remark on how shrinking and merging interacts, we observe that Θ⊗ differs from the
induced transition system Θ(Π) shown in Figure 2.2. The difference, apart from names of
states, stems from the merge transformation being performed on the shrunk factor. The same
result could have been obtained from shrinking Θ(Π) by combining each pair of states where
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Figure 3.10.: Example of a merge transformation applied to the factored transition system of the
example planning task of Figure 2.1, with the factor Θ(vP ) shrunk as in Figure 3.7.
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(b) Product of Θ and Θ.

Figure 3.11.: Example transition system Θ and its product with itself.

the truck is at one specific location and the package is at A or B into a single state, which
corresponds to the abstraction applied to the atomic factor Θ(vP ) in the shrinking example in
Figure 3.7.

Theorem 3.8. Let F and F ′ be factored transition systems with the same label sets and label
costs. A merge transformation τF of F into F ′ is exact induced, i.e. satisfies properties CONS+
IND + REF.

Proof. From
⊗
F being defined as the product over all transition systems in F and ⊗ being

a commutative and associative operator, it is clear that replacing two factors from F by their
product does not change

⊗
F , i.e.

⊗
F ⋍

⊗
F ′, modulo names of states. With λ = id

and σ mapping corresponding states of
⊗
F and

⊗
F ′, we immediately have that τF is exact

induced.

Together with Theorem 3.1, an immediate consequence is that we can recover the entire state
space of an underlying planning task from merging all individual transition systems of the in-
duced factored transition system, e.g. the global transition system

⊗
F of the induced factored

transition system F of a planning task Π equals Θ(Π), modulo names of states (a result already
shown in previous work, e.g. Helmert et al., 2014).

3.4.1. Non-orthogonal Merge Transformations

In the following, we briefly discuss the possibility of non-orthogonal merge transformations.
Recall that a non-orthogonal FM may contain several atomic FMs with the same associated
variable. In the context of merge-and-shrink, this means that the factored transition system
could contain the same atomic factors several times (or several products resulting from merging
the same atomic factors). As we have shown above, the merge transformation is state-induced,
and as such the involved FMs are always orthogonal. This is also true for all other merge-and-
shrink transformations. (Intuitively, they do not modify the number of factors or FMs, and hence
can never turn a orthogonal FM into a non-orthogonal one.)

A simple way to allow non-orthogonal merge-and-shrink is to add a new “clone” transforma-
tion that clones a factor and the associated FM and adds it to the factored transition system and
the set of FMs. Then, using the regular orthogonal merge transformation we defined above, we
can replace the clones by their product and still retain the original components as part of the
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factored transition system. It is easy to see that the clone transformation is not state-induced, i.e.
the state mapping is not surjective. Consider a transformation τF of F into factored transition
system F ′ that clones the single element Θ ∈ F , shown in Figure 3.11a. Hence F ′ contains
two copies of Θ. The transformation τ induced by τF transforms

⊗
F into

⊗
F ′, using state

mapping σ :
⊗
F 7→ ⊗

F ′. We observe that
⊗
F equals Θ.

⊗
F ′ is the product of Θ and

Θ, shown in Figure 3.11b. Clearly τ does not satisfy INDS, i.e. the state mapping σ is not sur-
jective, because states st and ts have no preimages in

⊗
F (σ(s) = ss and σ(t) = tt). For the

same reason, τ is not goal-induced, i.e. does not satisfy INDG. It is also not transition-induced
(INDT) because ss ℓ−→ st and ss ℓ−→ ts have no corresponding transitions in

⊗
F that induce

them.
The clone transformation satisfies all other properties: it satisfies CONS because all (goal)

states and transitions of the original product system have corresponding (goal) states and tran-
sitions in the transformed product system. Perhaps less obvious, the clone transformation is
also refinable, i.e. satisfies REF: each state of the transformed transition system either has an
empty preimage (if it is not induced), or the preimage contains a single state inducing the state
in question. Thus, since we need to quantify over all states of the preimages, if the preimage
is empty, the condition is vacuously true, and otherwise, the single element of the preimage is
mapped to the state in question. A similar argument can be made for goal states and transitions.
Finally, for all properties related to label costs, it is clear that they hold since the set of labels is
not affected by the clone transformation. To attempt an intuitive explanation, cloning only adds
spurious states and transitions but does not remove any, and hence the transformed transition
system contains the states and transitions of the original transition system, plus additional ones.
In the above example, ss and tt and the transitions ss ℓ−→ ss and ss ℓ−→ tt correspond to s, t,
s ℓ−→ s, and s ℓ−→ t.

In the application to planning tasks, the merge-and-shrink algorithm starts with the induced
factored transition of a planning task which is orthogonal. Since except the clone transformation
just described, all merge-and-shrink transformations use orthogonal FMs, we cannot obtain non-
orthogonal merge-and-shrink abstractions for planning tasks with the usual transformations.

3.5. Prune Transformation

In this section, we define the prune transformation. Pruning has only been treated as a side-
note previously (e.g. Helmert et al., 2014, Section 4.3), but like label reduction, it has been an
important ingredient of the merge-and-shrink framework since its introduction for planning.

Definition 3.16 (Pruning State Mapping). Let Θ = ⟨S,L, c, T, s0, S⋆⟩ be a transition system. A
pruning state mapping ρ for Θ is a function ρ : S → S′ where S′ = Ssub ∪ {⊥} with Ssub ⊆ S
and ρ(s) = s for all s ∈ Ssub and ρ(s) = ⊥ otherwise. The transition system Θ pruned by ρ is
defined as Θρ = ⟨S′, L, c, {⟨ρ(s), ℓ, ρ(s′)⟩ | ⟨s, ℓ, s′⟩ ∈ T and s, s′ ∈ Ssub}, ρ(s0), S⋆ ∩ Ssub⟩.

In words, a pruning state mapping is a state mapping, restricted to be the identity mapping on
a subset Ssub of the original set of states and to map all other states to a special state ⊥. The
transition system pruned by a pruning state mapping is similar to the transition system induced
by an arbitrary state mapping, with the difference that all original transitions from and to states
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not in Ssub are not part of ρ(Θ), and that all goal states not in Ssub are mapped to the non-goal
state ⊥.

Definition 3.17 (Prune Transformation). Let F be a factored transition system, and let Θ ∈ F .
Let ρ be a pruning state mapping for Θ. A prune transformation is a factored transformation
τF = ⟨F ′,Σ, λ⟩ of F into a factored transition system F ′, where:

• F ′ = (F \ {Θ}) ∪ {Θρ} with Θρ the transition system Θ pruned by ρ.

• Σ = (σΘ′)Θ′∈F ′ is an indexed collection of FMs, where each FM σΘ′ is defined on F and
associated with Θ′ ∈ F ′: σΘ′ := πΘ′ for all Θ′ ∈ F ′ with Θ′ ̸= Θρ, and σΘρ is an atomic
FM with variable Θ and σtab

Θρ(s) := ρ(s[Θ]).

• λ = id is the identity label mapping.

Informally speaking, a prune transformation is very similar to a shrink transformation in that
it also applies a state mapping to a single factor of the factored transition system, leaving all
other factors as they are. The difference is that the transformed transition system is not induced,
but pruned as specified by the pruning state mapping of the transformation. As with shrink
transformations, the set Σ of FMs representing the state mapping from F to F ′ consists of
projection FMs for all unmodified factors representing the identity function on the level of single
factors. The FM associated with the modified factor represents the function which applies the
pruning state mapping ρ to a state of F projected onto Θ.

We call such a transformation pruning because the transformation isolates all states that are
not in the subset Ssub of states by removing transitions coming from or leading to states of Ssub.
Such isolated states are necessarily unreachable and irrelevant, i.e. dead states, and as such not
part of any plans of the transformed transition system. Pruning thus offers a controlled way of
removing parts of a factor which are deemed irrelevant to the computation of merge-and-shrink
abstractions. Usual merge-and-shrink algorithms use pruning transformations to isolate dead
states. The purpose of such pruning of dead states is to reduce the size of factors, improving the
efficiency of the merge-and-shrink computation, but also allowing the use of fewer lossy shrink
transformations.

We now consider composing a prune transformation with a previous transformation, as it is
required by the merge-and-shrink framework. The way this composition works is analogous to
how shrink transformations can be composed with previous transformations, but we still repeat
the procedure here for self-containedness of this section. While we already defined a general
procedure for composing sets of FMs of two factored transition systems, shown in Algorithm 1,
a prune transformation can be composed with a previous transformation more efficiently. Instead
of copying all FMs of the previous transformation and then applying the table functions of the
atomic FMs of Σ (all of which except one are identity functions) to the copies, we can directly
reuse all FMs associated with factors that are not affected by the transformation. Also the FM
of the previous transformation that is associated with the factor for which ρ is defined can be
reused, however its table function needs to be updated by applying the pruning state mapping ρ
to it.

Formally, let F be the original input factored transition system to the merge-and-shrink al-
gorithm, and let F ′ be a factored transition system that results from applying a previous trans-
formation τF = ⟨F ′,Σ, λ⟩ to F with Σ = (σΘ′)Θ′∈F ′ . Let further τ ′F = ⟨F ′′,Σ′, λ′⟩ be a
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Figure 3.12.: Example of a prune transformation applied to the factored transition system of the
example planning task of Figure 2.1, modified to contain two more locations D and
E which are only connected to A, but not from A.

prune transformation of F ′ into factored transition system F ′′, based on a pruning state map-
ping ρ : Θprune → Θρ

prune for some Θprune ∈ F ′. Then we can compute Σ′′ as the composition
of Σ′ with Σ as follows: Σ′′ = (σ′′Θ′′)Θ′′∈F ′′ , where σ′′Θ′′ = σΘ′′ if Θ′′ ̸= Θρ

prune (because
then Θ′′ = Θ′ for some Θ′ ∈ F ′, and hence σΘ′′ ∈ Σ), and σ′′

Θρ
prune

= σΘprune , however with

σ′′tab
Θρ

prune
(s) := ρ(σtab

Θprune
).

Consider the example planning task of Figure 2.1, this time slightly modified such that there
are a new locations D and E from where the truck T can move to A but where it cannot move
to. Figure 3.12a shows the modified factor for vT (top) and the associated FM representing
the identity state mapping (bottom). The states corresponding to the truck being at the new
locations D and E are numbered 3 and 4. (We observe that both states are unreachable, and
thus both are dead already before applying the prune transformation.) A prune transformation
τ that prunes these two states and thus maps them both to ⊥ also removes all in- and outgoing
transition and leaves everything else unchanged. Figure 3.12b shows the transformed factor of
such a transformation τ (top) with the transformed associated FM (bottom). In the transformed
transition system, we see that states 3 and 4 have been removed and there is a new state ⊥ that
is disconnected as intended. All remaining states and transitions are as in the original factor. In
the transformed associated FM, we see that both values D and E of variable vT are mapped to
⊥, and the remainder of the table function is as in the original associated FM.

Theorem 3.9. Let F be a factored transition system and let Θprune ∈ F be a factor of F with
states S. Let τF be a prune transformation of F into a factored transition system F ′ based on
a pruning state mapping ρ : S → S′ where S′ = Ssub ∪ {⊥} with Ssub ⊆ S. Let S

⊗
sub :=∏

Θ∈F,Θ̸=Θprune
SΘ × Ssub where SΘ denotes the states of Θ, i.e. S

⊗
sub is the subset of states of

⊗
F that are not pruned by ρ. τF is exact induced for S

⊗
sub, i.e. satisfies CONSS

⊗
sub+IND+REF.

Proof. Let Θρ
prune be the transition system Θprune pruned by ρ. Then τF = ⟨F ′,Σ, λ⟩with λ = id

and Σ = (σΘ′)Θ′∈F ′ and σΘ′(s) = πΘ′ for all Θ′ ∈ F ′ with Θ′ ̸= Θρ
prune, and σtab

Θρ
prune

(s) =
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ρ(s[Θprune]). Let τ = ⟨⊗F ′, σ, λ⟩ be the transformation of
⊗
F into

⊗
F ′ induced by τF. In

the following, we show that the induced transformation satisfies each of the claimed properties

CONSS
⊗
sub

T , CONSS
⊗
sub

G , CONSC, INDS, INDL, INDT, INDG, INDC, REFT, REFG, and REFC.
Since λ = id, we simplify the notation by dropping the use of λ for transformed transitions. As
a general observation, we remark remark that the set T ′ of transitions of Θρ

prune is a subset of
the set of transitions induced by the set T of transitions of Θprune and ρ, and similarly, the set
S′
⋆ of goal states of Θρ

prune is a subset of the set of states induced by the set S⋆ of goal states of
Θprune and ρ. Furthermore, we have that all states s ∈ Ssub are also states of Θρ

prune because ρ is
the identity mapping if restricted to these states, and hence |ρ−1(s)| = 1 for all states s ̸= ⊥ of
Θρ

prune.

• Consider a state s′ ∈ ⊗
F ′. By the definition of products, s′[Θ′] is a state of Θ′ for

all Θ′ ∈ F ′. Because ρ is surjective, there exists a state sΘ of Θprune with ρ(sΘprune) =
s′[Θρ

prune]. For all other Θ′ ∈ F ′, i.e. Θ′ ̸= Θρ
prune, there exists exactly one Θ ∈ F with

Θ = Θ′, and hence s′[Θ′] is a state of Θ. Put together, there exists a state s = {Θ 7→
s′[Θ′] | Θ ∈ F,Θ′ ∈ F ′,Θ ̸= Θprune,Θ

′ ̸= Θρ
prune,Θ

′ = Θ} ∪ {Θprune 7→ sΘprune} of⊗
F , for some sΘprune ∈ ρ−1(s′[Θρ

prune]), and σ(s) = s′, which shows that τ satisfies
INDS.

• Consider a transition s ℓ−→ t ∈ ⊗
F within S

⊗
sub. By the definition of products, s[Θ] ℓ−→

t[Θ] ∈ Θ for all Θ ∈ F . For Θρ
prune, because s ℓ−→ t is within S

⊗
sub, we have s[Θprune],

t[Θprune] ∈ Ssub and therefore σΘρ
prune

(s) = s[Θprune] = s′[Θρ
prune] and σΘρ

prune
(t) =

t[Θprune] = t′[Θρ
prune]. Due to the definition of the transitions T ′ of Θρ

prune, we also have
s[Θprune]

ℓ−→ t[Θprune] ∈ Θρ
prune which means σΘρ

prune
(s) ℓ−→ σΘρ

prune
(t) ∈ Θρ

prune. For all
other Θ′ ∈ F ′ with Θ′ ̸= Θρ

prune, there exists exactly one Θ ∈ F with Θ = Θ′, and
hence we have σΘ′(s) ℓ−→ σΘ′(t) ∈ Θ′ because σΘ′ is the projection onto Θ′ and Θ′ = Θ.
Together, this implies that σΘ′(s) ℓ−→ σΘ′(t) ∈ Θ′ for all Θ′ ∈ F ′, and hence by the

definition of products, σ(s) ℓ−→ σ(t) ∈⊗
F ′, which shows that τ satisfies CONSS

⊗
sub

T .

• Consider a transition s′ ℓ−→ t′ ∈⊗
F ′. By the definition of products, s′[Θ′] ℓ−→ t′[Θ′] ∈ Θ′

for all Θ′ ∈ F ′. Because there are no transitions from and to ⊥, s′[Θρ
prune] ̸= ⊥ and

t′[Θρ
prune] ̸= bot, and thus s′[Θρ

prune], t
′[Θρ

prune] ∈ Ssub. Hence, with our general observa-
tion on ρ, s′[Θρ

prune] and t′[Θρ
prune] are the only elements of the preimages of themselves,

and thus also states of Θprune. Furthermore, since transitions are either exactly preserved
or removed, the transition s′[Θρ

prune]
ℓ−→ t′[Θρ

prune] ∈ Θρ
prune is induced by exactly one tran-

sition in Θprune, namely itself. For all other Θ′ ∈ F ′, i.e. Θ′ ̸= Θρ
prune, there exists exactly

one Θ ∈ F with Θ = Θ′, and hence s′[Θ′] ℓ−→ t′[Θ′] ∈ Θ. Put together, with setting s =
{Θ 7→ s′[Θ′] | Θ ∈ F,Θ′ ∈ F ′,Θ ̸= Θprune,Θ

′ ̸= Θρ
prune,Θ

′ = Θ} ∪ {Θprune 7→ sΘprune}
for the only element sΘprune ∈ ρ−1(s′[Θρ

prune]), and analogously t = {Θ 7→ t′[Θ′] | Θ ∈
F,Θ′ ∈ F ′,Θ ̸= Θprune,Θ

′ ̸= Θρ
prune,Θ

′ = Θ} ∪ {Θprune 7→ tΘprune} for the only element
tΘprune ∈ ρ−1(t′[Θρ

prune]), we have that s ℓ−→ t ∈⊗
F with σ(s) = s′ and σ(t) = t′, which

shows both that τ satisfies INDT and REFT.

• Consider a goal state s ∈ Ssub of F . By the definition of products, s[Θ] is a goal state of
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Θ for all Θ ∈ F . For Θρ
prune, we have that s[Θprune] ∈ Ssub because s ∈ S

⊗
sub, and hence,

by the definition of σΘρ
prune

and the set of goal states of Θρ
prune, σΘρ

prune
(s) = s[Θprune] =

s′[Θρ
prune] is a goal state of Θρ

prune. For all other Θ′ ∈ F ′ with Θ′ ̸= Θρ
prune, there exists

exactly one Θ ∈ F with Θ = Θ′, and hence we have that σΘ′(s) is a goal state of Θ′

because σΘ′ is the projection onto Θ′ and Θ′ = Θ. Together, this implies that σΘ′(s) is
a goal state of Θ′ for all Θ′ ∈ F ′, and hence by the definition of products, σ(s) is a goal

state of
⊗
F ′, which shows that τ satisfies CONSS

⊗
sub

G .

• Consider a goal state s′ ∈ ⊗
F ′. By the definition of products, s′[Θ′] is a goal state of

Θ′ for all Θ′ ∈ F ′. Because ⊥ is not a goal state, s′[Θρ
prune] ̸= ⊥ and thus s′[Θρ

prune] ∈
Ssub. Hence, with our general observation on ρ, s′[Θρ

prune] is the only element of the
preimage of itself, and thus also a state of Θprune. Furthermore, since goal states are
either exactly preserved or mapped to ⊥, s′[Θρ

prune] is also a goal state of Θprune. For all
other Θ′ ∈ F ′, i.e. Θ′ ̸= Θρ

prune, there exists exactly one Θ ∈ F with Θ = Θ′, and
hence s′[Θ′] is a goal state of Θ. Put together, with setting s = {Θ 7→ s′[Θ′] | Θ ∈
F,Θ′ ∈ F ′,Θ ̸= Θprune,Θ

′ ̸= Θρ
prune,Θ

′ = Θ}∪{Θprune 7→ sΘprune}, for the only element
sΘprune ∈ ρ−1(s′[Θρ

prune]), we have that s is a goal state of
⊗
F with σ(s) = s′, which

shows both that τ satisfies INDG and REFG.

• Finally, it is easy to see that τF satisfies INDL, CONSC, INDC, and REFC because λ = id
and hence labels (and their cost) are not changed.

This theorem states that prune transformations are exact induced transformations for the sub-
set of states that are not pruned. Intuitively, this makes sense, because the transformed (factored)
transition systems is identical with respect to all states and transitions between states that are not
pruned, and the single isolated pruned state is not a goal state and does not have any transitions
(which is why it is refinable).

As mentioned above, in practice, we want to prune dead states, i.e. both unreachable and
irrelevant states. Since a heuristic induced by a transformation is defined as the perfect heuris-
tic of the transformed transition system, a heuristic induced by a prune transformation assigns
states mapped to ⊥ a heuristic value of∞. This clearly violates admissibility for all states not
evaluated as ∞ already before. In particular, unreachable (but relevant) states would usually
have a finite heuristic value. We can still use pruning of unreachable states, though, because
due to Theorem 3.5, we have that exact transformations for the reachable subset of states induce
forward-exact heuristics. Thus, by setting Ssub = R for the reachable statesR in the above theo-
rem, we obtain that prune transformations pruning unreachable states are exact on the reachable
subset of states.

It is also easy to see that pruning irrelevant states can never change the heuristic induced
by such a transformation: irrelevant states always have a heuristic value of ∞. Since in- and
outgoing transitions of irrelevant states can never be part of any plan, removing their transitions
also does not affect the heuristic. (Also recall that if we were interested in properties of heuristics
relating to other subsets of states, Theorems 3.3 and 3.5 could directly be generalized to other
such subsets, and the result of this section could still be combined with these results. We only
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restricted these theorems to the reachable subset of states because pruning these states causes
heuristics to not be admissible anymore for such states.)

To conclude this section, we have two remarks concerning the formalization of the prune
transformation. The first concerns the implementation of the prune transformation in Fast Down-
ward (Helmert, 2006) as it has been present since the introduction of merge-and-shrink for plan-
ning. The implementation differs from the conceptual definition in that it actually prunes states
by removing them entirely from transition systems, not only removing their transitions. In the
FMs, pruned entries are denoted by a special symbol ⊥ like in our conceptual definition, but the
tables of merge FMs do not store entries for the⊥ values of their component FMs, but implicitly
map all pairs of values where one value is ⊥ to ⊥. While the final representation of the heuristic
hence is slightly different, it is easy to see that the represented function is the same under the in-
terpretation of⊥ as “pruned state”. This implementation presumably is more efficient and closer
to the intuitive concept of “pruning”, but we cannot formalize this kind of pruning within our
framework of transformations. The reason is that our definition of transformations require state
mappings to be functions, and as such they must map every state to a state of the transformed
transition system, hence not allowing states to “disappear” from the transition systems and FMs.
We call this variant original pruning, since this is how pruning has been implemented since the
first implementation of merge-and-shrink in Fast Downward.

Secondly, we remark that as another alternative to both the above formalization and our im-
plementation, we could achieve pruning of dead states also by using an abstraction that maps
all dead states to a single state but does not remove the transitions (otherwise, it would not be
an abstraction). The result would semantically be equivalent because transitions from and to
dead states cannot occur in any plans. Furthermore, due to the prune transformation then also
being an abstraction like the shrink transformation, we would not need to consider properties
for “subset of states” or “forward properties” of heuristics for any of the transformations. How-
ever, this approach would very likely induce an overhead associated with storing and computing
the additional “dead transitions” that our current formalization removes, and the presence of
these transitions would also influence all other transformations where the information of how to
perform the transformation is based on labels and transitions. We call this variant abstracting
pruning, and evaluate both alternatives of pruning in our experimental study in Section 6.7.

3.6. Generalized Label Reduction

The previous theory of label reduction could not be described as a general transformation of
transition systems, due to only being applicable under certain conditions. With generalized label
reduction, this is now possible, turning it into a transformation of the merge-and-shrink toolbox
just like shrinking, merging and pruning. Some parts of this section, in particular definitions and
proofs, stem from our original paper (Sievers, Wehrle, & Helmert, 2014).

For a transition system Θ = ⟨S,L, c, T, s0, S⋆⟩, a label mapping λ defined on L, and a label
cost function c′ defined on λ(L), the transition system induced by Θ, λ, and c′ is defined as
Θλ,c′ = ⟨S, λ(L), c′, {⟨s, λ(ℓ), t)⟩ | ⟨s, ℓ, t⟩ ∈ T}, s0, S⋆}⟩.

Definition 3.18 (Label Reduction Transformation). Let F be a factored transition system with
label set L and let λ be a label mapping defined on L. A label reduction transformation (label
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reduction for short) is a factored transformation τF = ⟨F ′,Σ, λ⟩ of F into a factored transition
system F ′ with label costs c′, where:

• F ′ = {Θλ,c′ | Θ ∈ F} with Θλ,c′ the transition system induced by Θ, λ, and c′, which is
defined as c′(ℓ′) := minℓ∈λ−1(ℓ′)(c(ℓ)) for all ℓ′ ∈ λ(L).

• Σ = (σΘ′)Θ′∈F ′ is an indexed collection of FMs, where each FM σΘ′ is defined on F and
associated with Θ′ ∈ F ′: σΘ′ := πΘ′ for all Θ′ ∈ F ′.

Informally speaking, a label reduction applies a label mapping to the common label set of a
factored transition system. The transformed factored transition system consists of the factors of
the original factored transition system, however induced by the label mapping of the transfor-
mation. The cost of a mapped label is the smallest cost of all original labels that are mapped to
the label. Note that states, including the initial states and the sets of goal states, are the same
in the transformed factors, and the set of FMs of the transformation represents the identity state
mapping accordingly.

We call such a transformation a label reduction because we usually choose a label mapping
λ that maps the labels of F to some smaller set. Hence, a label reduction potentially collapses
parallel transitions of previously different labels to identical transitions under the new labeling,
thus reducing the effective number of transitions in the transformed (factored) transition system.
While we require that the cost of a mapped label ℓ′ is the maximum possible label cost such
that the cost is not larger than the cost of any original label mapped to ℓ′, we could in principle
also allow smaller label costs, but this could only decrease plan costs and with that, the quality
of heuristics induced by label reduction transformations. Allowing label reductions to increase
label costs would clearly not be cost-conservative.

Unlike the other merge-and-shrink transformations, composing label reductions with previous
transformations is straightforward. Label mappings are non-factored functions that can directly
be composed by using the regular composition of functions, and the set of FMs that represents
the state mapping of the transformation is the identity state mapping. Hence, the set of FMs of
a previous transformation can be entirely reused, without the need to compose this set of FMs
with the set of FMs of the label reduction transformation.

Consider the induced factored transition system of the example planning task of Figure 2.1.
Figures 3.13a and 3.13b show the two atomic factors (not including the associated FMs because
they are not affected by label reductions). Below, in Figures 3.13c and 3.13d, we see the la-
bel reduced factors after applying a label reduction τ that combines all labels that represent a
“LOAD” operator into a new label x, all “UNLOAD” labels into y, and all “DRIVE” labels into z.
(All new labels x, y, and z cost 1 since the example is a unit-cost case.) By the reduced number
of labels labeling the transitions in the figure, we observe that the label reduced transition sys-
tems require far fewer transitions because many originally parallel transitions are collapsed into
single transitions.

Before proceeding with showing under which conditions label reductions have which trans-
formation properties, the following proposition formalizes that label reduction does not modify
the (goal) states of the factored transition system.

Proposition 3.2. Let F and F ′ be factored transition systems, and let τF be a label reduction
transformation of F into F ′. Then τF satisfies CONSG + INDG + REFG + INDS.
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We first show that any label reduction is a strict homomorphism.

Theorem 3.10. Let F be a factored transition system. A label reduction transformation τF =
⟨F ′,Σ, λ⟩ of F into factored transition system F ′ is a strict homomorphism, i.e. satisfies CONS
+ IND.

Proof. Let F = {Θ1, . . . ,Θn} with labels L and label costs c, and let F ′ = {Θ′
1, . . . ,Θ

′
n}

where each Θ′
i = Θλ,c′

i is the factor induced by Θi, λ, and c′, with c′(ℓ′) := minℓ∈λ−1(ℓ′)(c(ℓ))
for all ℓ′ ∈ L′. Let τ = ⟨⊗F ′, σ, λ⟩ be the transformation of

⊗
F into

⊗
F ′ induced by τF. In

the following, we show that the induced transformation satisfies each of the claimed properties
CONST, CONSG, CONSC, INDS, INDL, INDT, INDG, and INDC. Since σ = id, we simplify
the notation by dropping the use of FMs for transformed states, and because we do not need to
refer to FMs, we write states s of

⊗
F as tuples ⟨s1, . . . , sn⟩ where each si is a state of factor

Θi.7

• Because L′ = λ(L), λ is surjective, and thus τ satisfies INDL.

• Consider a transition ⟨s1, . . . , sn⟩ ℓ−→ ⟨t1, . . . , tn⟩ ∈
⊗
F . By the definition of products,

we have si ℓ−→ ti ∈ Θi for all 1 ≤ i ≤ n, from which by the definition of the transformed
factors being induced by λ and c′ we get si λ(ℓ)−−→ ti ∈ Θ′

i for all 1 ≤ i ≤ n. Finally, again
by definition of products, we have ⟨s1, . . . , sn⟩ λ(ℓ)−−→ ⟨t1, . . . , tn⟩ ∈

⊗
F ′, which shows

that τ satisfies CONST.

• Consider a transition ⟨s1, . . . , sn⟩ ℓ′−→ ⟨t1, . . . , tn⟩ ∈
⊗
F ′. By the definition of products,

we have si ℓ′−→ ti ∈ Θ′
i for all 1 ≤ i ≤ n. Because each Θ′

i is induced by Θi, λ, and c′,
si

ℓ′−→ ti ∈ Θ′
i implies that there exists si ℓ−→ ti ∈ Θi with ℓ ∈ λ−1 for all 1 ≤ i ≤ n.

Again by the definition of products, we get ⟨s1, . . . , sn⟩ ℓ−→ ⟨t1, . . . , tn⟩ ∈
⊗
F with

ℓ ∈ λ−1, which shows that τ satisfies INDT.

• Consider ℓ ∈ L. By the definition of label reductions, c′(λ(ℓ)) = minℓ′′∈λ−1(λ(ℓ)) c(ℓ),
and hence c′(λ(ℓ)) ≤ c(ℓ), which shows that τ satisfies CONSC.

• Consider ℓ′ ∈ L′. By the definition of label reductions, c′(λ(ℓ)) = minℓ′′∈λ−1(λ(ℓ)) c(ℓ),
and hence c′(ℓ′) = c(ℓ) for at least one label ℓ ∈ λ−1(ℓ′), which shows that τ satisfies
INDC.

• Furthermore, from Proposition 3.2, we also have that τ satisfies CONSG+INDG+INDS,
which concludes the proof.

This theorem states that label reduction transformations are strict homomorphisms. Together
with Theorem 3.3, an immediate consequence is that the heuristic for the factored transition
system induced by a label reduction is admissible and consistent. If we did not require the label
reduction to apply a surjective label mapping but an arbitrary one, the transformation would
not be (label-)induced and thus only be a non-strict homomorphism. The same is true if we

7The same comment to the notation as in footnote 5 applies.
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did not require that label costs of mapped labels are maximally high such that they are still not
larger than any of the original labels, but simply allowed setting costs such that they are not
increasing label costs. However, as discussed before, induced abstractions are in some sense the
best abstractions we can have, and hence it is a positive result that label reductions based on
surjective label mappings and the above definition of label costs are strict homomorphisms.

As we will see in the following, we can strengthen the conditions of label reductions such that
they are even exact transformations. To do so, we first need some more terminology for labels
of factored transition systems.

Definition 3.19 (Properties of Labels). Let F be a factored transition system with common label
set L, and let ℓ, ℓ′ ∈ L be labels, and let Θ ∈ F be a transition system.

• Label ℓ is alive in F if all transition systems Θ′ ∈ F have some transition s ℓ−→ t ∈ Θ′.
Otherwise, ℓ is dead.

• Label ℓ locally subsumes label ℓ′ in Θ if for all s ℓ′−→ t ∈ Θ we also have s ℓ−→ t ∈ Θ.
Label ℓ globally subsumes label ℓ′ in F if ℓ locally subsumes ℓ′ in all Θ′ ∈ F .

• Labels ℓ and ℓ′ are locally equivalent in Θ if they label the same transitions in Θ, i.e. if ℓ
locally subsumes ℓ′ in Θ and vice versa.

• Labels ℓ and ℓ′ are Θ-combinable in F if they are locally equivalent in all transition
systems Θ′ ∈ F \ {Θ}. (It does not matter whether or not they are locally equivalent in
Θ.)

Dead labels of F do not induce any transition in
⊗
F , and hence removing such dead labels

from L and their induced transitions from the factors of F clearly is an exact transformation.
We also remark that all applications of label reductions can be expressed as chains of “mini-
mal” label reductions which only combine two labels into a new one, leaving all other labels
unchanged.

Theorem 3.11. Let F be a factored transition system with label set L not containing dead labels
and with label cost function c. Let λ be a label mapping defined on L with λ(ℓ1) = λ(ℓ2) = ℓ12
for ℓ1, ℓ2 ∈ L and λ(ℓ) = ℓ for all ℓ ∈ L \ {ℓ1, ℓ2}. A label reduction τF = ⟨F ′,Σ, λ⟩ of F into
factored transition system F ′ with label costs c′ is an exact induced transformation, i.e. satisfies
CONS + IND + REF, iff c′(ℓ12) = c(ℓ1) = c(ℓ2) and

1. ℓ1 globally subsumes ℓ2, or

2. ℓ2 globally subsumes ℓ1, or

3. ℓ1 and ℓ2 are Θ-combinable for some Θ ∈ F .

Proof. Let F = {Θ1, . . . ,Θn} and F ′ = {Θ′
1, . . . ,Θ

′
n} where Θ′

i = Θλ,c′

i is the factor induced
by Θi, λ, and c′ for all 1 ≤ i ≤ n. Let τ = ⟨⊗F ′, σ, λ⟩ be the transformation of

⊗
F into⊗

F ′ induced by τF.
From Theorem 3.10, we already have that τ satisfies CONS + IND. From Proposition 3.2,

we additionally get REFG. Hence the proof burden reduces to showing that τ satisfies REFT +
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REFC iff c′(ℓ12) = c(ℓ1) = c(ℓ2) and the conditions 1., 2., and 3. hold. Clearly, any label
reduction satisfying c′(ℓ12) = c(ℓ1) = c(ℓ2) is cost-refinable, i.e. satisfies REFC. To show that
τ satisfies REFT iff the conditions 1., 2., and 3. hold, we distinguish three cases:

(A) If neither 1. nor 2. nor 3. holds, then τ does not satisfy REFT.

(B) If 1. or 2. holds, then τ satisfies REFT.

(C) If 3. holds, then τ satisfies REFT.

We have to show that for any transition s′ ℓ′−→ t′ ∈ ⊗
F ′, for all s ∈ σ−1(s′), there exists

s ℓ−→ t ∈ F with t ∈ σ−1(t′) and ℓ ∈ λ−1(ℓ′). Since σ = id and hence |σ−1(s′)| = 1, the
universal quantification over σ−1(s′) reduces to showing the claimed property for the single
state s ∈ σ−1(s′). Analogously, there is also only one state t ∈ σ−1(t′), and thus we only
have to show that for all transition s′ ℓ′−→ t′ ∈ ⊗

F ′, there exists a transition s ℓ−→ t ∈ F with
ℓ ∈ λ−1(ℓ′), where s = s′ and t = t′ because σ is the identity label mapping.

From here on, as in the proof of Theorem 3.10, we simplify the notation by dropping any
use of FMs when referring to transformed states, and the same comment regarding the notion of
factored states as above applies.

On (A): We say that a transition system Θ ∈ F has an ℓ1-only transition if there exists a
transition s ℓ1−→ t ∈ Θ with s ℓ2−→ t /∈ Θ. Symmetrically, it has an ℓ2-only transition if there
exists a transition s ℓ2−→ t ∈ Θ with s ℓ1−→ t /∈ Θ.

We try to find two transition systems Θi,Θj ∈ F with i ̸= j such that there is an ℓ1-only
transition si ℓ1−→ ti ∈ Θi and an ℓ2-only transition sj ℓ2−→ tj ∈ Θj . Then Θi ⊗ Θj does not
contain a transition ⟨si, sj⟩ ℓ−→ ⟨ti, tj⟩ for either ℓ = ℓ1 or ℓ = ℓ2, but Θ′

i ⊗Θ′
j does contain the

transition ⟨si, sj⟩ ℓ12−−→ ⟨ti, tj⟩ because s′i
λ(ℓ)−−→ t′i ∈ Θ′

i and s′j
λ(ℓ)−−→ t′j ∈ Θ′

j for both choices
of ℓ = ℓ1 or ℓ = ℓ2. By induction over the remaining transition systems, it is then easy to show
that

⊗
F ′ contains a transition that does not correspond to a transition in

⊗
F , proving that

REFT does not hold. (Here, we use that there are no dead labels: the argument fails if ℓ1 and ℓ2
are dead, because then also

⊗
F ′ would not contain a transition labeled with ℓ12.) It remains to

show that ℓ1-only and ℓ2-only transitions in different transition systems of F exist.
Because 1. does not hold, there exists an ℓ2-only transition in some transition system Θi ∈ F .

Because 2. does not hold, there exists an ℓ1-only transition in some transition system Θj ∈ F . If
Θi and Θj are different transition systems, we have found the required transitions and are done.

So let us assume that Θi = Θj . Because 3. does not hold, there exist at least two transition
systems where ℓ1 and ℓ2 are not locally equivalent, so there is at least one transition system
Θk ̸= Θi where they are not locally equivalent. This means that Θk must have an ℓ1-only
transition or an ℓ2-only transition. In the former case, we select the ℓ1-only transition in Θk and
the ℓ2-only transition in Θi. Otherwise, we select the ℓ2-only transition in Θk and the ℓ1-only
transition in Θj (= Θi).

On (B): Consider Case 1., where ℓ1 globally subsumes ℓ2. Case 2. is identical with ℓ1 and
ℓ2 swapped. For ℓ′ ̸= ℓ12, the claim is trivial because

⊗
F and

⊗
F ′ are exactly identical

regarding labels other than ℓ1, ℓ2 and ℓ12. So consider the case ℓ′ = ℓ12. From s ℓ12−−→ t ∈⊗
F ′,

by the definition of products, we get si ℓ12−−→ ti ∈ Θ′
i for all 1 ≤ i ≤ n, and hence si ℓ1−→ ti ∈ Θi

or si ℓ2−→ ti ∈ Θi for all 1 ≤ i ≤ n by the definition of label reductions. Because ℓ1 globally
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subsumes ℓ2, this implies si ℓ1−→ ti ∈ Θi for all 1 ≤ i ≤ n, and hence by the definition of
products, s ℓ1−→ t ∈⊗

F , concluding this part of the proof.
On (C): As in (B), we choose ℓ′ = ℓ12, and by the definition of products, we obtain that for

all 1 ≤ i ≤ n, si ℓ12−−→ ti ∈ Θ′
i and hence, by the definition of τF, si ℓ1−→ ti ∈ Θi or si ℓ2−→ ti ∈ Θi

for all 1 ≤ i ≤ n. Choose ℓ ∈ {ℓ1, ℓ2} such that sj ℓ−→ tj ∈ Θj , where j ∈ {1, . . . , n} is
chosen in such a way that ℓ1 and ℓ2 are Θj-combinable in F . (Such a transition system Θj exists
because we are in Case 3.) By the definition of Θ-combinable, ℓ1 and ℓ2 are locally equivalent
for all transition systems in F other than Θj , and hence (si ℓ1−→ ti ∈ Θi or si ℓ2−→ ti ∈ Θi)
implies (si ℓ1−→ ti ∈ Θi and si ℓ2−→ ti ∈ Θi) for all i ̸= j. This shows that si ℓ−→ ti ∈ Θi for all
1 ≤ i ≤ n, and hence s l−→ t ∈⊗

F , concluding the final part of the proof.

Together with Theorem 3.5, an immediate consequence is that the heuristic for the factored
transition system induced by a label reduction based on Θ-combinability that preserves label
costs is perfect. We have already seen such a label reduction based on Θ-combinability: in
Figure 3.13, all labels of type “DRIVE” are Θ(vT )-combinable because these labels are locally
equivalent in the atomic factor Θ(vP ). Hence combining them into a new label z is an exact
transformation (if not changing the other labels as done in the example, because these label
reductions do not satisfy any of the exactness conditions), preserving plans and their costs.

This concludes the theoretical presentation of label reduction transformations, and we refer
to Section 3.8 for a discussion of generalized label reduction, including a comparison to the
previous theory of label reduction, an algorithm to compute exact label reductions based on Θ-
combinability, and a description of efficiency improvements possible in the merge-and-shrink
implementation based on generalized label reduction.

3.7. Algorithm

In this section, we describe a concrete instantiation of the merge-and-shrink algorithm in full de-
tail, sticking to the particular instantiation as implemented in Fast Downward (Helmert, 2006).
To begin, recall the general outline of the merge-and-shrink algorithm as discussed and illus-
trated in Algorithm 2 on page 47. A concrete implementation needs to decide which transfor-
mation to apply in each iteration of the main loop. Also note that the number of factors can
only be reduced through merge transformations, hence the algorithm performs exactly |F | − 1
many merge transformations before terminating.8 The layout of the algorithm we consider here
changes the loop to apply exactly one merge transformation and an arbitrary number of other
non-merge transformations in each iteration.

Algorithm 3 shows pseudocode. For a given factored transition system, the algorithm first
stores a copy F ′ of it, computes the set Σ of associated FMs that represent the identity state
mapping on

⊗
F ′, and sets λ to the identity label mapping on the labels of F ′ (line 2), just

like in the algorithm discussed previously. As another preprocessing step before the main-loop,

8However, if a factor of F is shown to be unsolvable already during the computation of the algorithm, there are two
alternatives of handling such cases: continue until |F | = 1, which can cause the computation not to finish under
given resource limits, or to terminate the computation early on, returning a trivially unsolvable transition system
with a single state together with a state mapping that maps all states to that single state. Practical implementations
typically opt for the second choice.
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Algorithm 3 The merge-and-shrink algorithm as implemented in Fast Downward.

Input: Factored transition system F , merge strategy MS, shrink strategy SS, prune strategy PS,
label reduction strategy LRS, size limit N ∈ N.

Output: Transition system Θ and FM σ mapping from states of
⊗
F to states of Θ.

1: function MERGEANDSHRINK(F )
▷ Copy input factored transition system, compute Σ to represent the identity state

mapping on
⊗
F ′, set λ to the identity label mapping.

2: ⟨F ′,Σ, λ⟩ ← ⟨F, {πΘ | Θ ∈ F ′}, id⟩
3: for Θ ∈ F do

▷ Prune atomic factor Θ with PS.
4: ⟨F ′,Σ, λ⟩ ← COMPOSETRANSFORMATION(PRUNE(F ′,Θ))
5: end for
6: while |F ′| > 1 do

▷ With MS, select two factors from F to be merged in this iteration.
7: Θ1,Θ2,← SELECT(F ′)

▷ With LRS, apply a label reduction to F .
8: ⟨F ′,Σ, λ⟩ ← COMPOSETRANSFORMATION(LABELREDUCTION(F ′))

▷ With SS, shrink Θ1 and Θ2 so that the size of their product respects N .
9: ⟨F ′,Σ, λ⟩ ← COMPOSETRANSFORMATION(SHRINK(F ′,Θ1,Θ2, N))

▷ With LRS, apply a label reduction to F .
10: ⟨F ′,Σ, λ⟩ ← COMPOSETRANSFORMATION(LABELREDUCTION(F ′))

▷ Apply the merge transformation.
11: ⟨F ′,Σ, λ⟩ ← COMPOSETRANSFORMATION(MERGE(F ′,Θ1,Θ2))

▷ With PS, prune the product factor Θ⊗ of Θ1 and Θ2.
12: ⟨F ′,Σ, λ⟩ ← COMPOSETRANSFORMATION(PRUNE(F ′,Θ⊗))
13: end while
14: return single elements Θ ∈ F and σ ∈ Σ
15: end function
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it also applies a prune transformation to all atomic factors of F ′ according to the prune strat-
egy PS (line 4). Here and in the following, the method COMPOSETRANSFORMATION is to be
understood to take the transformation as computed by the method given as its parameter (i.e.
PRUNE, LABELREDUCTION, SHRINK, or MERGE) and to compose it with the current trans-
formation ⟨F ′,Σ, λ⟩. While we do not explicate the composition further, it can be computed
efficiently, in particular with respect to the FMs, as described in the individual sections on each
transformation.

The main loop is then laid out as follows. In a first step, with the merge strategy MS, the
algorithm selects the two factors to be merged in the current iteration (line 7). It then possibly
applies a label reduction to the set of labels using the label reduction strategy LRS (line 8).
Afterwards, the algorithm possibly shrinks the selected two factors, using the shrink strategy
SS, so that their product respects the specified size limit N (line 9). Then, the algorithm applies
a label reduction again (line 10). Finally, the selected merge can be performed, i.e. the merge
transformation with the two chosen factors is applied (line 11). Before terminating the current
iteration, though, the algorithm prunes the product factor of the merge, using the prune strategy
PS (line 12).

With the theoretical results of the previous sections, we know that the final transition system
Θ ∈ F ′ is an induced abstraction of

⊗
F , possibly only for the subset of reachable states,

and the only element σ left in Σ is an FM associated with Θ representing the corresponding
abstraction mapping from states of

⊗
F to states of Θ. Furthermore, we know that the heuristic

hτ⊗F induced by the transformation ⟨F ′,Σ, λ⟩ is a (forward-)admissible heuristic for
⊗
F .

If all applied transformations are exact (for the subset of reachable states), then hτ⊗F is even
(forward-)exact.

The algorithm has several parameters. The obvious ones are the transformation strategies SS,
MS, PS, and LRS, which we discuss in more detail below, as well as the size limit N . Besides
these, there are also a few hidden parameters. The two places where the algorithm performs
label reductions are considered optional, i.e. the algorithm can apply no label reduction at all,
only before shrinking, only before merging, or twice in each iteration. The reason to have it
twice in the main loop is that there exist different shrink strategies, some of which profit from
operating on label reduced transition systems, while others do not. Furthermore, while shrinking
could also be applied on the product, i.e. after merging, this would require to first compute the
full product which potentially could violate the given size limit N on transition systems. Hence
we shrink before merging because then the given size limit is always respected. A consequence
of this decision is that we also have to decide which of the two factors to shrink to what extent.
In practice, we choose balanced size limits. That means we shrink both transition systems to
the same size such that their product respects the given size limit N , unless it suffices to shrink
only one of the factors. In that case, the factor is shrunk as much as needed such that the product
stays the limit N . The algorithm also allows performing shrink transformations even if the size
limit N would not be violated by the product to allow shrink strategies to compute exact shrink
transformations that actually reduce the size of a transition system.

We now discuss the concept of transformation strategies. A shrink strategy gets a single factor
and a target size as input. It then computes a shrink transformation which reduces the number of
states of the factor so that it is at most the target size. Shrinking can be understood as performing
a sequence of minimal transformations that combine exactly two states of a transition system.

71



L
L

L
L

L
L

L

v8

v7

v6

v5

v4

v3

v2v1

L
L

L

v1 v2 v3 v4 v5 v6 v7 v8

Figure 3.14.: Two merge trees for a problem with 8 finite-domain variables. Previous theory
allows reducing labels in the intermediate abstractions marked with an “L” when
v1 is the pivot.

This allows shrink strategies to be described as the simple choice of selecting two states of a
transition system to combine. We discuss shrink strategies from the literature in Chapter 5.

More important for this thesis is the concept of a merge strategy. Given a factored transition
system, it needs to choose two factors that should be merged in the current iteration of the
algorithm. Given that a merge strategy thus performs a sequence of decisions selecting two
elements of a set, it can be viewed as a binary tree, the so-called merge tree, over the factors
of the original factored transition system, which form the leaves of the tree. All inner nodes
correspond to factors that arise from merging the factors corresponding to their child nodes, and
hence whenever two nodes have the same ancestor, this means that the two corresponding factors
must be merged at some point during the merge-and-shrink computation.9

For example, consider a state space defined through 8 finite-domain variables v1, . . . , v8. The
induced factored transition system hence consists of 8 atomic factors. Figure 3.14 shows two
possible merge trees for this state space. Ignore the labels of the nodes for the moment. The
merge tree shown on the left dictates to first merge the two atomic factors Θ(v1) and Θ(v2),
then their product with the atomic factor Θ(v3), and so on. However, a merge tree does not
always dictate a fully defined order in which the next pair of transition systems is selected, but
sometimes only a partial order: in the right tree, for example, we are free to first merge Θ(v1)
with Θ(v2) and then Θ(v3) with Θ(v4) before merging the two resulting product transition
systems, or the other way around. Assuming a fixed order in which leaf nodes are considered
solves this ambiguity.

We also distinguish two types of merge trees (and with that, merge strategies): the merge tree
on the left degenerates to a list, i.e. every right child node is always a leaf node, and for that
reason is called a linear merge tree, representing a linear merge strategy. The merge tree on
the right is not a list and is called non-linear, representing a non-linear merge strategy. Like
for shrink strategies, the merge-and-shrink literature describes various merge strategies, most of
which we discuss in Chapter 5.

The third transformation strategy is the prune strategy. Given a single factor, it must decide
which states to prune. As we have seen in Section 3.5, pruning of unreachable states results in

9Note that the trees underlying FMs have the same structure, i.e. in that sense, a merge tree basically is an FM
without value sets and table functions.
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the heuristic being forward-exact. Furthermore, pruning of irrelevant states never hurts heuristic
quality. Thus, for simplicity, we consider only two binary choices for pruning strategies: to prune
or not to prune unreachable and irrelevant states, which amounts to a total of four combinations.
We call the option that prunes both unreachable and irrelevant states full pruning, which has
been the default in the merge-and-shrink implementation since its addition to Fast Downward.

Finally, a label reduction strategy needs to decide which labels to combine, given a factored
transition system and its implied set of labels and label costs. Analogously to shrink strategies,
we can describe label reductions as a sequence of minimal label reductions that combine exactly
two labels. In Section 3.6, we have seen that label reductions are always strict homomorphisms
and can also be exact induced transformations. In the next section, we describe an algorithm to
compute exact label reductions. We consider different instantiations of this algorithm as label
reduction strategies.

3.8. Discussion of Generalized Label Reduction

In this section, we discuss the consequences of the introduction of generalized label reduction
to the merge-and-shrink framework. In particular, we compare it to the previous theory of label
reduction, showing the advantages of the new theory. Furthermore, we provide an algorithm to
compute exact label reductions based on Θ-combinable labels. Finally, we explain how we can
make the the implementation of the merge-and-shrink algorithm computationally more efficient
compared to previous implementations due to detaching labels from their meaning as operators
and due to exploiting equivalence classes of combinable labels.

3.8.1. Comparison to Previous Label Reduction

The following discussion, to some extent, stems from our original paper introducing generalized
label reduction (Sievers et al., 2014). Having defined generalized label reduction in Section 3.6,
we can now better understand the weaknesses of the previous theory of label reduction. We
describe these weaknesses without formally introducing the previous theory.

Firstly, the old theory largely attempts to define label reduction as a local concept considering
individual transition systems: the central notion is a label-reduced transition system. This is fun-
damentally at odds with the purpose of labels in the merge-and-shrink framework to coordinate
the joint behavior of all transition systems in the factored transition system F maintained dur-
ing the computation. If we change the labels in some, but not all factors of F , synchronization
cannot work correctly.

The earlier papers address this difficulty by performing a kind of “just-in-time label reduction”
that makes the labels of two transition systems correspond just before they are merged (which
is the only point at which labels matter). This works, but the resulting theory is complex to
understand and reason about, as different parts of the merge tree work with different labels.
Consequently, the previous theory only permits reducing labels in certain cases, with other cases
deemed to be unsafe and hence forbidden. Complications mainly arise in the case of non-linear
merge strategies, and consequently, these were never correctly implemented.

To better understand this restriction to linear merge strategies, consider again the state space
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defined through 8 finite-domain variables v1, . . . , v8 and the two possible merge trees shown in
Figure 3.14 on page 72. To use the previous label reduction, one must select a leaf node as a
pivot element, and may only apply label reduction in transition systems that are ancestors of the
pivot or the pivot itself. In the example, we choose v1 as the pivot. All nodes marked with an
“L” are ancestors of the pivot and hence the factors corresponding to these nodes (and the leaf
v1 itself) can be modified through label reduction. This means that for the linear merge tree
on the left, all intermediate factors and the atomic one for v1 can be label reduced using the
previous label reduction. On the other hand, for complete merge trees over n variables such as
the merge tree on the right, only O(log n) of the factors can be label reduced using the previous
label reduction, a restriction strong enough to have limited all prior work to use linear merge
strategies.

The second weakness of the previous theory of label reduction is that it is in a certain sense
syntax-based: it needs to “look inside” the labels in order to decide which labels can be com-
bined into one. For planning tasks, label reduction must treat labels as structured pairs of pre-
conditions and effects, reintroducing and critically depending on the syntactic descriptions. This
contrasts merging and shrinking, which also in the previous description of merge-and-shrink are
considered purely semantic operations.

Thirdly, the previous theory cannot exploit label reductions that are enabled by shrinking. The
decision how to reduce labels is completely independent of the shrink steps of the algorithm and
hence needs to be correct for all possible shrink strategies. This severely limits simplification
possibilities.

With generalized label reduction, all of these restrictions are taken away. We think that the
new theory is much easier to understand than the previous one. Furthermore, it can be used at
every intermediate transition system also with non-linear merge strategies, reducing labels in
all 2n − 1 factors of a merge tree with n variables. Like the other transformations, it is purely
semantic and treats labels as opaque tokens that do not need to “stand for” anything, which
allows interleaving it with arbitrary merge, shrink, and prune transformations. Finally, it is also
more powerful than the previous theory because it allows reducing more labels. For example,
consider an example planning problem with three variables v1, v2, v3 and recall that we need
to use a linear merge strategy. Consider further two labels ℓ1 and ℓ2 corresponding to planning
operators o1 and o2 that have different preconditions on v1, i.e. pre(o1)[v1] ̸= pre(o2)[v1], and
have the same preconditions and effects on all other variables. With the previous theory of label
reduction, these two labels could only be combined in the single maintained product transition
system Θ (which serves as the pivot in the sense that only the product transition system can be
label-reduced) iff the factor Θ(v1) representing variable v1 has been merged into Θ, because then
the preconditions and effects of the two labels would agree on all other variables “not merged
yet”. With our theory, ℓ1 and ℓ2 are Θ(v1)-combinable from the beginning on and hence can
immediately be combined into a new label.

The new theory has already been proven useful in several papers (discussed in Section 5)
that directly make use of generalized label reduction or non-linear merge-and-shrink. Further-
more, the interpretation of labels as opaque tokens, without attached preconditions and effects,
allows for a more memory- and time-efficient implementation of the whole merge-and-shrink
framework in the Fast Downward planning system, which we discuss below and evaluate in
Section 6.4.
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Figure 3.15.: A factored transition system with two transition systems Θ1 (left) and Θ2 (right).

3.8.2. Computation of Exact Label Reduction

We now describe how to compute label reductions based on Θ-combinability. Let us recall the
conditions of Theorem 3.11 under which two labels ℓ1 and ℓ2 can be combined without losing
information: either one globally subsumes the other, or ℓ1 and ℓ2 are Θ-combinable for some
transition system Θ of a factored transition system. Concerning the computation of globally
subsumed labels, we note that this involves finding subset relationships in a set family, for which
to the best of our knowledge no linear-time algorithms are known. However, as demonstrated
with the general example comparing linear to non-linear merge strategies in the previous section,
already with only using Θ-combinable labels, we can reduce more labels than with the previous
label reduction, and hence we restrict exact label reductions to this condition.

Before describing the computation of exact label reductions based on Θ-combinable labels
(combinable labels for short in the following), we make the following important observation.
If ℓ1 and ℓ2 are combinable and ℓ2 and ℓ3 are combinable for different transition systems, this
does not imply that ℓ1 and ℓ3 are combinable for any transition system, i.e. combinable is not a
transitive relation. More specifically, the relation on locally equivalent labels for a single transi-
tion system is transitive. It is even an equivalence relation, called local equivalence relation (on
labels) in the following. However, the combinable relation is the union over these local equiva-
lence relations, and this union relation is not transitive. An attempt at an intuitive explanation:
after merging ℓ1 and ℓ2, the fresh label that replaces ℓ1 and ℓ2 is in general not locally equivalent
with ℓ3 in all (but one) component transition systems because we now have transitions with the
new label that originated from ℓ1 and have no matching transition for ℓ3.

An immediate consequence of this observation is that if we want to apply all possible label
reductions by computing combinable labels for all transition systems until there are no more
such combinable labels, the result depends on the order in which we consider the transition
systems. As an example, consider the factored transition systems shown in Figure 3.15. It has
two transition systems Θ1 (left) and Θ2 (right), with states s1, t1, and s2, t2. If we combine
ℓ1 and ℓ2 into a new label ℓ because they are Θ1-combinable, then ℓ and ℓ3 are not combinable
afterwards for any of the two transition systems. On the other hand, if we combine ℓ2 and ℓ3
into a new label ℓ because they are Θ2-combinable, we cannot combine ℓ with ℓ1 afterwards.

With the above observations, our algorithm of choice to compute exact label reductions based
on Θ-combinability is the fixed point algorithm illustrated in Algorithm 4. It keeps track of
the number of iterations in which no more labels could be combined (line 2) and reaches a
fixed point if the number of such unsuccessful iterations equals the number of factors in the
given factored transition system F , i.e. if for no (more) factor Θ ∈ F , we can combine labels
based on Θ-combinability (line 3). In each iteration, the algorithm chooses the next factor
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Algorithm 4 Fixed point label reduction algorithm.

Input: Factored transition system F with labels L and label costs c; Order O on factors of F .
Output: Transformed factored transition system F .

1: function LABELREDUCTION(F )
▷ Number of unsuccessful iterations.

2: #-unsucc-it← 0
3: while #-unsucc-it < |F | do

▷ Get next transition system according to the order O of transition systems on F .
4: Θ← NEXT(F ′, O)
5: equiv-rel← Θ-COMBINABLE-RELATION(F,Θ))
6: if equiv-rel is trivial then

▷ There are no Θ-combinable labels.
7: #-unsucc-it← #-unsucc-it+ 1
8: else

▷ Compute label mapping λ : L 7→ L′ and new label cost function c′ from
equivalence relation over L.

9: λ, c′ ← LABELMAPPING(L,equiv-rel)
▷ Apply label mapping λ and cost function c′ to F , i.e. replace L by L′ and c by
c′.

10: APPLY(F , λ, c′)
11: #-unsucc-it← 0
12: end if
13: end while
14: return F
15: end function
16: function Θ-COMBINABLERELATION(F , Θ ∈ F )

▷ Universal equivalence relation over L: single equivalence class containing all ℓ ∈ L
17: equiv-rel← UNIVEQUIVREL(L)
18: for Θ′ ∈ F with Θ′ ̸= Θ do

▷ Refine the current equivalence relation over L with the local equivalence relation
over L of Θ′.

19: equiv-rel← REFINE(equiv-rel, EQUIVREL(Θ′, L))
20: end for
21: return equiv-rel
22: end function
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Θ ∈ F according to some user-specified order O in which factors of F should be considered
(line 4). For the chosen factor, the algorithm computes the Θ-combinable equivalence relation on
labels L of F using the method Θ-COMBINABLERELATION which works as follows. Starting
with the universal equivalence relation on L in which all labels are considered equal (line 17),
the algorithm then subsequently refines this equivalence relation through the local equivalence
relation on L of all factors other than Θ (line 19). (For this iterative refinement, the order in
which we consider the factors of F does not matter.)

If this Θ-combinable equivalence relation over L is trivial in the sense that there are no
two labels considered equal under the equivalence relation, the iteration counts as unsuccess-
ful (line 7) and the algorithm repeats or terminates, depending on the count of unsuccessful
iterations (line 3). Otherwise, the algorithm turns the Θ-combinable equivalence relation into
a label mapping λ (line 9) by combining all labels within a single equivalence class to a new
label ℓ, setting the cost c′(ℓ) of the new label to the minimum cost of all labels mapped to ℓ
by λ to satisfy the definition of label reductions (cf. Definition 3.18). Note that to obtain an
exact label reduction, we have to split each equivalence class within the computed equivalence
relation further according to label costs. Applying the label mapping to the factored transition
system (line 10) means to re-label all transitions labeled by labels that have been combined into
new labels. Finally, the algorithm continues with the next iteration.

A first remark concerns the interaction of the algorithm with the merge-and-shrink algorithm.
Recall that Algorithm 3 provides two single calls to the method LABELREDUCTION which
corresponds to the label reduction algorithm presented here. However, due to the fixed point
nature of the label reduction algorithm, it does not compute a single label reduction but rather
applies a sequence of label reductions. Hence each call to APPLY(F, λ, c′) in above algorithm is
to be understood as composing the transformation based on the label mapping computed in the
current iteration of the algorithm with the transformation maintained by the merge-and-shrink
algorithm.

Secondly, we remark that the computation of the local equivalence relations over the set of
labels L for a factor Θ (EQUIVREL(Θ, L)) is possible in time polynomial in the size of the
factor. Refining an equivalence relation A through another one called B (REFINE(A,B)) is
possible in time linear in the number of elements of the equivalence relations (here: the number
of labels) when using suitable data structures such as linked lists.

Assuming that the fixed point algorithm, which we call FP in the following and in the ex-
perimental study, is a somewhat expensive algorithm in terms of runtime, we also consider two
cheaper variants of computing exact label reductions. An easy possibility is to not iterate until
reaching a fixed point, but to stop after having computed combinable labels for all factors once.
For this variant, called ONCE, the above algorithm never resets the #-unsucc-it counter. An even
cheaper variant only computes combinable labels for the two factors that will be merged next,
with the rationale that we want to combine labels that are not locally equivalent in these two
factors, which renders these factors simpler in that more transitions are induced by the same
labels, hence reducing the required runtime to compute their product. In the algorithm, this can
be achieved by not using the loop of LABELREDUCTION at all, but only performing two man-
ual “iterations” using Θ-COMBINABLE-RELATION for each of the to-be-merged factors. This
variant is called 2TS (consider only two transition systems).

As observed before, the order in which the algorithm considers the factors Θ to compute Θ-
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combinable labels matters (cf. the method NEXT(F )) if using FP or ONCE. In the experiments
reported in our previous work (Sievers et al., 2014), and to the best of our knowledge also in
all other work making use of generalized label reduction with FP, factors are considered in a
randomized order, fixed a priori. In our experiments for this work, we also evaluated two alter-
native orders with FP, based on the variable order of Fast Downward. The variant RL considers
atomic factors according to the regular variable order (called reverse level) and then all non-
atomic ones in the order in which they originated. A third variant inverts the order of RL and
is called L. However, we found that the order does not matter a lot in the practice of the IPC
benchmarks: coverage of FP with RND, RL, and FP only varied marginally. We conclude that
there are not many cases where one has to decide between reducing combinable labels ℓ1 and ℓ2
or labels ℓ1 and ℓ3. We hence stick with the commonly used randomized order, both when using
FP and ONCE.

3.8.3. Efficient Implementation

In the following, we describe the techniques used for an efficient implementation of the merge-
and-shrink framework in Fast Downward. Some of these techniques have already been used in
the older implementation using the previous theory of label reduction (cf. Section 4.3 by Helmert
et al., 2014) and in our first, non-optimized implementation of generalized label reduction in Fast
Downward, used in our original conference paper (Sievers et al., 2014). All improvements based
on generalized label reduction are implemented in the state-of-the-art optimized code base of
merge-and-shrink. Hence there are two implementations we compare here, and we describe both
of them in the following, distinguishing clearly between optimizations present in the previous
implementation and in the optimized implementation.

In both implementations, we do not store transitions as an adjacency list as it is common with
graphs, but we store all transitions grouped by labels. This allows an efficient application of
all transformations of transition systems, as we will see below. Additionally, and in contrast to
the previous implementation, we store label groups of locally equivalent labels (i.e. we store the
local equivalence relation on labels for each transition system), disregarding their cost (the cost
of a label group is the minimum cost of any participating label) and store their transitions only
once rather than separately for each label. This was not possible in the previous implementation
where labels were associated with preconditions and effects of operators. In addition, due to
this more memory-efficient representation, we can also represent so-called irrelevant labels,10

i.e. have one group that represents irrelevant labels. The previous implementation did not store
transitions of irrelevant labels explicitly, which led to various special-casing.

Furthermore, we maintain a valid-state invariant for transition systems, which states that la-
bels and their transitions are grouped (i.e. local equivalence relations on labels have been com-
puted), that the transitions are sorted and unique within label groups (which eases the com-
putation of locally equivalent labels, because this requires comparing sets of transitions), that
g- and/or h-values for each transition system are computed, depending on the requirements on
distance information of the chosen merge, shrink, and prune strategy, and that all factors are

10A label l is irrelevant in Θ if for all states s of Θ, there is exactly one transition s l−→ s ∈ Θ, i.e. the label
induces self-looping transitions for all states. A label l is relevant if it is not irrelevant. See also Definition 5.5 on
page 109.
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pruned according to the prune strategy.11 We make sure that after applying any transformation
to the factored transition system, all transition systems are in a valid state again. This contrasts
the previous implementation which also guaranteed that transitions were sorted and unique (for
single labels), but did not enforce this as an invariant, but only on demand (before shrinking
and merging, but not after merging), and which always computed both g- and h-value distance
information (because it always used full pruning).

Another difference is due to the changed layout of the main loop: we apply prune trans-
formations according the prune strategy PS after merging, because only when computing the
product system, new dead states can arise. The previous implementation performed pruning
while shrinking, and hence only pruned transition systems before they were further processed.

In both implementations, we compute distance information of transition systems by perform-
ing Dijkstra’s algorithm (Dijkstra, 1959). This is the only place where we need an explicit
adjacency list representation of transition systems.

We now turn our attention to the different merge-and-shrink transformations. When applying
a shrink transformation to the factored transition system, the shrink strategy computes a state
mapping in the form of an equivalence relation on states. We first compute the explicit state
mapping from this equivalence relation, assigning a consecutive number to each equivalence
class. This state mapping can then be applied to both the transition system with its represen-
tation of transitions grouped by labels and to the FM. From the equivalence relation on states,
we update the information on goal states. This implementation of shrinking is identical to the
previous implementation by Helmert et al.

When applying a merge transformation to the factored transition system, merging two tran-
sition systems Θ1 and Θ2, we do not compute the full product of states and their transitions as
it has been done in the previous implementation by Helmert et al., because this would require
to compute the local equivalence relation on labels from scratch after computing the product.
Instead, we use a bucket-based approach to directly compute the refinement of the local equiva-
lence relations on labels of Θ1 and Θ2, collecting their transitions accordingly. To compute the
merge FM, all that needs to be done is to set its table to map pairs of component states to their
product state.

When applying a prune transformation, we first need to compute the set of unreachable and/or
irrelevant states for the to-be-pruned transition system, depending on the chosen options for
pruning. As the required distance information is always up-to-date for all transition systems
(valid-state invariant), we simply collect all states whose g- and/or h-value is infinity and either
prune them by entirely removing them and their transitions from the transition system (original
pruning), or by applying an abstraction that maps all unreachable/irrelevant states to two sin-
gle states (pruning as abstraction), as described at the end of Section 3.5. The FM is updated
by applying a state mapping that maps all pruned states to ⊥ and leaves all other entries un-
changed. The former implementation of pruning (removing states and transitions) is identical to
the previous implementation by Helmert et al.

Computing a label reduction with the algorithm shown on page 76 is also favored by our rep-

11We remark that the layout of the algorithm as discussed above is chosen to accommodate the needs of our invariant.
In particular, concerning pruning, we prune all atomic factors once, and since new pruning opportunities can only
arise in product factors, we also prune immediately after merging.
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resentation that stores the local equivalence relations on labels for all transition systems and all
transitions grouped by labels. In particular, the loop of the method Θ-COMBINABLE-RELATION

simply uses the already computed local equivalence relations on labels (EQUIVREL) rather than
computing it from scratch (valid-state invariant). For efficient REFINE operations as discussed
in the description of the algorithm, we store labels in linked lists. Computing the label mapping
(LABELMAPPING) is straight-forward and is done as computing the state mapping from the
equivalence relation on states when shrinking. As we store locally equivalent labels of different
costs in the same group, for exact label reductions, we need to further split the computed label
mapping according to label costs.

Applying the label mapping (APPLY) can be efficiently done as follows. When updating a
transition system for which we know that only locally equivalent labels are combined (which
is the case for all transition systems other than Θ when applying a label mapping based on Θ-
combinability), all we have to do is to remove the old labels from their group (they are all in the
same group) and adding the new label to it; the transitions remain. Otherwise, we need to remove
the old labels from their groups (potentially different ones) and add a new singleton group for
the new label. While doing so, we collect the transitions of all to be removed labels and combine
them to form the transitions of the new label. If label groups become empty, we remove them
together with their transitions. We also need to recompute the costs of all modified label groups.
Finally, we recompute the local equivalence relation on labels to restore the valid-state invariant
for the transitions system.

In contrast to the previous implementation by Helmert et al., we directly encode the heuristic
values into the final FM σ rather than keeping σ together with the distance information of the
final transition system Θ. This means that the FM does not store the abstraction mapping from
Θ(Π) to Θ but represents the heuristic function, i.e. a mapping from states s of Θ(Π) to hΘ(s).

We remark that the above improvements compared to the previous implementation also affect
some of the transformation strategies of the merge-and-shrink toolbox. We come back to that
impact when discussing these strategies in the next chapter.

To conclude this section, the following list summarizes the differences of the optimized im-
plementation compared to the previous one. All of these changes, except the last point of the
list, are only possible due to the addition of generalized label reduction.

• We store labels and their transitions grouped according to the equivalence relation on
labels within each transition system, including representing irrelevant labels.

• We maintain a valid-state invariant of transition systems. This means that we always store
groups of locally equivalent labels, keep their transitions sorted and unique, and have
distance information computed as required by all transformation strategies.

• We compute product systems without computing the full product of all transitions but
rather by directly computing the label groups and their transitions as a refinement of the
local equivalence relations on labels of the two components.

• We encode the heuristic directly into the final FM.

In our experimental study, we will compare merge-and-shrink based on generalized label reduc-
tion using the previous and the optimized implementation.
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4. Expressiveness of Merge-and-Shrink

Throughout this thesis, we use FMs to store abstraction mappings or heuristic functions as part
of the merge-and-shrink framework. However, it is also useful to consider FMs as a general
mechanism for representing functions mapping variable assignments into some set of values,
independently of their concrete use in state-space search (where the variable assignments are
states, and they are mapped to numerical heuristic values). In this chapter, we consider FMs
as such general-purpose data structures and discuss their expressive power. More precisely, as
it is clear which functions FMs can represent, the more interesting question we answer here is
which functions can be compactly represented with FMs. The results then directly transfer to
merge-and-shrink heuristics, which are represented using FMs.

The existing theoretical studies of the expressive power of FMs are limited to the linear case,
partly because the existing theory did not allow for efficient implementations of general non-
linear abstractions until the introduction of generalized label reduction. It is well-known that
linear FMs correspond to binary (Bryant, 1985) and algebraic (Bahar et al., 1993) decision di-
agrams (BDDs and ADDs), as first observed by Bonet (personal communications) and recently
studied in more depth (Edelkamp et al., 2012; Torralba et al., 2013; Helmert et al., 2014; Tor-
ralba, 2015). Regarding the non-linear case, Helmert et al. (2014) make a number of conjectures
entailing that general FMs are strictly more powerful than linear ones. In this chapter, we prove
these conjectures correct.

The chapter closely follows and in large parts stems from the paper On the Expressive Power
of Non-Linear Merge-and-Shrink Representations (Helmert et al., 2015), adapted to the notation
used in this thesis. It is structured as follows. After a reminder of how FMs work, we briefly
repeat results concerning the expressive power in previous work. Then we prove that general
FMs are strictly more powerful than linear ones by showing that there exist problem families
that can be represented compactly with general FMs but not with linear ones. Furthermore, we
give a precise bound that quantifies the necessary blowup incurred by conversions from general
FMs to linear ones. We conclude with a discussion and directions for future work.

4.1. Factored Mappings

As we already defined FMs in Section 3.2.3, cf. Definition 3.9, we do not repeat their definition
here. However, we need some extra notations and we give an additional example illustrating the
definition and the computation of FMs which we use throughout the remainder of this chapter.

FMs represent functions defined on assignments over finite-domain variables, which the fol-
lowing definition formalizes.

Definition 4.1. Let V be a set of variables, each with a finite domain dom(v) ̸= ∅.
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M2 M3

x
y

1 2 3 4

1 1 1 1 1
2 1 2 2 2
3 1 2 3 3
4 1 2 3 4

M23 M1

x
y

1 2 3 4

1 T F F F
2 T T F F
3 T T T F
4 T T T T

M231

Figure 4.1.: Example FM (value sets and function tables for identity functions at the leaves omit-
ted).

An assignment of a variable set V is a function α defined on V with α(v) ∈ dom(v) for all
v ∈ V . We write vars(α) for the variable set V (i.e. for the domain of definition of α).

Throughout the chapter, we assume that some underlying finite set of variables V is given.
Recall that FMs have an associated value set. If the FM is atomic, it has an associated variable,

and its table is a function mapping from the domain of that variable to its value set. If it is a
merge, then it has a left and right component, both FMs, and its table is a function mapping
from the product of the value sets of the components to its own value set. Sometimes, we need
to reason about the variables of an FMM, i.e. the associated variables of all atomic FMs that
are (recursive) components ofM. We write vars(M) for this set of variables.

Figure 4.1 illustrates the definition of FMs. The variables are V = {v1, v2, v3} with domains
dom(v1) = dom(v2) = dom(v3) = {1, 2, 3, 4}. The overall FM,M231, is a merge with left
componentM23 and right componentM1. M23 is a merge with left componentM2 and right
componentM3.M1,M2 andM3 are atomic.

For the atomic FMsMi, the variable is vi, the value set is {1, 2, 3, 4}, and the table is simply
the identity function. The value set of M23 is also {1, 2, 3, 4}, and its table is the minimum
function: Mtab

23 (x, y) = min(x, y). Finally, the value set ofM231 consists of the truth values
{T,F}, and its table is defined byMtab

231(x, y) = T iff x ≥ y.
Recall the definition of the represented function of an FM: an atomic FM defines an arbi-

trary function on the values of the associated variable, and a merge FM recursively computes a
function value for each of its two components and combines the subresults into the final result.

To illustrate, consider the computation of the example FMM231 for a given example assign-
ment:

M231({v1 7→ 2, v2 7→ 4, v3 7→ 3})
=Mtab

231(M23({v2 7→ 4, v3 7→ 3}),M1({v1 7→ 2}))
=Mtab

231(Mtab
23 (M2({v2 7→ 4}),M3({v3 7→ 3})),

M1({v1 7→ 2}))
=Mtab

231(Mtab
23 (Mtab

2 (4),Mtab
3 (3)),Mtab

1 (2))

=Mtab
231(Mtab

23 (4, 3), 2)

= T iff min(4, 3) ≥ 2

= T

82



More generally,M231 represents a predicate that is true for assignment α iff min(α(v2), α(v3))
≥ α(v1).

Recall the notion of linear and non-linear FMs, and with that, merge trees and merge strategies
(cf. Section 3.4). We make this notion more precise here by calling an FM linear if it is atomic
or if it is a merge whose w.l.o.g. right component is atomic and whose left component is linear.
The important defining property of a linear FM is that it never contains merges of two merges.
We also remark that the structure of a linear FM is fully defined by the sequence of associated
variables for the leaves of its tree representation, read from left to right. We call this sequence
the variable order of the FM. The example FM in Figure 4.1 is linear, and its variable order is
⟨v2, v3, v1⟩. Sometimes we speak of general FMs to emphasize that we want to include both
linear and non-linear FMs.

We will study the question which functions can be represented compactly with linear and with
general FMs. For this purpose, we need to define a measure for the representation size of an FM.
We assume that the tables are represented explicitly by their entries, and hence the total number
of table entries dominates the overall representation size and defines a suitable size measure.

Definition 4.2. The size of an FM M, written as ∥M∥, and the size of its table, written as
∥Mtab∥, are defined inductively as follows. If M is atomic with variable v, then ∥M∥ =
∥Mtab∥ = |dom(v)|. IfM is a merge, then ∥Mtab∥ = |vals(ML)| · |vals(MR)| and ∥M∥ =
∥ML∥+ ∥MR∥+ ∥Mtab∥.

In the example, we obtain ∥M231∥ = 2 · 4 · 4+ 3 · 4 = 44, which counts the two 4× 4 tables
for the merges and the three size-4 tables for the atomic FMs. If we generalize the example to a
larger domain with D values, we obtain a representation size of Θ(D2) to define a function on
D3 possible variable assignments.

In order to analyze the scalability of FMs, we need to consider representation sizes for families
of functions.

Definition 4.3. Let F be a family of functions on variable assignments. We say that F has
compact FMs if there exists a polynomial p such that for each function f ∈ F defined over
variables Vf , there exists an FMMf for f with ∥Mf∥ ≤ p(

∑
v∈Vf

|dom(v)|).
We say that F has compact linear FMs if additionally all FMsMf are linear.

In words, the size of compact representations is at most polynomial in the sum of the variable
domain sizes (i.e. in the number of variable/value pairs).

4.2. Expressive Power of Merge-and-Shrink in Previous Work

It is easy to see that FMs can represent arbitrary functions on assignments, so the study of
the expressive power of the merge-and-shrink framework has focused on the (more practically
important) question which functions can be represented compactly.

It is well-known that a family of functions can be represented compactly with linear FMs iff it
can be represented compactly with ADDs,1 which in turn is equivalent to having compact FMs

1ADDs only directly support functions over assignments to binary variables. To bridge this gap, Helmert et al. and
Torralba encode non-binary variables as contiguous sequences of binary ADD variables, as commonly done in
symbolic planning algorithms.
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by families of BDDs (e.g. Torralba, 2015).
In more detail, Helmert et al. (2014) and Torralba (2015) both prove results that relate linear

FMs to ADDs representing the same function. Translated to our notation, Helmert et al. show
that every linear FM M can be converted into an equivalent ADD of size O(|V |TmaxDmax),
where V = vars(M), Tmax is the maximum over the table sizes of M and its (direct and
indirect) subcomponents, and Dmax = maxv∈V |dom(v)|. A finer-grained analysis, which
also follows from results of Torralba, gives a slightly better bound of O(∥M∥Dmax). (Note
that ∥M∥ = O(|V |Tmax) because ∥M∥ is the sum of O(|V |) table sizes, each of which is
individually bounded by Tmax. Hence the second bound is at least as tight as the first one.)

In the opposite direction, it is easy to convert an arbitrary ADD with N nodes into a linear
FMM with ∥M∥ = O(N · |V |), where V is the set of ADD variables. The conversion first
performs the opposite of Shannon reductions (which, in the worst case, replaces each ADD edge
by a structure of size O(|V |)) and then converts the resulting structure into a linear FM, which
incurs no further blowup.

For non-linear FMs, no such bounds are known. However, Helmert et al. (2014) made the
following conjecture:

We conjecture that . . . there exists a family Tn of (non-linear) merge-and-shrink
trees over n variables such that the smallest ADD representation of Tn is of size
Ω((T max

n )c logn) for some constant c. Furthermore, we conjecture that a bound of
this form is tight and that the log n factor in the exponent can be more accurately
expressed with the Horton-Strahler number of the merge-and-shrink tree.

In the following we will prove this conjecture correct, including the relation to the Horton-
Strahler number. Rather than working with ADDs, we prove the results directly on the level
of general vs. linear FMs; the conjectured relationship to ADDs then follows from the above
discussion. Specifically, we will prove:

1. Every FM M can be converted into a linear FM of size at most ∥M∥HS(M), where
HS(M) is the Horton-Strahler number (see next section) of the merge strategy of M.
HS(M) is bounded from above by log2 n+ 1, where n is the number of variables.

2. There exist families of functions which can be compactly represented by general FMs, but
every linear FM has size Ω(∥M∥c log2 n), where c > 0 is a constant, n is the number of
variables, andM is a general FM representing the same function.

4.3. General to Linear FMs

The Horton-Strahler number (Horton, 1945) of a rooted binary tree is a measure of its “bushi-
ness”. The measure is high for complete trees and low for thin trees.2 For this paper, it is easiest
to define the measure directly for FMs.

2Horton-Strahler numbers of rooted trees are closely related to the pathwidth (e.g. Cattell, Dinneen, & Fellows,
1996) of the tree seen as an undirected graph. It can be shown that the Horton-Strahler number is always in the
range {k, . . . , 2k}, where k is the pathwidth (Mamadou M. Kanté, personal communications).
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Definition 4.4. The Horton-Strahler number of an FMM, written HS(M), is inductively de-

fined as HS(M) =





1 ifM is atomic
max(HS(ML),HS(MR)) if HS(ML) ̸= HS(MR)

HS(ML) + 1 if HS(ML) = HS(MR)

It is easy to prove inductively that the smallest tree (in terms of number of nodes) with Horton-
Strahler number k is the complete binary tree with k layers, from which it follows that Horton-
Strahler numbers grow at most logarithmically in the number of tree nodes.

For FMs, this implies HS(M) ≤ log2 |vars(M)| + 1. If M is linear, then HS(M) = 2,
unless M is atomic (in which case HS(M) = 1). More generally, FMs with small Horton-
Strahler number are “close” to being linear. In this section we show that general FMsM can
be converted to linear ones with an increase in representation size that is exponential only in
HS(M). In the following section, we then show that this blow-up is unavoidable.

Before we can prove the main result of this section, we show how to convert an FM with a
single violation of the linearity condition into a linear one. The main result uses this construction
as a major ingredient.

Throughout the section, we will refer to the parts of an FMM, by which we mean its direct
and indirect subcomponents, includingM itself.

Lemma 4.1. LetM be a merge FM whereML andMR are linear. Then there exists a linear
FMMlin representing the same function asMwith ∥Mlin∥ ≤ ∥ML∥+(|vals(ML)|+1)∥MR∥.

Proof. We demonstrate the construction ofMlin givenM. To reduce notational clutter, we set
L =ML and R =MR for the two (linear) components ofM. Further, we set r := |vars(R)|
and write ⟨v1, . . . , vr⟩ for the variable order underlyingR. For 1 ≤ i ≤ r, we writeRvar

i for the
atomic part ofR with variable vi andRi for the part ofR with vars(Ri) = {v1, . . . , vi}. (This
implies thatR1 = Rvar

1 , and henceR1, unlike the otherRi, is atomic.)
If R is atomic, thenM is already linear and we can setMlin =M. In the following we can

thus assume r ≥ 2.
We construct a sequence of linear FMs M0, . . . ,Mr such that Mlin = Mr is the desired

linear FM forM. To initialize the construction, we setM0 = L. All other FMsMi are merges,
so to define them we must specify their left and right components, value sets, and tables.

For 1 ≤ i ≤ r, Mi is a merge with left componentMi−1 and right component Rvar
i . The

value sets are vals(Mi) = vals(L)× vals(Ri) for all i ̸= r and vals(Mr) = vals(M).
Finally, the tables are defined as follows:

• i = 1:Mtab
1 (l, x) = ⟨l,Rtab

1 (x)⟩

• 1 < i < r:Mtab
i (⟨l, x⟩, y) = ⟨l,Rtab

i (x, y)⟩

• i = r:Mtab
r (⟨l, x⟩, y) =Mtab(l,Rtab

r (x, y))

To see that this FM represents the desired function, it is perhaps easiest to view the evaluation
of an FM for a given assignment as a bottom-up process. ComputingM(α) with the original
FM entails first computing L(α), then R(α) and finally feeding the two component results into
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Mtab. During the evaluation of R, the result for L must be “remembered” because it will be
needed at the end when plugging the two component results intoMtab.

The linearized FM emulates this process by first computing L(α) and then propagating the
resulting value l, unchanged, through all the computation steps of R as part of the value sets,
until the final step, whenR(α) becomes available and hence the final result can be computed.

To prove the claimed size bound, observe that all tables of L occur identically inMlin, so the
total size of these tables in Mlin can be bounded by ∥L∥. Similarly, the tables of the atomic
parts ofR occur identically inMlin and their size can be bounded by ∥R∥. The remaining parts
of Mlin are the merges Mi with 1 ≤ i ≤ r. The size of Mtab

i is |vals(L)| times the size of
Rtab

i (inR), and hence the total size of these tables can be bounded by |vals(L)|∥R∥. Summing
these three terms gives the desired overall bound.

Armed with this construction, we can now proceed to prove the main result.

Theorem 4.1. Let Dsum(M) =
∑

v∈vars(M) |dom(v)|. For every FMM there is a linear FM
Mlin representing the same function with ∥Mlin∥ ≤ Dsum(M)∥M∥HS(M)−1 ≤ ∥M∥HS(M).

Proof. ClearlyDsum(M) ≤ ∥M∥, and thus it is sufficient to show the first part of the inequality,
i.e. ∥Mlin∥ ≤ Dsum(M)∥M∥HS(M)−1. This holds for linear FMs withMlin = M, so in the
following letM be non-linear. In particular, we will use thatM is not atomic.

Let B be the maximum of |vals(P)| over all parts P ofM with P ̸=M. We have B + 1 ≤
∥M∥ because each value set size |vals(P )| contributes to ∥M∥ (in the table of a merge), and it
is not the only term that contributes to ∥M∥ (becauseM is not atomic).

We now prove that every part P ofM (including P =M) can be converted to a linear FM
P lin of size at most Dsum(P)∥M∥HS(P)−1. The claim then follows by setting P =M.

The proof is by induction over the number of variables in P . If |vars(P)| = 1, P is atomic
and the result holds because P is already linear and satisfies ∥P∥ = Dsum(P).

For the inductive step, let P be a merge. Let k = HS(P), kL = HS(PL) and kR = HS(PR).
We can apply the inductive hypothesis to linearize PL and PR, obtaining linear FMs P lin

L and
P lin

R with ∥P lin
L ∥ ≤ Dsum(PL)∥M∥kL−1 and ∥P lin

R ∥ ≤ Dsum(PR)∥M∥kR−1.
If kL > kR, let Q be the FM with left component P lin

L and right component P lin
R and the same

table and value set as P . Clearly Q represents the same function as P and satisfies the criteria
of Lemma 4.1, so we can apply the lemma to receive a linear FM Qlin with size at most:

∥Qlin∥ ≤ ∥P lin
L ∥+ (|vals(P lin

L )|+ 1)∥P lin
R ∥

(*) ≤ ∥P lin
L ∥+ (B + 1)∥P lin

R ∥
≤ ∥P lin

L ∥+ ∥M∥∥P lin
R ∥

≤ Dsum(PL)∥M∥kL−1 + ∥M∥Dsum(PR)∥M∥kR−1

= Dsum(PL)∥M∥kL−1 +Dsum(PR)∥M∥kR

(**) ≤ Dsum(PL)∥M∥k−1 +Dsum(PR)∥M∥k−1

= (Dsum(PL) +Dsum(PR))∥M∥k−1

= Dsum(P)∥M∥k−1
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(a) Assignment α, satisfying the heap condition.

1 v1

4v2

6v4

5
v8

9
v9

7 v5

9
v10

8
v11

3 v3

2v6

9
v12

8
v13

3 v7

7
v14

6
v15

(b) Assignment α′, violating the heap condition be-
cause α′(v3) > α′(v6) and α′(v4) > α′(v8).

Figure 4.2.: Two example assignments for heap predicate φ15,9.

where (*) uses that P lin
L has the same value set as PL, which is a part ofM, and hence the value

set bound B applies to it; (**) uses that k = kL > kR in the case considered here.
If kL < kR, we use essentially the same construction, but make P lin

R the left and P lin
L the right

component ofQ, which allows us to swap the roles of kL and kR in the computation. To represent
the same function despite the swapped subcomponents, we set Qtab(x, y) = P tab(y, x).

Finally, if kL = kR, we use the same construction and computation as with kL > kR. Step
(**) remains correct because in this case k = kL + 1 = kR + 1.

In all cases, Qlin is the desired linear FM: we showed that it meets the size bound, and it
represents the same function as Q, which represents the same function as P .

4.4. Separation of General and Linear Merge-and-Shrink

In this section, we show that the size increase in the conversion from general to linear FMs in
Theorem 4.1 is unavoidable in general. To prove the result, we describe a family of functions
which have compact general FMs, but do not have compact linear FMs. More precisely, we will
show that ifM is a compact general FM for such a function f , then every linear FM must have
size Ω(∥M∥Θ(logn)), where n is the number of variables of f . This lower bound matches the
upper bound of ∥M∥HS(M) from the previous section.

The functions we consider are predicates, i.e. they map to the set of truth values {T,F}. We
say that an assignment α satisfies a predicate ψ if ψ(α) = T. We now introduce the family of
predicates we will study.

Definition 4.5. Let k ∈ N1, let n = 2k − 1, and let D ∈ N1. The heap predicate φn,D is a
predicate defined over variables V = {v1, . . . , vn} with dom(v) = {1, . . . , D} for all v ∈ V .
An assignment α of V satisfies φn,D iff α(v⌊i/2⌋) ≤ α(vi) for all 1 < i ≤ n. In this case, we say
that α satisfies the heap condition.

In the following, we omit k, n and D from the notation when this does not lead to confusion.
Observe that k = Θ(log n), or more precisely k = log2(n+ 1).

The heap predicate has its name because it is the condition characterizing sequences of values
that represent (min-) heaps, known from algorithm theory (e.g. Cormen, Leiserson, & Rivest,
1990). Figure 4.2 shows two example assignments for heaps of height k = 4, i.e. with n =
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Figure 4.3.: Heap and corresponding merge strategy.

24−1 = 15 variables. (Ignore the gray shading of some nodes for now.) We follow the common
convention in algorithm theory of displaying the assignment as a complete binary tree (not to be
confused with trees representing FMs!), where the variables are numbered in breadth-first order.
With this mode of display, the heap condition is satisfied iff the value assigned to each inner
node is less than or equal to the values assigned to its children. The assignment shown at the left
satisfies the heap condition, while the one at the right does not.

4.4.1. General FMs for Heaps

It is easy to see that heap predicates can be represented compactly with general FMs. In fact, the
first FM we showed in Figure 4.1 is an example of this, representing the heap predicate φ3,4.

The general case is only slightly more complex and is illustrated for n = 7 variables (k = 3)
in Figure 4.3. The left-hand side shows the tree order of the heap variables, and the right-hand
side shows the corresponding merge strategy, displayed as the tree structure of the (final) FM.

The idea is to build merges “along” the tree underlying the heap. For each variable vi there
is a subtree FM, whose variable set includes all variables in the subtree of the heap rooted at vi,
and for each inner variable (in the example: v1, v2, v3) there is a descendant FM, whose variable
set includes the same variables as the subtree FM but not vi itself. For example, M452 is the
subtree FM for v2 andM45 is the descendant FM for v2 in Figure 4.3. For inner variables vi,
the descendant FM is the merge of the subtree FMs of the (heap) children of vi, and the subtree
FM is the merge of the descendant FM of vi and an atomic FM for vi. Leaf nodes vi of the heap
do not have descendant FMs, and their subtree FM is an atomic FM for vi.

The value sets and tables for these FMs are constructed in such a way that each FM repre-
sents the minimum function over all variables it covers. This can easily be computed locally
by settingMtab(x, y) = min(x, y) everywhere. To complete the construction, we need a way
of determining violations of the heap condition. This is accomplished by adding an additional
value violation to the value sets of all merges, which is set at the subtree FM of inner variable vi
whenever α(vi) is larger than the value propagated up from the descendant FM for vi. We define
min(x, y) = violation whenever x = violation or y = violation, which ensures that violations
are propagated towards the root. To complete the construction, the table at the root converts
violation to F and all other values to T.

Theorem 4.2. The family of all heap predicates has compact FMs.
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Proof. It is easy to verify that the FMsMn,D described in the text represent the heap functions
φn,D. We can bound the representation size by ∥Mn,D∥ ≤ n ·D+(n−1)(D+1)2 = O(nD2),
where the first term counts the n tables of size D in the atomic FMs, and the other term counts
the n− 1 tables of size (D + 1)2 (taking into account the additional violation value) at merges.
This is polynomial in the sum over the domain sizes, which is

∑n
i=1D = nD.

4.4.2. Linear FMs for Heaps

In our final result, we show that heap predicates cannot be represented compactly with lin-
ear FMs, no matter which variable order is used. Towards this end, we need some additional
definitions relating to assignments in the context of heap predicates. Throughout the section,
V = {v1, . . . , vn} refers to the variables of a given heap predicate φn,D.

We make heavy use of partial assignments (assignments to subsets of variables) in the fol-
lowing. For V ′ ⊆ V , a V ′-assignment is an assignment for V ′. When we speak of assignments
without further qualification, we mean assignments to all variables V .

Definition 4.6. Let V be the variable set of some heap predicate φn,D, and let V ′ ⊆ V . The
unassigned variables of V ′ are the variables V \V ′. An assignment for the unassigned variables
of V ′ is called a completion of a V ′-assignment.

A V ′-assignment σ together with a completion τ forms an assignment, which we write as
σ ∪ τ .

A completion τ is a valid completion for V ′-assignment σ if σ∪τ satisfies the heap condition.
A V ′-assignment is called consistent if it has at least one valid completion.

To illustrate the definition, we refer back to Figure 4.2. The variable subset V ′ = {v1, v2, v3,
v4, v9, v10} is shaded in gray, and the unassigned variables are shown in white. We verify that
the V ′-assignment in both parts of the figure is identical, so the figure shows a V ′-assignment σ
together with a valid completion τ at the left (which proves that σ is consistent) and an invalid
completion τ ′ at the right.

We make the following central observation: if the variable set V ′ occurs as a prefix of the
variable order of a given linear FM for φn,D, then the sub-FM MV ′ with variables V ′ may
only “combine” (map to the same value) V ′-assignments that have exactly the same valid com-
pletions. Otherwise the final FM cannot faithfully represent the heap predicate. Hence, the
number of elements in vals(MV ′) is at least as large as the number of V ′-assignments that are
distinguishable in this sense.3

Definition 4.7. V ′-assignments σ and σ′ are called equivalent if they have exactly the same set
of valid completions. V ′-assignments that are not equivalent are called distinguishable.

We will show that, no matter which variable order is chosen, some part of the linear FM must
have a large number of distinguishable V ′-assignments. To prove this result, we will need some
more definitions.

3The same observation underlies the Myhill-Nerode theorem on the size of minimal deterministic finite automata
(e.g. Hopcroft, Motwani, & Ullman, 2001, Section 4.4) and the Sieling-Wegener bound for the minimal represen-
tation size of BDDs (Sieling & Wegener, 1993).
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Definition 4.8. The neighbors of vi are its parent in the heap, v⌊i/2⌋ (if i > 1) and its children
in the heap, v2i and v2i+1 (if i < 2k−1). A variable vi ∈ V ′ is called a frontier variable of V ′ if
it has an unassigned neighbor.

In the example of Figure 4.2, the frontier variables of V ′ are v2 (due to its child v5), v3 (due
to its children v6 and v7), v4 (due to its child v8) and v10 (due to its parent v5).

The frontier variables are the ones that relate the variables assigned in V ′ to the unassigned
variables, which makes them particularly important. It is easy to see that, given a consistent
V ′-assignment, only the values of the frontier variables matter when deciding whether a given
completion is valid. (We do not prove this result because it does not help prove a lower bound,
but it may serve to provide intuition for the role of frontier variables.)

We now show that for every variable order, there must be a sub-FM of the overall FM with a
certain minimal number of frontier variables.

Lemma 4.2. Let V be the variable set of some heap predicate φn,D, and let π = ⟨vj1 , . . . , vjn⟩
be any variable order of V . Then there exists some r ∈ {1, . . . , n} such that the set of variables
V ′ = {vj1 , . . . , vjr} defined by the length-r prefix of π includes at least ⌊k2⌋ frontier variables.

Proof. The problem of determining an ordering π of the vertices of a graph that minimizes the
maximal number of frontier variables of any prefix of π has been studied in graph theory. The
minimal number of frontier variables required is known as the vertex separation number of the
graph and is known to be equal to its pathwidth (Kinnersley, 1992).

Here, the graphs we must consider are the complete binary trees Tk with k layers. Cattell
et al. (1996) show that the pathwidth of Tk is at least ⌊k2⌋.

The basic idea of our main proof is that if there are many frontier variables, then there exist
many V ′-assignments that need to be distinguished. Towards this end, we introduce certain
properties that will help us determine that given V ′-assignments are distinguishable.

Definition 4.9. A V ′-assignment σ is called sorted if σ(vi) ≤ σ(vj) whenever i < j. A V ′-
assignment σ is called fraternal if, for any two variables v, v′ ∈ V ′ that are siblings in the heap
(i.e. v = v2i and v′ = v2i+1 for some 1 ≤ i < 2k−1), we have σ(v) = σ(v′).

For example, the V ′-assignment shown in gray in Figure 4.2 is not sorted because σ(v2) >
σ(v3) even though 2 < 3. Furthermore, it is not fraternal because v2 and v3 are siblings and
have different values σ(v2) ̸= σ(v3). It would be sorted and fraternal if we had σ(v2) = 3.

Next, we show that with many frontier variables, many V ′-assignments are sorted and frater-
nal.

Lemma 4.3. Let V be the variable set of some heap predicate φn,D, and let V ′ ⊆ V contain
ℓ frontier variables. Then there exists a set Σ(V ′) of sorted fraternal V ′-assignments such that
|Σ(V ′)| =

(
D

⌈ℓ/2⌉
)

and any two assignments in Σ(V ′) differ on at least one frontier variable of
V ′.

Proof. We say that a variable is sibling-bound if it has a parent (i.e. it is not the root), it is the
right child of its parent, and both the variable and its sibling are in V ′. We say that a variable
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(a) Sorted fraternal V ′-assignment σ (gray nodes)
with its minimal valid completion τmin (white
nodes), satisfying the heap condition.
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(b) Sorted fraternal V ′-assignment σ′ (gray nodes)
with the same completion as in (a), violating the
heap condition for v6 and its child v13.

Figure 4.4.: Minimal completions for two sorted fraternal V ′-assignments σ and σ′.

is sibling-bound in the frontier if it is sibling-bound and additionally both the variable and its
sibling are in the frontier. A pivot candidate is a frontier variable that is not sibling-bound in the
frontier.

There can be at most ⌊ℓ/2⌋ variables that are sibling-bound in the frontier because all such
variables must have other frontier variables (that are not sibling-bound) as their siblings. There-
fore, there are at least ℓ′ = ℓ − ⌊ℓ/2⌋ = ⌈ℓ/2⌉ pivot candidates. We arbitrarily select ℓ′ pivot
candidates and call them pivots.

We construct the set Σ(V ′) by defining one sorted fraternal V ′-assignment σX for each subset
X ⊆ {1, . . . , D} of cardinality ℓ′. There are

(
D
ℓ′

)
such subsets, and the construction guarantees

that σX and σX′ with X ̸= X ′ differ on at least one pivot and hence on at least one frontier
variable.

We now describe how to construct σX for a given subset X . First, assign the values of X to
the pivots in index order (i.e. the lowest value in X goes to the pivot with lowest index, etc.).
This results in a sorted assignment to the pivots.

Next, to each variable in V ′ that is not sibling-bound and not a pivot, assign the value of the
pivot that precedes it in index order, or 1 if no pivot precedes it. This maintains sortedness and
results in an assignment to all non-sibling-bound variables in V ′.

Finally, assign the value assigned to its sibling to each sibling-bound variable in V ′. This
results in a fraternal assignment to V ′ and again maintains sortedness.

As an example, consider the set of variables V ′ = {v1, v2, v3, v4, v9, v10} from Figure 4.2
with D = 9. The frontier variables are {v2, v3, v4, v10}, giving ℓ = 4 and ℓ′ = 2. The only
sibling-bound variable in V ′ is v3, and the other three frontier variables are pivot candidates.
Select v2 and v4 as the pivots. Let X = {5, 7}. We first assign the values of X to the pivots in
order: σX(v2) = 5 and σX(v4) = 7. Next, we fill in the remaining non-sibling-bound variables:
σX(v1) = 1, σX(v9) = 7, σX(v10) = 7. Finally, sibling-bound v3 receives the value of its
sibling: σX(v3) = 5.

As the final preparation for the main proof, we show that all assignments constructed in
Lemma 4.3 are distinguishable.

Lemma 4.4. Let σ and σ′ be two sorted fraternal V ′-assignments that differ on at least one
frontier variable of V ′. Then σ and σ′ are distinguishable.
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(a) Sorted fraternal V ′-assignment σ (gray nodes)
with its maximal valid completion τ ′max (white
nodes), violating the heap condition between v6
and its parent v3.
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(b) Sorted fraternal V ′-assignment σ′ with the same
completion as in (a), satisfying the heap condi-
tion.

Figure 4.5.: Maximal completions for two sorted fraternal V ′-assignments σ and σ′, assuming
D = 9.

Proof. It is easy to see that sorted V ′-assignments are always consistent. More generally, a V ′-
assignment σ is consistent iff for all assigned variables vi, vj ∈ V ′ where vi is an ancestor of
vj in the tree representation of the heap, we have σ(vi) ≤ σ(vj). We start by describing two
special completions of a given consistent V ′-assignment.

The minimal valid completion τmin of a consistent V ′-assignment σ assigns the lowest possi-
ble value that preserves consistency to each unassigned variable. It can be computed by iterating
over all unassigned variables in index order (i.e. from the root towards the leaves) and assigning
to each variable the lowest value that is consistent with its parent (if the variable has a parent).
If the root variable v1 is unassigned, this means setting τmin(v1) := 1. For any other unassigned
variable vi (i > 1), this means assigning the value of the parent: τmin(vi) := (σ ∪ τmin)(v⌊ i

2
⌋).

(Note that when vi is processed, the values of τmin for lower-index variables have already been
constructed, so (σ∪ τmin)(v⌊ i

2
⌋) is defined.) Figure 4.4a shows a V ′-assignment σ together with

its minimal valid completion.
Similarly, the maximal valid completion τ ′max of a consistent V ′-assignment σ′ assigns the

highest possible value that preserves consistency to each unassigned variable. It can be computed
by iterating over all unassigned variables in reverse index order (i.e. from the leaves towards
the root) and assigning to each variable the highest value that is consistent with its children
(if the variable has children). For unassigned leaf variables vi (i ≥ 2k−1), this means setting
τ ′max(vi) := D. For unassigned inner variables vi (i < 2k−1), this means assigning the minimum
value of the children: τ ′max(vi) := min((σ′ ∪ τ ′max)(v2i), (σ

′ ∪ τ ′max)(v2i+1)). (Again, this
computation only depends on values of τ ′max that have already been constructed.) Figure 4.5b
shows a V ′-assignment σ′ together with its maximal valid completion.

We now prove the claim. Let σ and σ′ be sorted fraternal V ′-assignments that differ on some
frontier variable vi. Without loss of generality, we can assume σ(vi) < σ′(vi) (otherwise swap
the roles of σ and σ′). We will show that σ and σ′ are distinguishable by describing a completion
that is valid for one of σ or σ′, but not the other.

Because vi is a frontier variable of V ′, it belongs to V ′ and has a parent or child that is
unassigned. We first consider the easier case where vi has a child vj (j = 2i or j = 2i+ 1) that
is unassigned.
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Consider the minimal valid completion τmin of σ. By construction, τmin is a valid completion
of σ. From the definition of minimal valid completions, we have τmin(vj) = σ(vi). We also
have σ(vi) < σ′(vi) and hence τmin(vj) < σ′(vi), so the child vj has a lower value than its
parent vi in σ′ ∪ τ . This shows that τmin is not a valid completion for σ′, which concludes this
case of the proof.

Figure 4.4 illustrates this proof argument, showing two sorted fraternal V ′-assignments σ
(left) and σ′ (right) together with the minimal valid completion τmin of σ. We see that σ ∪ τmin

at the left satisfies the heap condition, while σ′ ∪ τmin at the right violates it for v6 (a variable in
V ′ with σ(v6) < σ′(v6)) and its child v13.

We now consider the remaining case, where vi with σ(vi) < σ′(vi) has an unassigned parent
vj (j = ⌊ i2⌋). (The two cases are of course not disjoint, but they are exhaustive.) This time, we
consider the maximal valid completion τ ′max of σ′, which by construction is a valid completion
of σ′. We show that it is not a valid completion of σ by demonstrating τ ′max(vj) > σ(vi), so
that the heap condition is violated between vj and its child vi. More precisely, we will show
τ ′max(vj) = σ′(vi), from which the result follows with σ′(vi) > σ(vi).

Let vs be the sibling of vi, i.e.the other child of vj . By definition of maximal valid comple-
tions, we have τ ′max(vj) = min((σ′ ∪ τ ′max)(vi), (σ

′ ∪ τ ′max)(vs)). If vs ∈ V ′, the values of vi
and vs are both defined by σ′, and we obtain τ ′max(vj) = min(σ′(vi), σ

′(vs)) = σ′(vi) because
σ′ is fraternal and hence σ′(vi) = σ′(vs).

If vs /∈ V ′, then it is easy to see from the definition of maximal valid completions that τ(vs)
is a value assigned by σ′ to some descendant vd of vs that belongs to V ′ (possibly several layers
removed), or the maximal possible value D if no such descendant exists. In either case, this
value is at least as large as σ′(vi) because σ′(vi) ≤ D unconditionally, and if the value derives
from a descendant vd, then we must have i < d, from which σ′(vi) ≤ σ′(vd) follows because σ′

is sorted. So also in this case we obtain τ ′max(vj) = σ′(vi), which concludes the proof.
Figure 4.5 illustrates the proof argument for this latter case, showing the same sorted fraternal

V ′-assignments as before, but this time together with the maximal valid completion τ ′max of σ′.
We see that σ′ ∪ τ ′max at the right satisfies the heap condition, while σ ∪ τ ′max at the left violates
it for v6, a variable in V ′ with σ(v6) < σ′(v6), and its parent v3.

We are now ready to put the pieces together.

Theorem 4.3. The heap predicates do not have compact linear FMs.

Proof. We must show that the minimum representation size required by linear FMs for φn,D

grows faster than any polynomial in nD, no matter which merge strategy (variable order) is
chosen. We describe a sequence of heap predicates with a size parameter s ∈ N1 for which the
result can already be established. Then it of course extends to the family of heap predicates as a
whole.

For s ∈ N1, we consider the heap predicate φn,D with k = 4s (and hence n = 2k − 1) and
D = s · n. We observe that D = 1

4kn = 1
4 log2(n+1)n = O(n log n), and hence a polynomial

size bound in nD exists for the given subset of heap predicates iff a polynomial size bound in n
exists. Therefore, to show the overall result, it is sufficient to show that heap predicates of the
chosen form do not have linear FMs of size O(nc) for any constant c.

Let s ∈ N1, and let k = 4s, n = 2k − 1 and D = s · n. Let π be any variable order for φn,D.
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From Lemma 4.2, π has a prefix consisting of a variable set V ′ with at least ℓ = ⌊k2⌋ =
⌊4s2 ⌋ = 2s frontier variables.

From Lemma 4.3, there exists a set Σ(V ′) of sorted fraternal V ′-assignments differing on at
least one frontier variable, where |Σ(V ′)| =

(
D

⌈ℓ/2⌉
)
=

(
D

⌈2s/2⌉
)
=

(
D
s

)
.

From Lemma 4.4, all assignments in Σ(V ′) are distinguishable from each other. Therefore,(
D
s

)
is a lower bound on the size of the value set in the sub-FM for V ′, and hence it is also a

lower bound on the overall representation size.
We have

(
D
s

)
≥

(
D
s

)s
=

(
s·n
s

)s
= ns = n

1
4
k = n

1
4
log2(n+1), which grows faster than any

polynomial in n, concluding the proof.

We remark that for the application of merge-and-shrink and FMs to classical planning, we
can construct planning tasks whose perfect heuristics are in 1:1 correspondence with the heap
predicates φn,D. This implies that there exist families of planning tasks that can be perfectly
solved in polynomial time with non-linear merge-and-shrink heuristics, but not with linear ones.

A planning task Π = ⟨V,O, s0, s⋆⟩ in correspondence with the heap predicate φn,D is defined
as follows:

• There are n variables that can take D numeric values, plus two additional values “unse-
lected” (u) and “verified” (v), i.e. V = {v1, . . . , nn} with dom(vi) = {u, 1, . . . , D, v}
for all 1 ≤ i ≤ n.

• In the initial state, all variables are “unselected”, i.e. s0 = {vi 7→ u | 1 ≤ i ≤ n}.

• The goal is that all are “verified”, i.e. s⋆ = {vi 7→ v | 1 ≤ i ≤ n}.

• There are several types of operators:

– Variables vi can move from “unselected” to any numerical value x with operators o
of the form pre(o) = {vi 7→ u}, eff (o) = {vi 7→ x}, cost(o) = 1.

– Each “inner” variable, i.e. variables vi for 1 ≤ i ≤ ⌊n/2⌋, can move from a nu-
merical value x to “verified” if the heap condition is satisfied for this variable w.r.t.
its children. To do so, for all values x < y ≤ D, there are operators o of the form
pre(o) = {vi 7→ x} ∪ {vj 7→ y | j = 2i ∨ j = 2i + 1}, eff (o) = {vi 7→ v},
cost(o) = 1.

– All “leaf” variables, i.e. variables vi for ⌈n/2⌉ ≤ i ≤ D, can move to “verified”
unconditionally through operators o of the form pre(o) = ∅, eff (o) = {vi 7→ v},
cost(o) = 1.

It is easy to see that all assignments where all variables have a numerical value are reachable
states from the initial state, and that h∗(s) is finite in the resulting state iff the heap condition is
satisfied. (Numerical values cannot be changed, and to move to a goal state, it suffices to move
to “verified” for each variable in breadth-first order.)
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4.5. Conclusions

In this chapter, we showed that general FMs are strictly more expressive than linear ones: a
general-to-linear conversion is possible, but incurs an unavoidable super-polynomial represen-
tational blow-up. We bounded this blow-up from above and below, and the upper and lower
bounds coincide up to a constant factor in the exponent: general FMs of size ∥M∥ can always
be converted to linear ones of size ∥M∥Θ(log |vars(M)|) and more compact linear FMs do not ex-
ist in general. We also presented a refined upper bound in terms of the Horton-Strahler number
of the merge strategy, which measures how close a given merge strategy is to the linear case.

Our results offer theoretical justification for the interest in non-linear merge-and-shrink ab-
stractions. While several non-linear merge strategies have been presented since the introduction
of generalized label reduction, all of which we describe in Chapter 5, our mostly experimental
analysis of merge strategies (which we present and discuss in Section 6.6) suggests that there is
still an untapped potential of non-linear merge strategies, hence motivating further research in
this area.

The results of this chapter also indicate that it may be worth questioning the ubiquity of
BDD representations (which are polynomially equivalent to linear FMs) for symbolic search in
automated planning and other areas. General FMs retain many of the properties of BDDs that
make them useful for symbolic search, but offer a larger than polynomial advantage over BDDs
in cases where linear variable orders cannot capture information dependencies well.

Can we build strong symbolic search algorithms using general FMs instead of BDDs, re-
placing variable orders by variable trees? The same question has been asked about sentential
decision diagrams (Darwiche, 2011), which extend BDDs with a different generalization from
linear to tree structures and have shown much initial promise. We believe that there is significant
scope for further investigations in this direction.
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5. Transformation Strategies

In this chapter, we discuss most of the transformation strategies of the merge-and-shrink tool-
box. The first section describes the merge strategies and the shrink strategies available with the
previous theory of label reduction. In the second section, we present related work, including
transformation strategies based on generalized label reduction or non-linear merge-and-shrink
in general.

Having discussed related work, the remainder of this chapter deals with our own contributions,
which are all related to merge strategies. In Section 5.3, we describe the framework to enhance
merge strategies based on factored symmetries. Section 5.4 defines different types of merge
strategies, presents three further non-linear merge strategies of different types, and discusses
tie-breaking criteria for so-called score-based merge strategies.

Finally, in Section 5.5, we summarize all transformation strategies in an overview, discuss the
different types of merge strategies that we defined and also suggest several directions of future
work concerning merge strategies.

5.1. Merge-and-Shrink Before Generalized Label Reduction

In this section, we describe merge and shrink strategies presented before the addition of gener-
alized label reduction. We proceed in chronological order.

The first work that adapted merge-and-shrink to planning (Helmert et al., 2007) presents a
linear merge strategy as well as several variants of a shrink strategy. A linear merge strategy can
easily be described as an order of the state variables of the given problem, a so called variable
order. The merge strategy then initially selects the atomic factors corresponding to the first
two variables of the order, and then iteratively merges each of the remaining atomic factors,
according to the variable order, with the product of the previous merge(s). Helmert et al. (2007)
use the following rules to determine the next variable in the order:

1. If possible, choose a variable from which there is an edge in the causal graph to any of the
variables ordered before.

2. Otherwise, add a variable for which the goal description of the problem requires a specific
value.

If ties need to be broken, the variable with the highest “level” according to the variable order of
Fast Downward is chosen (Helmert, 2006). This order of choices caused later works to refer to
this variable order as causal graph goal level or CGGL for short. Several variants of this rule
based variable order were presented later, as we will see below.
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In the context of model checking, Dräger et al. (2006) use an error-distance-preserving strat-
egy. Helmert et al. (2007) extend this idea and define the f-preserving shrink strategy that pre-
serves g- and h-values (and thus f -values) of abstract states of a transition system, whenever
possible. To break ties, states with higher f -value are preferred, and among those with the same
f -value, lower h-values are preferred, with the rationale that the farther away a state is from a
goal state, the lesser the potential negative impact on heuristic quality through the introduction
of inaccuracies by shrinking. The computation can be efficiently done by first distributing states
into buckets according to their f -values and, within these buckets, according to their h-values.
The buckets are then ordered according to the desired tie-breaking criteria. Finally, the shrink
strategy only needs to repeatedly select the next bucket according to that order, and choose two
states from the bucket to combine them. We call this strategy F in our experiments.

The second class of shrink strategies – still used in most state-of-the-art merge-and-shrink
settings – is based on bisimulation (cf. Definition 3.14 on page 52) and due to Nissim et al.
(2011). There always exists a unique coarsest bisimulation and it can be computed efficiently
in the size of the transition system with the following bottom-up approach (Milner, 1990). The
algorithm starts with the equivalence relation where all states are considered bisimilar, and then
iteratively refines the equivalence relation as long as states which are not bisimilar are considered
bisimilar by the equivalence relation. However, in practice, bisimulations are often too large to
satisfy reasonable size limits N . A practical shrink strategy based on bisimulation uses the
above bottom-up computation, preferring to separate non-bisimilar states closer to goal states,
and stopping as soon as separating more states would result in a transition system violating the
imposed size limit. Hence the result is not guaranteed to be a bisimulation, i.e. not guaranteed to
be an exact transformation, but it still is a strict homomorphism. We refer to this shrink strategy
as B.

Another variant, called greedy bisimulation, does not consider a transition ⟨s, ℓ, s′⟩ when
checking condition 2. of Definition 3.14 if that transition does not satisfy h∗(s′)+ c(ℓ) = h∗(s).
We call this variant G.

Nissim et al. do not only show that bisimulation-based shrinking is exact (cf. our Theo-
rem 3.7), but also that bisimulations can get exponentially smaller on label-reduced transition
systems compared to the non-label-reduced one (the fewer differently labeled transitions there
are, the more states are potentially bisimilar). In particular, they show that for several planning
domains, bisimulation-based shrinking in conjunction with full label reduction yields perfect
merge-and-shrink heuristics (which can be computed in polynomial time). Hence, with the
addition of the more powerful generalized label reduction, we also expect bisimulation-based
shrinking to improve by computing more exact bisimulations compared to using the old theory
of label reduction.

Furthermore, while the computation of bisimulations is polynomial in the size of the transition
system, it can still be a rather time-consuming process within the merge-and-shrink framework.
With our efficient implementation that stores local equivalence relations on labels and the tran-
sitions of equivalent labels only once, the computation of bisimulations can be accelerated by
not considering individual labels but entire label groups. This is possible because two states are
bisimilar iff they are bisimilar with respect to all labels, and since all locally equivalent labels
induce identical transitions, it suffices to consider the transitions of label groups once.

Nissim et al. also evaluated some variants of the CGGL merge strategy: goal causal graph
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level (GCGL), switching the precedence of the two rules, and also the simple variants based on
the variable order of Fast Downward, i.e. reverse level (RL) for the normal order and level (L)
for the inverted order.

Another variant of bisimulation based shrinking only considers a subset of operators (respec-
tively labels) for the computation of bisimulations (Katz, Hoffmann, & Helmert, 2012).

Hoffmann, Kissmann, and Torralba (2014) consider more variants of linear merge strategies,
tailored towards detecting unsolvability of the given problem. Another application for linear
merge-and-shrink heuristics is the use within symbolic search using binary decision diagrams
(BDDs) (Edelkamp et al., 2012; Torralba et al., 2013). Since we use non-linear merge-and-
shrink techniques and explicit search, we do not consider these linear merge-and-shrink heuris-
tics in our experimental study.

5.2. Related Work Based on Generalized Label Reduction

We now turn our attention to related work dealing with merge-and-shrink presented after the in-
troduction of generalized label reduction. Some of these papers are directly making use of gen-
eralized label reduction or the concept of combinable labels, and others use non-linear merge-
and-shrink, thus also relying on generalized label reduction. We again proceed in chronological
order.

Fan, Müller, and Holte (2014) present two merge strategies that are based on partitioning
variables of the problem according to some criteria measuring their interaction. The strategies
then first merge variables within the partitions, before merging the resulting transition systems
to create the final transition system. The first strategy uses the weighted causal graph, where
edges of the causal graph have a weight corresponding to the number of operators inducing the
edge. It then computes the min-cut of the weighted causal graph, which results in two variable
clusters. Iterative computation of min-cuts on these clusters yield a more and more fine-grained
partitioning of variables. This strategy is called undirected min-cut merge strategy.

The second strategy by Fan et al. measures interaction of a set of variables by the ratio of the
number of active states to the number of total states in the transition system that results from
merging all atomic transition systems for each variable in the set. The strategy aims at maxi-
mizing the amount of pruning transformations, hence at minimizing the maximum intermediate
abstraction size minimizing, from which the name MIASM is derived. The computation of MI-
ASM begins with a best-first search in the space of variable subsets, ordering subsets using a
criterion based on the ratio described above. To compute the ratio, the product transition sys-
tem corresponding to the set of variables needs to be computed (temporarily), using only exact
shrinking and the same size limit N that will later be used for the actual merge-and-shrink com-
putation. Note that this sampling-like part of the computation is limited to small variable subsets
due to the limit N . After completing the search, the resulting family of variable subsets needs to
be turned into a partitioning of the variables. This is done using a greedy algorithm to compute a
maximum set packing. In our experimental study, we exclusively consider MIASM, the stronger
of the two merge strategies presented by Fan et al.

Torralba and Hoffmann (2015) use simulation relations for planning tasks to prune an A∗

search. A simulation relation is a dominance relation defined on the states of a planning problem.
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Such simulation relations can be computed on an exact factored representation of the planning
problem by computing simulation relations for each transition system of the factored transition
system and then combining them into a single one. To obtain an exact factored representation
of the planning problem, Torralba and Hoffmann start with the induced factored transition and
use exact shrinking based on bisimulation and exact label reduction until some size limits are
reached. Their experiments show that combining the (state) simulation relation with the concept
of label dominance, which is an extension of the notion of label subsumption, even coarser
dominance relations can be obtained. The combination is called label-dominance simulation.

In follow-up work, Torralba and Kissmann (2015) extend the use of simulation relations to
prune operators from planning tasks and to prune transitions from merge-and-shrink heuristics.
To this end, they use the notion of subsumed transitions, which is based on dominance-label
simulation. Removing subsumed transitions can cause labels to become dead, and all opera-
tors that have been reduced to such dead labels through label reduction can safely be removed
from the planning task in the sense that at least one optimal plan is preserved. Alternatively,
pruning subsumed transitions can also be used during the merge-and-shrink computation (under
certain conditions) and yield smaller transition systems, hence allowing more informed merge-
and-shrink heuristics to be computed under the given time and memory constraints. Another
application of label-dominance simulation is shrinking, but Torralba and Kissmann observe that
if no subsumed transitions occur, simulation based shrinking behaves like bisimulation-based
shrinking.

The most recent work on merge-and-shrink is due to Fan, Müller, and Holte (2017). They
experimentally observe that merge-and-shrink suffers from diverse action costs in several non-
unit-cost planning domains, compared to the unit-cost variant of these domains. The reason is
that exact label reduction only allows combining labels of the same cost, which often hinders
label reductions in non-unit-cost domains. To allow for more label reductions also on non-unit-
cost domains, Fan et al. suggest a cost partitioning for label costs called delta cost partitioning.

Definition 5.1 (Delta Cost Partitioning, Fan et al., 2017). Let L be a set of labels and c a label
cost function for L. Let c0 = 0 and 0 < c1 < c2 < · · · < cn be the n different positive cost
values to which the labels in L are mapped by c, and ∆i = ci − ci−1 for 1 ≤ i ≤ n. Delta
cost partitioning divides the costs c1, c2, . . . , cn among n delta cost functions C1, C2, . . . , Cn as
follows. For 1 ≤ i ≤ n, Ci(ℓ) := 0 if c(ℓ) < ci−1, and Ci(ℓ) := ∆i otherwise, i.e. if c(ℓ) ≥ ci.

In words, a delta cost function Ci is associated with a value ci of the image of the original
cost function c. Ci maps each label ℓ to a cost of 0 if its original cost is lower than ci and to
the difference ci − ci−1 otherwise. For each delta cost function, Fan et al. compute a separate
merge-and-shrink heuristic. Due to delta cost partitioning, they are additive, and since each delta
cost function maps to only two values (0 or ∆i), each single merge-and-shrink abstraction can
profit from more exact label reductions.

5.3. Factored Symmetries of Factored Transition Systems

In this section, we describe the concept of factored symmetries and how to enhance merge
strategies through using factored symmetries. Most parts of this section are based on our original
work introducing factored symmetries (Sievers, Wehrle, Helmert, Shleyfman, & Katz, 2015).
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The main motivation behind the investigation of symmetries for merge-and-shrink is to com-
bine two successful techniques: merge-and-shrink abstractions and state-space pruning tech-
niques based on symmetries. Current approaches find (structural) symmetries based on factored
planning task representations called problem description graphs, or PDGs for short (Pochter et
al., 2011; Shleyfman et al., 2015). We generalize this concept to factored symmetries based on
factored transition systems, study the special cases of local and atomic symmetries and explore
their relationship to bisimulation and label reduction. Finally, we devise a framework to enhance
existing merge strategies to maximize the application of symmetry reduction.

5.3.1. Factored Symmetries

We begin by introducing factored symmetries, which are defined on factored transition systems
F . To simplify notation, we assume throughout the chapter that states of different transition
systems in F can always be distinguished, i.e. if Si and Sj are state sets of different transition
systems in F , then Si ∩ Sj = ∅. If σ is a function defined on states and labels, we extend it
in the natural way to sets of states (σ(X) = {σ(x) | x ∈ X}), sets of sets of states (σ(X ) =
{σ(X) | X ∈ X}) and transitions (σ(⟨s, ℓ, s′⟩) = ⟨σ(s), σ(ℓ), σ(s′)⟩).

Definition 5.2. Let F = {Θ1, . . . ,Θn} be a factored transition system, where Θi = ⟨Si, L, c,
T i, si0, S

i
⋆⟩ for all 1 ≤ i ≤ n. A factored symmetry of F is a permutation σ of the set

⋃n
i=1 S

i∪L
that maps states to states and labels to labels such that

1. σ({S1, . . . , Sn}) = {S1, . . . , Sn},

2. σ(
⋃n

i=1 S
i
⋆) =

⋃n
i=1 S

i
⋆,

3. σ(
⋃n

i=1 T
i) =

⋃n
i=1 T

i, and

4. c(σ(ℓ)) = c(ℓ) for all ℓ ∈ L.

The four conditions guarantee that a factored symmetry preserves the grouping of states into
transition systems, the goal state property, the transition structure, and label costs. We illustrate
the definition with the example in Figure 5.1, corresponding to a planning task with four vari-
ables a, b, c and d and uniform-cost operators ox,y for certain pairs of x, y ∈ {a, b, c, g} that
change x from 1 to 0 and y from 0 to 1. The mapping σ that cyclically rotates all facts and
operators related to variables {a, b, c} is a factored symmetry.

When applied to the atomic factors of a planning task, Definition 5.2 is equivalent to the
definition of PDG symmetries or structural symmetries in earlier works. However, it is not
limited to this case. On the opposite end of the spectrum, the case F = {Θ(Π)} captures a
semantic notion of state space symmetry in a non-factored representation.

More generally, the definition can be applied to any intermediate result in the computation of
a merge-and-shrink abstraction. A factored symmetry σ of F naturally induces a permutation
σ⊗ on the states S⊗ of the product

⊗
F , and Definition 5.2 guarantees that h∗(σ⊗(s)) = h∗(s)

for all s ∈ S⊗.
Like other notions of symmetry, factored symmetry is closed under composition (if σ and τ

are factored symmetries, then so is σ ◦ τ ) and hence induces a group structure. If Γ is a set of
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a0

a1

b0

b1

c0

c1

g0

g1

ob,c, ob,g, oc,g

oc,a
oa,b
oa,g

ob,c, ob,g, oc,g

oc,a, oa,g, oc,g

oa,b
ob,c
ob,g

oc,a, oa,g, oc,g

oa,b, oa,g, ob,g

ob,c
oc,a
oc,g

oa,b, oa,g, ob,g

oa,b, ob,c, oc,a

oa,g
ob,g
oc,g

oa,b, ob,c, oc,a

Figure 5.1.: Factored symmetry example: rotating a 7→ b 7→ c 7→ a in all abstract states (e.g.,
σ(b1) = c1) and labels (e.g., σ(oa,b) = ob,c) is a factored symmetry.

factored symmetries of F , then we say that two states s and s′ of
⊗
F are symmetric under Γ,

in symbols s ∼Γ s′, if σ⊗(s) = s′ for some factored symmetry σ in the group generated by Γ.
This is an equivalence relation, and states in the same equivalence class always share the same
h∗ value. The factored symmetry in Figure 5.1 induces an equivalence relation showing that e.g.
all states containing g0 and exactly one of {a1, b1, c1} are symmetric.

In the special case where Γ is the set of all factored symmetries of F , we simplify this notation
to s ∼ s′ and say that s and s′ are symmetric under factored symmetry.

To compute factored symmetries, we can use PDGs as defined by Shleyfman et al. (2015),
conceptually adapted to have the following nodes: variables (of the planning task) are replaced
by factors of the factored transition system; values (of variables) are replaced by states of factors,
treating goal states like goal values of variables; operators are replaced by labels, and their tran-
sitions are treated the same way. The nodes are then connected like in regular PDGs: states are
connected to their transition systems, transitions are connected to their source and target states as
well as to the inducing label. Using the PDG as input to any off-the-shelf graph automorphism
tool, we can then compute factored symmetries as automorphisms of the PDG.

We remark that the optimized implementation (cf. Section 3.8.3) also has an impact on this
computation of factored symmetries: similarly to considering label groups rather than labels
when computing bisimulations, we only need to represent label groups instead of labels in the
PDG, which considerably reduces the number of transition nodes. This reduces the computation
time of graph automorphisms especially on factored transition systems that contain many factors
or factors of large sizes.

5.3.2. Interaction with Merge-and-shrink Transformations

We want to combine reasoning about symmetries with the manipulation of transition systems in
the merge-and-shrink framework. It is then natural to ask how factored symmetries interact with
the transformations of the merge-and-shrink toolbox.

It is easy to see that the interaction between shrinking and factored symmetries is in general
unpredictable. For example, we may have s ∼ s′ for states s, s′ of a factored transition system F ,
but τ(s) ̸∼ τ(s′) for the corresponding abstracted states after applying a shrink transformation
τ . This happens when a shrinking step “breaks” an existing symmetry, e.g. by combining a0
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and a1 in Figure 5.1. The converse case is also possible: we may have s ̸∼ s′ before shrinking,
but τ(s) ∼ τ(s′) after shrinking if the abstraction removes the obstacles to the symmetry of s
and s′. This should come as little surprise because shrinking can transform a transition system
in essentially arbitrary ways. We will discuss the special case of bisimulation-based shrinking
later.

Perhaps somewhat surprisingly, merging can also affect the symmetry properties of F unpre-
dictably. To see this, observe that the symmetry property between states a1b0c0g0 and a0b0c1g0
is lost when merging the two transition systems at the left of Figure 5.1 (which shows that sym-
metry can be lost by merging), and the same symmetry is recovered by then merging this product
by the third transition system (showing that symmetries can be gained by merging).

Concerning pruning, the interaction with factored symmetries depends on which type of prun-
ing is used. Since factored symmetries are goal-stable automorphisms, pruning irrelevant states
cannot break factored symmetries (under the assumption that all irrelevant states and not only
a subset of them are pruned): a factored symmetry cannot map an irrelevant to a relevant state,
due to the path-preserving property of automorphisms (the relevant state has a path to some goal
state while the irrelevant does not, and goal states are mapped to goal states only). Hence, if two
irrelevant states are symmetric, they are still symmetric after being pruned because they then are
identical (⊥ are mapped to ⊥). However, pruning irrelevant states can result in finding factored
symmetries that did not exist before: if a factored transition system does not exhibit a factored
symmetry only because of two irrelevant states that have a single transition between them but
that are otherwise “symmetric”, then, after mapping these two states onto one isolated state,
there is a factored symmetry of the transition system, that among others maps the isolated state
onto itself.

Pruning unreachable states (again assuming that all of them and not only a subset are pruned)
can affect the symmetry properties of a factored transition system unpredictably because fac-
tored symmetries do not stabilize the initial state. Hence there exist factored symmetries that
map an unreachable to a reachable state, and such a symmetry gets lost after pruning and thus
mapping the unreachable state to an isolated state. The converse case is also possible for the
same argumentation of why pruning irrelevant states can remove obstacles to a factored symme-
try.

Finally, the interaction of label reduction and symmetry properties of factored transition sys-
tems is rather simple: reducing labels clearly cannot break existing symmetries (the structure of
the transition systems does not change), but it can remove obstacles to factored symmetries. To
see the latter, consider a factor with two states s, t, and two transitions s ℓ1−→ t, t ℓ2−→ s. Without
label reduction, s ̸∼ t, but after reducing labels ℓ1 and ℓ2 to a new label ℓ, s ∼ t.

In summary, these considerations show that it can be beneficial to search for new symmetries
after each transformation step in the construction of merge-and-shrink heuristics.

5.3.3. Local and Atomic Symmetries

Non-factored state spaces have the property that combining symmetric states (formally: abstract-
ing by mapping each state to its orbit in the symmetry group) preserves optimal goal distances. It
is thus natural to attempt using factored symmetries for information-preserving shrinking in the
merge-and-shrink framework. The first obstacle to this is that shrinking happens at the level of

102



A B

C

DRIVE-A-B
DRIVE-B-A

D
R

IV
E-

A
-C

D
R

IV
E-

C
-A

D
R

IV
E-B

-C

D
R

IV
E-C

-B

LOAD-A
UNLOAD-A

LOAD-B
UNLOAD-B

LOAD-C
UNLOAD-C

(a) Atomic factor for vT .

A T

B C

DRIVE-A-B
DRIVE-B-A
DRIVE-A-C
DRIVE-C-A
DRIVE-B-C
DRIVE-C-B

DRIVE-A-B
DRIVE-B-A
DRIVE-A-C
DRIVE-C-A
DRIVE-B-C
DRIVE-C-B

DRIVE-A-B
DRIVE-B-A
DRIVE-A-C
DRIVE-C-A
DRIVE-B-C
DRIVE-C-B

DRIVE-A-B
DRIVE-B-A
DRIVE-A-C
DRIVE-C-A
DRIVE-B-C
DRIVE-C-B

LOAD-A
UNLOAD-A

LOAD-B

U
NLOAD-B

L
O

A
D

-C

U
N

L
O

A
D

-C

(b) Atomic factor for vP .

Figure 5.2.: Induced factored transition system of the example planning task of Figure 2.1.

individual transition systems Θ ∈ F , while symmetries like the one in Figure 5.1 can critically
rely on relationships between different transition systems. We thus now consider a subclass of
symmetries that “stay within” the individual abstractions.

Definition 5.3. A factored symmetry σ of a factored transition system F stabilizes Θ ∈ F if σ
maps states of Θ to states of Θ. A factored symmetry is local if it stabilizes all Θ ∈ F .

Local symmetries are closed under composition and hence form a subgroup of the group of
factored symmetries. Since local symmetries stay within each abstraction in F , they can be used
to define an equivalence class on abstract states: for all Θ ∈ F and all states s, s′ of Θ, we set
s ∼ s′ if there exists a local symmetry σ with σ(s) = s′.

By analogy to the use of symmetries in the global state space, it may appear natural to use
this equivalence relation as a basis for shrinking by applying the state mapping based on the
equivalence relation ∼ to all factors of F .1 However, such a use of symmetries is not exact, i.e.
can lead to a loss of precision in the resulting merge-and-shrink heuristic.

Proposition 5.1. Let F and F ′ be factored transition systems and let σ be a local symmetry of
F . Then a (shrink) transformation τF of F into factored transition system F ′ based on σ does
not necessarily satisfy REFT, and hence is not necessarily exact.

To prove the proposition, we give an example where shrinking based on local symmetries
before merging results in an imperfect heuristic. We use our running example, the simple logis-
tics planning task of Figure 2.1 in the background section. For convenience, we again show the
atomic factors Θ(vT ) and Θ(vP ) of the induced factored transition system in parts (a) and (b) of
Figure 5.2. Recall that all operator costs are 1 and the goal of the package is to be at C. In the
context of factored symmetries, the initial state can be chosen arbitrarily.

There is a local symmetry σ that swaps the role of locations A and B everywhere (e.g., σ(A) =
B both for the values of variable vT and vP ). A shrink transformation τF based on σ would thus

1This does not exactly match our definition of shrink transformations, cf. Definition 3.13 on page 48, which are
defined on a state mapping applied to a single factor, keeping all other factors as they are. However, the definition
can easily be extended to be based on a set of state mappings affecting several or even all factors of the given
factored transition system. It is easy to see that such a shrink transformation still is a strict homomorphism, since
it can be expressed as a sequence of shrink transformations affecting single factors as usually.
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Figure 5.3.: Product of the induced factored transition system in Figure 5.2 (hence induced tran-
sition system of the example planning task of Figure 2.1).
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Figure 5.4.: Product of the induced factored transition system of Figure 5.2 after shrinking both
factors according to local symmetry σ that permutes locations A and B, combining
values A and B into X.

combine A and B to a common abstract state, say X (“truck at A or B” and “package at A or
B”).2

We now compare the product transition system
⊗
F which is the induced factored transition

system of the planning task, also shown again in Figure 5.3 for convenience, to the product
transition system

⊗
F ′ obtained by performing the transformation τF on F , shown in Figure 5.4.

We see that the transformation causes a loss in precision: for example, it leads to the estimate
hτF⊗

F (BA) = h∗(σ(BA)) = h∗(XX) = 3 instead of the correct h∗⊗F (BA) = 4. Intuitively,
even though locations A and B are locally symmetric in Θ(vT ) and Θ(vP ), they cannot simply
be combined: this loses the distinction between states where the truck and package are at the
same location and those where they are not.

More formally, the reason why the heuristic induced by a shrink transformation based on
local symmetries is not exact is that it violates REFT, as stated by the proposition. To see

2Note that this transformation is almost the same as the one we used in the background section when illustrating the
computation of FMs: compared to the example here, the product FM there also combines the states CC and XC
into a single state, hence dropping the distinction of all locations for the truck if the package is at C.
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this, consider e.g. the transition AA LOAD-A−−−−−→ AT ∈ F ′. There does not exist a corresponding
transition for all preimages of AA in F : for example for the state BA for which the heuristic is
not perfect anymore, there is no transition labeled LOAD-A (and hence no such transition that
would lead to a preimage of AT as required by the property REFT).

This problem can be resolved by further restricting the notion of local symmetries to atomic
symmetries.

Definition 5.4. A factored symmetry σ of a factored transition system F affects Θ ∈ F if there
exists a state s of Θ with σ(s) ̸= s. A factored symmetry is atomic if it affects at most one
transition system Θ ∈ F .

Clearly atomic symmetries are a subset of local symmetries. Unlike local symmetries, they
do not form a group: the composition of atomic σ1 and σ2 is non-atomic if they affect different
transition systems. However, for any fixed Θ, the atomic symmetries affecting at most Θ form a
group.

Proposition 5.2. Let F and F ′ be factored transition systems and let σ be an atomic symmetry
of F . Then a shrink transformation τF of F into factored transition system F ′ based on σ is
exact induced.

We remark that σ induces an arbitrary state mapping for some Θshrink ∈ F and identity state
mappings for all other Θ ∈ F with Θ ̸= Θshrink. Hence τF based on σ is a shrink transfor-
mation according to our Definition 3.13, and as such is a strict homomorphism according to
Theorem 3.13. Instead of directly proving the missing two properties REFT and REFG for the
transformation to be exact induced, we postpone the proof of this proposition, as it follows from
a more general result in the following section.

The fact that atomic symmetries allow for shrinking strategies that maintain perfection makes
them particularly attractive, and we would like to exploit this result even for abstractions that
are not atomic. The following result shows that we can achieve this by merging all transition
systems affected by a given symmetry.

Proposition 5.3. Let σ be a factored symmetry of a factored transition system F that affects
(exactly) the transition systems F σ ⊆ F . Let F ′ be the factored transition system obtained from
F by merging all transition systems in F σ. Then there exists an atomic symmetry σ′ of F ′ that
induces the same symmetry on F⊗ as σ.

Proof. Let F = {Θ1, . . . ,Θn}, and let k ∈ {1, . . . , n} such that σ affects exactly the transition
systems Θi with i ≤ k. We get F ′ = {Θ′,Θk+1, . . . ,Θn} with Θ′ =

⊗k
i=1Θi. States of Θ′ can

be written as sets of the form {s1, . . . , sk}, where each si is a state of Θi. (It is more common
to use tuples instead of sets, but the two representations are equivalent because we require states
of different transition systems to be disjoint. Using sets simplifies the definition of σ′.)

We define σ′(ℓ) = σ(ℓ) for all labels ℓ, σ′(sj) = sj for all states sj of Θk+1, . . . ,Θn, and
finally σ′({s1, . . . , sk}) = {σ(s1), . . . , σ(sk)}. It is easy to verify that σ′ satisfies all properties
of symmetries (because σ does) and that it induces the same symmetry on F⊗ as σ. Also, it is
clearly atomic, affecting only Θ′.
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5.3.4. Relationship to Bisimulation

Symmetry and bisimulation are similar concepts, as both identify (possibly smaller) structures
with equivalent behavior. Hence, a natural question is to ask about their relationship. For non-
factored transition systems, it is well-known that every symmetry induces a bisimulation (Clarke
et al., 1999). It is also easy to see that the converse does not hold. The logistics task example
shows that nontrivial factored symmetries, even local ones, do not necessarily induce nontrivial
bisimulations on the individual transition systems. (There are no nontrivial bisimulations in the
atomic factors of the example.)

We now show that for fully label-reduced factored transition systems (i.e. where no two labels
are combinable for any transition system), atomic symmetries are captured by bisimulation.

Proposition 5.4. Let F be a fully label-reduced factored transition system, and let Θ ∈ F . Let
∼ be the equivalence relation on Θ induced by the atomic symmetries of F affecting at most Θ.
Then ∼ is a bisimulation of Θ.

Proof. Let S be the states of Θ. We show that ∼ ⊆ S × S satisfies the two properties of
bisimulations (cf. Definition 3.14 on page 52): (1) if s ∼ t, then neither or both of s and t are
goal states; (2) if s ∼ t and s ℓ−→ s′ ∈ Θ, then t ℓ−→ t′ ∈ Θ for some t′ with s′ ∼ t′.

Consider s, t ∈ S with s ∼ t. Then there exists a local symmetry σ of F affecting at most
Θ such that σ(s) = t. From the goal-preserving property of symmetries, we get (1). To show
(2), consider ℓ ∈ L and s′ ∈ S such that s ℓ−→ s′ ∈ Θ. From the definition of symmetry, we get
σ(s) σ(ℓ)−−→ σ(s′) ∈ Θ. Defining t′ = σ(s′), we obtain t σ(ℓ)−−→ t′ ∈ Θ and s′ ∼ t′. To complete
the proof, we will show σ(ℓ) = ℓ and hence t ℓ−→ t′ ∈ Θ, which proves (2).

Consider any of the other transition systems Θ̂ ∈ F \ {Θ}. Because σ is an atomic symmetry
affecting at most Θ, it maps each state of Θ̂ to itself. Hence, σ maps each ŝ ℓ−→ ŝ′ ∈ Θ̂ to
σ(ŝ) σ(ℓ)−−→ σ(ŝ′) = ŝ σ(ℓ)−−→ ŝ′ ∈ Θ̂. In other words, every transition with label ℓ in Θ̂ has
a parallel transition with label σ(ℓ). The converse also holds because σ−1 is also an atomic
symmetry affecting at most Θ. This shows that ℓ and σ(ℓ) are locally equivalent in Θ̂.

This local equivalence holds for all Θ̂ ̸= Θ, and hence ℓ and σ(ℓ) are Θ-combinable. More-
over, we have cost(σ(ℓ)) = cost(ℓ) because σ is a factored symmetry. Therefore, if σ(ℓ) ̸= ℓ,
the two labels satisfy the two requirements for exact label reduction, which contradicts our
requirement that F is fully label-reduced. Hence we must have σ(ℓ) = ℓ, concluding the
proof.

The proof for Proposition 5.2 that we postponed now follows as a corollary because shrinking
based on bisimulation is exact induced (cf. Theorem 3.7 on page 53). More importantly, the re-
sult shows that existing bisimulation-based shrink strategies automatically capture redundancies
exploitable by atomic symmetries when using full label reduction.

5.3.5. Framework for Enhancing Merge Strategies

In this section, we propose a general algorithm for including symmetry reasoning in the merge-
and-shrink framework. We have seen that shrinking based on atomic symmetries is information-
preserving, while shrinking based on other classes of factored symmetries is not. We exploit
this information by tailoring the merge strategy to force the occurrence of atomic symmetries.
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Specifically, if we detect a factored symmetry σ affecting k transition systems and then merge
these transition systems, σ becomes an atomic symmetry only affecting the merged system.

We have also seen that state-of-the-art approaches using bisimulation-based shrinking and
label reduction based on Θ-combinability automatically exploit atomic symmetries, so there is
no need to adapt the shrink strategy. Finally, we have seen that new symmetries can arise at any
time during the merge-and-shrink process, so it can pay off to search for new factored symmetry
in every iteration of the merge-and-shrink loop.

Algorithm 5 The selection of a next pair with a symmetry-enhanced merge strategy.

Input: Factored transition system F and the set of associated FMs Σ, to-be-enhanced merge
strategy MS.

Output: Pair of transition systems of F (and their associated FMs of Σ).
1: function SELECT(F , Σ)

▷ Z: a set of transition systems to be merged such that their product exhibits an atomic
factored symmetry.

2: if |Z| < 2 then
3: Compute a set Σ of non-atomic symmetries of F
4: if Σ ̸= ∅ then
5: Let Z := {Θ ∈ F | Θ is affected by one chosen σ ∈ Σ}
6: end if
7: end if
8: if |Z| ≥ 2 then
9: Choose Θ1,Θ2 ∈ Z

▷ Remove the factors that will be merged, keep reference to the to-be-computed
product.

10: Z ← Z \ {Θ1,Θ2} ∪ {Θ1 ⊗Θ2}
11: else
12: Choose Θ1,Θ2 according to basic merging strategy MS
13: end if
14: return Θ1,Θ2 and associated FMs in Σ
15: end function

We explain how the approach to enhance merge strategies through symmetries works by ex-
plaining the SELECT function of the merge-and-shrink algorithm (cf. Algorithm 3 on page 70),
which is the “representing” function of any merge strategy, in Algorithm 5. It augments an
existing merge strategy MS as follows: initially, let Z := ∅. Whenever we are currently not pur-
suing any (previous) merge policy based on symmetries (line 2 triggers), we compute factored
symmetries of F and, if any are found, store all factors affected by a chosen symmetry in Z
(line 5). Hence, in any future call to SELECT, the next pair of transition systems to be merged is
chosen either according to the set Z, if it contains at least two elements (line 8), or according to
MS (line 12). In the former case, the set Z needs to be updated to contain the product after the
merge-and-shrink algorithm has performed the merge transformation.

Two design choices remain: the choice of one non-atomic symmetry σ of the set Σ (line 5)
and the decision which pair of transition systems to choose from Z (line 10). Regarding the first
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choice, we consider selecting a symmetry which affects the least or the most factors of F . We
call the former variant smallest and the latter variant largest.

Concerning the second choice, we settled on the following non-linear policy: we first merge
all transition systems which are non-locally affected (i.e. mapped onto other abstractions) sepa-
rately for each such cycle of mapped abstractions. After these merges, the induced symmetry is
local, and we linearly merge all remaining factors affected by the symmetry. An alternative we
will evaluate is to use the fallback merge strategy for merging all transition systems affected by
the chosen symmetry. While this is simple for the score-based merge strategies, it also works
with linear merge strategies using the technique that maps each variable to the transition system
“representing” it, i.e. the transition system whose associated FM contains the variable in its as-
sociated variables. Computing a merge tree with MIASM for a factored transition system that
is not the induced factored transition system (i.e. containing only atomic factors associated with
the variables of the planning task) is not possible, hence we cannot use this alternative approach
if MIASM is the fallback merge strategy. We call this variant FB for fallback in the experiments.

A third choice that is not directly visible from the algorithm is the resources we want to
spend for computing symmetries. As a baseline, we consider computing factored symmetries
only once, on the induced factored transition system. That is, we use structural symmetries for
enhancing the merge strategy but do not attempt recomputing symmetries during later states of
the merge-and-shrink computation. The second variant we consider is to use a budget (60s)
for the total time required by symmetry computations. That means that we can search for new
factored symmetries in every iteration of the merge-and-shrink algorithm as long as the time
budget allows.

We remark that while this approach of enhancing merge strategies guarantees that after merg-
ing all factors affected by a chosen non-atomic symmetry, the resulting product system is the
only factor affected by a now-atomic symmetry, this only works if no inexact transformations
are applied to the factored transition systems in the meantime. For typical merge-and-shrink
configurations, this requirement is fulfilled as long as no shrinking or pruning of unreachable
states is performed. Unfortunately, for symmetries affecting a large number of factors or for
large factors, we expect that shrinking will be necessary in many cases, and if using pruning,
pruning opportunities will often arise. Hence, the positive impact of merging towards obtaining
an atomic symmetry is potentially reduced. However, even if we have to shrink or prune before
obtaining an atomic symmetry, we may not necessarily break the symmetry we are aiming for. In
our experiments, we shed some light on how many times non-atomic symmetries can be turned
into atomic ones successfully because no interfering transformations need to be applied.

5.4. More Merge Strategies of Different Types

This section describes the three non-linear merge strategies that we developed after the intro-
duction of generalized label reduction (excluding the symmetry-enhancing framework which
we already discussed in the previous section). Additionally, it introduces tie-breaking criteria
for a simple type of merge strategies that we call score-based merge strategies. While we de-
scribed most of the ideas presented here in our analysis of merge strategies (Sievers, Wehrle, &
Helmert, 2016), we extend some of the ideas and provide more details and intuition here.
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Before going into medias res, we discuss the different types of merge strategies we consider.
Looking again at the merge strategies we have seen so far, i.e. the linear merge strategies and
the two non-linear merge strategies by Fan et al. (2014), we see that all of them are what we
call precomputed merge strategies because they compute the entire merge tree before the start
of the merge-and-shrink algorithm, hence fixing a unique merge order up-front.3 At the other
extreme of the spectrum of merge strategies are those that do not store any information, but rather
select the next pair of transition systems exclusively based on the current factored transition
system maintained by the merge-and-shrink algorithm. We call these merge strategies stateless
merge strategies because they do not need to memorize any information across different merge
decisions.

In the next section, we present two so-called score-based merge strategies, which are stateless
merge strategies that select a pair of transition systems based on ranking all candidate pairs by
computing scores for each pair. We consider score-based and stateless merge strategies to be
interchangeable, since we think that any stateless merge strategy can be cast as a score-based
merge strategy that makes its decision based on a ranking of pairs of transition systems.

5.4.1. Two Score-based Merge Strategies

In their work introducing merge-and-shrink in the context of model checking, Dräger et al.
(2006) also describe a “composition strategy” that selects which two processes to compose in
each iteration of their algorithm to compute an abstract process. We adapt this composition
strategy to planning, and name it DFP merge strategy after the original authors. We remark
that DFP was the first non-linear merge strategy introduced for planning (Sievers et al., 2014),
however it was never described in much detail in previous work on planning, and hence we do
so in the following.

DFP is a score-based merge strategy that prefers selecting pairs of transition systems that have
transitions close to goal states that synchronize in the product, i.e. transitions of both transition
systems that are labeled by the same labels. The hope behind that approach is that the prod-
uct transition system is an abstraction fine-grained in the goal region, which is arguably more
important than regions far away from the goal, since the latter are less likely to be searched by
forward searches like A∗. In the following, we formally define the score that DFP computes for
pairs of transition systems, but first, we need a few more definitions.

Definition 5.5 (Relevant Label). Let Θ = ⟨S,L, c, T, s0, S⋆⟩ be a transition system. A label
ℓ ∈ L is irrelevant in Θ if there exists exactly one transition s ℓ−→ t ∈ T , and s = t. Label ℓ is
relevant in Θ if it is not irrelevant in Θ.

Labels that induce exactly self-looping transitions for all states of a transition systems are
called irrelevant. The intuition is that they do not prevent any transitions from being synchro-
nized in product systems, but they also do not add any useful information to the transition system.
We write L(Θ) for the subset of relevant labels in a transition system Θ.

Definition 5.6 (Goal-relevant Transition System). A transition system Θ with states S and goal
states S⋆ is goal-relevant if S⋆ ̸= S.

3A merge tree uniquely defines a merge order if assuming a fixed policy such as always choosing the first two
sibling leaf nodes according to a pre-order traversal.
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Transition systems that do not only have goal states are called goal-relevant because only if
there are non-goal states, heuristics induced by the transition system can be non-trivial. In the
context of factored transition systems, if there are no goal-relevant factors, then also the product
is not goal-relevant, hence only inducing trivial heuristics.

We now turn towards the metrics used by the DFP merge strategy.

Definition 5.7 (DFP Label Rank). Let Θ = ⟨S,L, c, T, s0, S⋆⟩ be a transition system and ℓ ∈ L
be some label. The DFP label rank (label rank for short) of ℓ in Θ is defined as rank(ℓ,Θ) =
min{h∗(t) | t ∈ S, ∃s ℓ−→ t ∈ T}.

In words, the label rank of some label in a transition system is the minimum goal distance of
any state that can be reached with a transition labeled with that label. In some sense, the rank
quantifies how close a label can bring us to some goal state, from no specific state. The lower
a label rank, the “better” it is with the intuition of DFP explained above. We remark that if a
transition system is not goal-relevant, then all labels have the best rank of 0 in that transition
system, since all states are goal states.

Definition 5.8 (DFP Score). Let Θ1 and Θ2 be two transition systems. The DFP score (score
for short) of Θ1 and Θ2 is defined as score(Θ1,Θ2) = min{max{rank(ℓ,Θ1), rank(ℓ,Θ2)} |
ℓ ∈ (L(Θ1) ∩ L(Θ2))}. If (L(Θ1) ∩ L(Θ2)) = ∅, we define score(Θ1,Θ2) =∞.

The score of a pair of transition systems is the minimum, considering only labels that are
relevant in both Θ1 and Θ2, over the maximum rank of the label in both transition systems.
Intuitively, a label is only “good” if it has a low label rank in both transition systems (hence the
maximization over the ranks) and if it is relevant in both transition systems (hence the score of
∞ if this is not the case). The reason for the latter is that if otherwise a label is irrelevant in both
transition systems, it does not add non-self-looping transitions to the product system, and if it is
relevant only in one of the transition systems, any path labeled in that transition system induces
a path of the same cost in the product, hence not adding any information useful for heuristics.

Finally, given a factored transition system F , the DFP merge strategy is defined to select a
pair of transition systems with minimum score among all pairs of transition systems in F where
at least one component is goal-relevant. The restriction to goal-relevant transition systems is
necessary to avoid choosing pairs where all common relevant labels have a rank of 0 but do not
contribute any information to induced heuristics.

After its introduction, DFP quickly established as a state-of-the-art merge strategy, only chal-
lenged by MIASM. Since we consider score-based merge strategies to be easier to understand,
used and hence analyzed than (complex) precomputed merge strategies like MIASM (also see
the discussion in Section 5.4.3), we also devise a second score-based merge strategy. It is in-
spired by MIASM and serves as a score-based alternative to the precomputed original. Score-
based MIASM (sbMIASM)4 follows the very simple idea that also underlies the original MIASM
strategy: it prefers merging pairs of transition systems such that their products have many un-
reachable or irrelevant states, which maximizes pruning opportunities. This can be achieved
easily within the score-based merge strategies framework: (temporarily) compute the products

4We called it DYN-MIASM in our original paper (Sievers et al., 2016), as it is a “dynamic” merge strategy, i.e. a
merge strategy we call stateless in this thesis.
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of all pairs of transition systems, possibly shrink them like the merge-and-shrink computation
would do, and compute the percentage of alive states in these products. This percentage serves
as the score that should be minimized: the smaller the score, the more states can be pruned.

5.4.2. Tie-breaking-Criteria for Score-Based Merge Strategies

Looking at the definition of the DFP score, it is clear that the DFP merge strategy does not
select a uniquely determined pair of transition systems, since there may be several pairs of a
factored transition system that have the best score of 0. In particular, this happens very easily
for typical planning benchmarks with few goal variables: in that case, there are lots of factors
that are not goal-relevant and whose relevant labels all have a score of 0. That means that even
pairs where at least one transition system is goal-relevant often have a score of 0 (maximizing
the label ranks only helps if all common relevant labels have a non-zero rank in the goal-relevant
transition system, since DFP minimizes over all common relevant labels). The same observation
of possible ties also holds for sbMIASM, where several candidate pairs of transition systems can
allow for the same amount of pruning in their products.

In the first implementation of DFP within Fast Downward, if several pairs of transition sys-
tems have the same score, the strategy simply chooses the “first” pair according to some order
on the transition systems, basically dictated by the variable order of Fast Downward. To evaluate
the choice of this tie-breaking on score-based merge strategies more generally, we consider sev-
eral alternatives for fixing a total order on all transition systems, which includes both the n initial
atomic factors and all n − 1 (intermediate) product transition systems of the merge-and-shrink
computation. Such a total order on transition systems directly induces a total order on pairs of
transition systems, which makes the selection of a score-based merge strategy uniquely defined
if using the policy to select the first-ordered pair in case of ties.

We consider three parameters to determine the order of transition systems: whether to prefer
atomic (PA) or to prefer composite (PC), i.e. non-atomic transition systems, the order in which
atomic transition systems are considered, and the order in which composite transition systems
are considered. For the order of atomic transition systems, the options include the variable
orders RL, L, and a randomized order (RND), and for the order of composite transition systems,
the options include new to old (NTO) and old to new (OTN), preferring more recently merged
transition systems and older transition systems, and also a randomized order (RND).5

5.4.3. Precomputed, Stateless, and Hybrid Merge Strategies

All the merge strategies we have discussed so far are linked to the causal graph of a planning
task. This is obvious for the linear merge strategies, but it also holds for DFP and MIASM. With
DFP, only transition systems that require non-trivial synchronization of transitions can be can-
didates for merging, where non-trivial synchronization means that both transition systems have
a common label that is not irrelevant in both of them. For atomic factors, such common relevant
labels only occur if the associated variables of the factors occur together in some operator of the
planning task. More generally, for any two factors, there can only be non-trivial synchronization

5We did not describe this third option in our original work (Sievers et al., 2016), and all of the experiments there are
based on using NTO. In the experiments of this thesis, we also evaluate the alternative of using OTN and RND.
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if the associated variables of the FMs associated with the two factors (i.e. the “variables repre-
sented in the factors”) are causally connected in the causal graph. The same reasoning applies
to sbMIASM: only non-trivial synchronization can cause dead states in the product system, be-
cause if merging two causally unrelated factors, we obtain the full product, and hence no state is
disconnected if there are not already disconnected states in the components of the product.

We now discuss in more generality how the two types of merge strategies we have seen so far
fare in using information from the causal graph and other sources, such as the factored transition
system during the merge-and-shrink computation. We also compare their potential for being
combined or reused within other strategies.

An advantage of precomputed merge strategies is that they can capture the “big picture” of
the planning task, such as causal dependencies. However, their disadvantage is their inflexibil-
ity: they are independent of the other merge-and-shrink transformations, which means that they
cannot take into account the course of the merge-and-shrink computation, and they cannot easily
be combined with other merge strategies, at least not without breaking their precomputed merge
tree. For example, enhancing precomputed merge strategies with symmetries leaves the question
of how to update the precomputed merge tree while merging according to symmetries. While
this is still amenable for linear merge strategies since we can map variables of their underlying
variable order to the factors that “represent” them, it is unclear how to best integrate MIASM
with factored symmetries.

Score-based merge strategies are the opposite of precomputed merge strategies in some sense.
Their disadvantage is that they are myopic in that they fail to “plan ahead” the current merge, and
hence they cannot capture causal dependencies between more than two factors of the planning
task. On the other hand, they can take into account the modifications done by other merge-and-
shrink transformations and base their decision on the state of the factored transition system of the
merge-and-shrink computation. Another advantage is that they are usually easy to understand
and implement, since they are clearly defined in terms of the scores they compute. This contrasts
precomputed merge strategies such as MIASM that tend to have rather complex precomputation
algorithms. Additionally, score-based merge strategies can easily be combined with each other
or reused within other merge strategies. For example, if after computing scores with a score-
based merge strategy, ties need to be broken, we can use further score-based merge strategies
to reduce the number of tied candidate pairs, and finally we can use the tie-breaking criteria we
described in the previous section.

To get the best out of the two worlds that are precomputed and score-based merge strategies,
we suggest a third type of merge strategies which we call hybrid merge strategies. All merge
strategies that are not “simple” in the sense that they are either entirely precomputed or fully
stateless can be considered hybrid merge strategies. Hybrid merge strategies potentially precom-
pute some parts of the merge tree, leaving other merge decisions within subtrees to score-based
merge strategies during the merge-and-shrink computation.

We have already seen a framework that turns simple, i.e. precomputed or score-based, merge
strategies into hybrid ones: the symmetry-enhancing framework discussed in Section 5.3. Since
symmetry-enhanced merge strategies need to memorize which transition systems are affected
by a non-atomic factored symmetry across several merge decisions, they clearly are not stateless
merge strategies. Because factored symmetries can only be computed for the current factored
transition system, symmetry-enhanced merge strategies can also not be precomputed up-front.
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5.4.4. A New Hybrid Merge Strategy

Driven by the previous discussion on types of merge strategies, we devise another hybrid merge
strategy, which is again based on the causal graph. As a precomputation step, it computes the
strongly connected components (SCCs) of the causal graph and decides on an order in which
these SCCs should be considered. During the merge-and-shrink computation, the strategy then
repeatedly merges all atomic factors for variables within an SCC, considering the SCCs in the
specified order, which results in one product system for each SCC. From there on, the strategy
merges these resulting products to form the final transition system.

This merge strategy, or rather this framework to enhance existing merge strategies which we
call SCC framework, has several parameters: first, it requires to specify the already mentioned
order in which SCCs should be considered for computing the product factors for each SCC
(order of SCCs). Secondly, it needs a merge strategy that is able to decide on a merge order
of the atomic factors for variables within SCCs (secondary merge strategy). Thirdly, it requires
either another merge strategy that dictates the merge order of the product systems of SCCs, or
alternatively, it again needs an order in which the SCCs are considered, which then can be used
for linearly merging all product systems of SCCs (third parameter).

For the order of SCCs, we consider the following four variants: a topological and reverse
topological sort of the SCCs, based on the derived directed graph where each SCC is a single
“supervertex”, and two orders in which SCCs are sorted by size, either decreasing or increasing,
breaking ties by the topological order just described. For the merge strategy that decides on
merging the atomic factors for variables within SCCs (secondary merge strategy), we can use
any merge strategy that is able to select a next pair of transition systems out of a subset of the
atomic factors of a planning task. This is of course easy for score-based merge strategies like
DFP or sbMIASM, but also possible for linear merge strategies, since they define a variable
order we can use directly. For other precomputed merge strategies like MIASM, it is in general
not clear how to extract a subtree of the precomputed merge tree that contains only the necessary
(atomic) factors, since they are not necessarily part of the same subtree.

For the third parameter, i.e. the order in which the product systems should be merged, we can
again use the same different orders of SCCs to define a linear merge order on the product systems
of SCCs, or alternatively, any merge strategy capable of deciding on a merge order given the
product systems of SCCs. This is again trivially possible for all score-based merge strategies,
but more complicated for precomputed merge strategies. We can use linear merge strategies
using the technique described above that maps each variable of the underlying variable order to
the factor “representing” that variable, but for the same reasons as above, we do not know how
to use MIASM for that purpose.

In our original work introducing the merge strategy SCC-DFP (Sievers et al., 2016), we only
reported results for the variant that uses the topological sort for the order of SCCS and DFP for
the secondary merge strategy and the third parameter, hence not interpreting the strategy as a
framework where any simple merge strategy could be plugged in. In the experimental study of
this thesis, we also evaluate the alternative orders of SCCs, and we do not only use DFP as the
secondary merge strategy and for the third parameter, but also consider sbMIASM and the linear
merge strategies in the way described above.6 For simplicity, we always use merge strategies

6Strictly speaking, the SCC merge strategies are not hybrid but can be entirely precomputed if using linear merge
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Abbreviation transformation strategy

CGGL linear merge strategy: causal graph goal level (Helmert, Haslum, & Hoffmann, 2007)
F shrink strategy: f-preserving (Helmert, Haslum, & Hoffmann, 2007)
B shrink strategy: based on (approximating) bisimulation (Nissim, Hoffmann, & Helmert, 2011)
G shrink strategy: based on greedy bisimulation (Nissim, Hoffmann, & Helmert, 2011)
GCGL linear merge strategy: goal causal graph level (Nissim, Hoffmann, & Helmert, 2011)
L linear merge strategy: (Fast Downward’s variable order) level (Nissim, Hoffmann, & Helmert, 2011)
RL linear merge strategy: (Fast Downward’s variable order) reverse level (Nissim, Hoffmann, & Helmert, 2011)
DFP non-linear merge strategy: due to Dräger, Finkbeiner, and Podelski (2006), adapted to planning by

Sievers, Wehrle, and Helmert (2014)
MIASM non-linear merge strategy: maximum intermediate abstraction size merge strategy (Fan, Müller, & Holte, 2014)
symm-X non-linear merge strategy: merge strategy X enhanced with factored symmetries, called symm by

Sievers, Wehrle, Helmert, Shleyfman, and Katz (2015)
sbMIASM non-linear merge strategy: score-based MIASM, called DYN-MIASM by Sievers, Wehrle, and Helmert (2016)
SCC-X non-linear merge strategy: individually merging SCCs of the CG, using X as secondary merge strategy

(Sievers, Wehrle, & Helmert, 2016)

Table 5.1.: Abbreviations of transformation strategies with a brief summary and their source in
the literature, in chronological order.

for the third parameter (and not any order of SCCs that induces a linear merge order), and we
always use the same merge strategy as for the second parameter. We call the resulting merge
strategy SCC-X if using merge strategy X as secondary merge strategy.

5.5. Conclusions

To summarize this chapter, we provide an overview of the transformation strategies we discussed
in this chapter and which we will use in our experimental study. Table 5.1 lists the transformation
strategies in chronological order, for each showing the abbreviation we use, a brief summary, and
the source in the literature.

We discussed several new merge strategies and defined different types of merge strategies that
have different strengths and weaknesses:

• Precomputed merge strategies fix a merge tree before the computation of the merge-and-
shrink algorithm. Their advantage is being able to capture maximal causal dependencies
of planning tasks, but they fail to take into account the impact of other transformation
strategies which comes apparent only during the merge-and-shrink computation. Further-
more, they tend to be more complex to understand and to cause difficulties if combining
them with other merge strategies. All linear merge strategies (CGGL, GCGL, L, RL),
which can be understood as a variable order, and MIASM fall into this category.

• Stateless or score-based merge strategies are in some sense the opposite of precomputed
merge strategies: they select the next pair of transition systems exclusively based on the
current factored transition system and do not memorize any information across several
merge decisions. They are myopic in the sense that the cannot plan ahead the current

strategies both as the secondary merge strategy and for the third parameter, because in that case all information
is available from the beginning on.
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merge decision, but they excel in taking into account the impact of other transformation
strategies by greedily maximizing scores defined solely on the current factored transition
system. Furthermore, they can usually be described mathematically and are simple to
understand. They are also particularly flexible because they can easily be combined with
each other. DFP and sbMIASM are representatives of this type of merge strategies.

• Hybrid merge strategies are those that are neither entirely precomputed nor solely score-
based merge strategies. They can pick the best of both precomputed and score-based
merge strategies, but they also have an disadvantage: they are usually similarly complex
as precomputed merge strategies, and they also cannot easily be combined with other
merge strategies. For example, it is unclear if there exists a meaningful way of combining
a merge strategy with both factored symmetries and the SCC framework, which are the
two ways of producing hybrid merge strategies we have seen.

In future work, besides investigating a possible combination of the frameworks for using fac-
tored symmetries and SCCs, we would also like to come up with a better integration of MIASM
and factored symmetries. Similarly, we want to combine MIASM with the SCC framework.
Given that score-based merge strategies are simple and flexible, yet powerful, we also think that
there are many more criteria that could serve as a basis for even more informative score-based
merge strategies, such as, e.g., looking at the number of transitions or states of factors, their g-
and h-values, or the amount of combinable labels to maximize label reductions.

Furthermore, the approach that both the SCC framework and MIASM follow can be viewed as
an even wider framework: in a precomputation phase, it partitions the variables of the planning
task according to some criteria, in the spirit of how the SCC framework partitions variables
based on SCCs and how MIASM partitions variables based on the expected ratio of dead states.
Then it first merges all atomic factors for variables within a partition before merging the resulting
products to form the final transition system, using any secondary merge strategy for these two
subtasks.
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6. Experimental Study

In this chapter, we present an experimental study of merge-and-shrink heuristics on classical
planning benchmarks. Our main goal is to show the evolution of merge-and-shrink heuristics
from before the contributions of this thesis to the state of the art. For this reason, we proceed
chronologically and begin by reproducing and extending the results of our earlier papers. For
this purpose, we use the previous, non-optimized implementation of merge-and-shrink based on
generalized label reduction, and only afterwards evaluate the performance gains due to changing
to the optimized implementation. From there on, we exclusively use the state-of-the-art opti-
mized implementation and evaluate the most recently introduced merge-and-shrink techniques,
following the chronological order of their presentation. Finally, we compare the state-of-the-art
merge-and-shrink techniques against other abstraction heuristic based planners, including the
state of the art planner.

This chapter is organized as follows. In Section 6.1, we describe the different implementa-
tions that we integrated into a common code base and the techniques available within them, in
particular pointing out differences between the implementation used for this thesis and those
used in previous work. We also explain the technical setup of the study and the abbreviations
we use.

Section 6.2 begins our study with evaluating the impact of label reduction, and in particu-
lar that of generalized label reduction, on the performance of merge-and-shrink heuristics. It
also includes an evaluation of the first two non-linear merge strategies DFP and MIASM. In
Section 6.3, we report results for merge strategies enhanced by the framework for using fac-
tored symmetries. In Section 6.4, we evaluate the impact of the optimized implementation in,
using all merge-and-shrink techniques available up to this point, i.e. available in the previous
implementation of merge-and-shrink.

We then continue our study by evaluating further techniques on the optimized implementa-
tion. Section 6.5 investigates more variants of using factored symmetries and the alternative
scenarios of using symmetries that are symmetry-based pruning and symmetric lookups. In a
larger analysis of merge strategies in Section 6.6, we investigate the potential of current merge
strategies by comparing against the set of all merge strategies on small planning tasks and large
sets of randomly sampled merge strategies. We further evaluate tie-breaking strategies for DFP
and sbMIASM, and discuss results of the SCC framework.

In Section 6.7, we evaluate the impact of pruning on the performance of merge-and-shrink
heuristics. In Section 6.8, we proceed with providing an overview of state-of-the-art merge-
and-shrink that includes new combinations of different merge strategies. Finally, in Section 6.9,
we conclude the study with a comparison against other planners based on abstraction heuristics,
including the state-of-the-art planner, and against the winner of the last International Planning
Competition (IPC).
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6.1. Setup

In this section, we first comment on the different code bases we use and the differences between
older and newer implementations of some of the techniques. Furthermore, we describe the
technical setup and explain how we illustrate the results of our study.

6.1.1. Implementation Differences and Integration into Fast Downward

We implemented all of the techniques in Fast Downward (Helmert, 2006). Recall that in the first
part of our study (Sections 6.2–6.4), we want to reproduce results of techniques that are only
available within older versions of Fast Downward, such as the previous label reduction or the
non-optimized implementation of merge-and-shrink based on generalized label reduction. Since
Fast Downward versions that are several years apart usually have huge differences in perfor-
mance, we integrated the old implementations of merge-and-shrink into the most recent version
of Fast Downward, attempting to keep the modifications required to these old implementations
at a minimum. We think that this is the best way to allow for a fair comparison to state-of-the
art techniques.

We use the same approach for integrating all techniques that are not part of public Fast Down-
ward, such as the merge strategies MIASM and sbMIASM, the symmetry-enhancing framework,
symmetry-based pruning techniques and symmetric-lookups. Hence all our own techniques we
evaluate here are based on the same version of Fast Downward.1 The source code of the result-
ing Fast Downward-based planner is publicly available.2 To obtain the other planners evaluated
in Section 6.9, please contact their authors. We also published all experimental data online.3

To compute structural symmetries and factored symmetries, we use the graph automorphism
tool bliss (Junttila & Kaski, 2007), version 7.2, with the same implementation of problem de-
scription graphs as input in all implementations using factored symmetries. Our integration of
bliss in Fast Downward handles failures of bliss computations due to reaching the memory limit
or a time limit imposed to bliss. That means that even if the computation of bliss fails, Fast
Downward continues with its regular computation.

We now comment on several specific implementation issues. In all implementations of the
label reduction algorithm used for this work (including the non-optimized and the latest imple-
mentation), we fixed a bug that affects the results reported in all previous papers. Given an order
of transition systems, if only the last one allowed for label reductions based on Θ-combinability,
then this label reduction was not performed in the erroneous implementations, i.e. the fixed point
iteration stopped one iteration early. If there have been previous label reductions within the same
algorithm run, this problem did not persist.

When reporting results for DFP in the first part of the study, we use the implementation used
since its introduction for planning (Sievers et al., 2014). In the second part, we also report
different variants of DFP with different tie-breaking strategies, which we indicate accordingly.
What we call DFP in all previous papers and the first part of our study matches the variant DFP
with tie-breaking PC/RL/NTO in the second part of the study.

1Mercurial revision: 73041D26B55A
2https://doi.org/10.5281/zenodo.1163381
3https://doi.org/10.5281/zenodo.1164137
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MIASM and the symmetry-enhancing framework are available both within the non-optimized
implementation of merge-and-shrink based on generalized label reduction and the state-of-the-
art implementation. However, their implementations exhibit some additional differences. Within
the non-optimized implementation, we use the first implementation of MIASM, provided by
its authors Fan et al., which they also used for their paper. Since their implementation stops
computing a merge strategy if it only finds a trivial partitioning of the variables, i.e. if there is
only one partition containing all variables or singleton partitions for every variable, we adapted
it to fallback onto using DFP (in the explained old version, i.e. with tie-breaking PC/RL/NTO)
whenever this happens. All state-of-the-art results for MIASM are based on a re-implementation,
also provided by its authors, which we again adapted to use DFP as a fallback mechanism for
a better comparison, instead of using the built-in fallback CGGL.4 Since we are not familiar in
detail with both implementations, we unfortunately cannot comment more on their differences.

In the symmetry-enhancing framework, an important difference between the non-optimized
and optimized implementations of merge-and-shrink based on generalized label reduction is the
way how variable orders are “broken” if enhancing linear merge strategies by merging according
to symmetries. The old implementation considers the variable order underlying the linear merge
strategy. Whenever two atomic transition systems Θ1 and Θ2 are merged where Θ1 comes before
Θ2 in the variable order, it considers the product as a representative of Θ1 and drops Θ2. In the
new implementation, we represent precomputed merge strategies such as linear ones as (merge)
trees, which means that whenever two factors that are in different subtrees are merged, we cut
one of the leaves and update the other one to represent the product. Since it is not possible for a
given leaf to know whether it is ordered before or after another leaf without traversing the tree,
we make that choice by randomization. In combination with the fact that we always traverse
the tree in a fixed order to uniquely represent precomputed merge strategies, this means that
symmetry-enhanced linear merge strategies can result in different merge orders compared to the
previous implementation, which unfortunately makes some of the reported results with linear
merge strategies less comparable.

When reporting results for sbMIASM, we use an improved implementation compared to that
used in the original paper (Sievers et al., 2016). In particular, to compute the ratio of alive states
to total states of all products in the old implementation, we cloned the component transition
systems and FMs, possibly shrunk them and then pruned the product to obtain the result. Due
to decoupling in the improved implementation, we now only clone the transition systems. Addi-
tionally and in contrast to the previous implementation, we only clone a transition system if we
need to modify (i.e. shrink) it before merging. Furthermore, we do not need to actually prune
the product as in the old implementation where pruning was not a logically separated step, but
can deduce the ratio of alive to total states from computing distance information. Hence we save
several copy operations (runtime) but also memory to store these temporary copies.

6.1.2. Technical Setup

We use the benchmarks of the (optimal, where applicable) sequential tracks of all IPCs up to
2014, a set comprised of 1667 planning tasks distributed across 57 domains, which are publicly

4This contrasts the results we originally reported (Sievers et al., 2016), where we also used the re-implementation
but did not adapt it to use DFP as a fallback mechanism yet.
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Attribute explanation winning value

Coverage number of solved tasks max
Exp Xth perc Xth percentile of the number of expansions, rounded down to the next multiple of 1000, to min

reach the last f -layer, computed over all tasks where all algorithms have a value for expansions
Search time geometric mean of the runtime of search in seconds, computed over commonly solved tasks min
Total time geometric mean of the total runtime in seconds, computed over commonly solved tasks min
# constr number of tasks for which the merge-and-shrink computation finishes max
Constr time arithmetic mean of the runtime in seconds required by the merge-and-shrink computation, min

computed over commonly solved tasks
Constr oom number of tasks for which the merge-and-shrink computation exhausts the memory limit min
Constr oot number of tasks for which the merge-and-shrink computation exhausts the time limit min
Perfect h number of tasks for which the resulting heuristic is perfect max
Linear tree percentage of # constr for which the merge tree is linear min
MITSS arithmetic mean of the maximum intermediate size of transition systems, computed over min

commonly solved tasks

Table 6.1.: Attributes of planners and their abbreviation.

available.5 This set contains duplicates because some of the domains and tasks of IPC 2008 have
been reused in IPC 2011. We still stick to this set of benchmarks because it is an established test
bed for comparing planners. All planning tasks are given as PDDL files which we translate into
SAS+ representations using the translator that is part of Fast Downward (Helmert, 2009).

We use downward-lab for conducting our experiments (Seipp, Pommerening, Sievers, &
Helmert, 2017). Time is limited to 30 minutes and memory to 2 GiB per task. All experi-
ments were run on machines with Intel Xeon E5-2660 CPUs running at 2.2 GHz.6 To keep the
impact of the number of concurrently running tasks and other factors of the compute cluster at a
minimum, downward-lab randomizes the order in which tasks are started.

We use the shrink strategies available in Fast Downward, i.e. B, F, and G. When using the
shrink strategies based on bisimulation, i.e. B and G, we allow the shrink strategy to attempt
to compute a perfect bisimulation even if no shrinking is necessary (by setting the so-called
size “threshold” parameter that triggers shrinking even if not required to 1), and we apply label
reductions before shrinking, as bisimulation profits from label reduced transition systems. For
the shrink strategy F, experiments have shown that there is no benefit of computing abstractions
if no shrinking is necessary, hence we leave the threshold parameter inactive (i.e. set it to the
same value as N ). Furthermore, we perform label reduction after shrinking, since this is less
expensive and f-based shrinking does not profit from label reduced transition systems. For all
experiments with shrink strategies B and F, we use a size limit of N = 50000 for all transition
systems at any point during the computation of merge-and-shrink. While this is an arbitrary
choice and somewhat small, the same value was used in most recent papers and hence allows for
a better comparison; other reasonable values which we do not test here use up to N = 200000
states. If using G, we follow the common practice of not limiting the size of transition systems
by setting N =∞.

5From the collection at https://bitbucket.org/aibasel/downward-benchmarks, mercurial revision 663D121BEC5B,
we use the “optimal strips” benchmark suite.

6The compute cluster used a different OS (CentOS 7.3 instead of CentOS 6.5) compared to results reported in all of
our previous work, which led to results that may differ slightly from results reported in these works, presumably
due to different system libraries.
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Table 6.1 lists the attributes that we use to describe aggregated results. The first column
indicates the abbreviation as we use them in our tables. The second column explains the attribute
and possibly mentions a function we use to aggregate values. If reporting results aggregated for
a single domain, we either use the given aggregation function such as the geometric mean or a
specific percentile, or the sum of the number of tasks as a default. To aggregate results across
all domains, we use a two-level aggregation: we first compute the aggregated result for each
domain individually and then use the same aggregation scheme to compute the overall result.
This weights domains with an equal share, thus negating effects that could otherwise occur due
to unequally sized domains. Finally, the third column indicates whether for the attribute, higher
values are considered better or not. In all tables or blocks within tables below, we highlight the
best performance for each attribute. If the tables contain several blocks, e.g. grouping results of
different variants of a single merge-and-shrink strategy, then we usually aggregate and highlight
values separately for each block. When reporting domain-wise results, we provide the number
of tasks of a domain in parenthesis after its name.

6.2. The Impact of (Generalized) Label Reduction and DFP

In this section, we investigate the impact of label reduction, which includes a comparison of
using no label reduction at all,7 the previous label reduction, and the discussed variants of exact
generalized label reduction in the non-optimized implementation. We also evaluate the first
non-linear merge strategy DFP which we introduced together with generalized label reduction,
as well as the non-linear merge strategy MIASM introduced shortly afterwards (Fan et al., 2014).
As the previous label reduction was not implemented for non-linear merge strategies, we cannot
report any results of the previous label reduction for DFP and MIASM.

We first discuss the numerous variants exclusively in terms of coverage over all domains, and
only later go into more detail for a few selected representatives of the variants. Table 6.2 shows
coverage for the different variants of using (or not using) label reduction, combined with all
shrink strategies and all linear merge strategies, DFP, and MIASM. It shows a horizontal blocks
for each of the shrink strategies, divided into columns according to the different label reduction
variants, and uses a row for each merge strategy.

We begin with considering the results for the shrink strategy B, shown in the first block in
columns 2–6. The first and most important observation is that label reduction is crucial for the
efficient computation of merge-and-shrink heuristics: Comparing the results of using no label
reduction (No LR) against using the previous label reduction (Old LR) or any of the variants
based on generalized label reduction (2TS, ONCE, FP), the smallest difference in coverage
is 38 for RL (no LR vs. old LR), a huge increase in optimal classical planning. The second
observation concerns the comparison of the different label reduction techniques: for the three
linear merge strategies CGGL, GCGL, and L, the previous label reduction and the cheap variant
2TS of generalized label reduction achieve the best coverage, however closely followed by the

7We use the non-optimized implementation of merge-and-shrink based on generalized label reduction to produce
results for not using label reduction (no LR). Compared to using no label reduction in the implementation of
merge-and-shrink based on the previous label reduction, this increases coverage of RL by 10 (i.e. the result of RL
would be 654 with the previous implementation), but does not affect coverage of the other linear merge strategies.
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B F G

No Old Generalized LR No Old Generalized LR No Old Generalized LR

LR LR 2TS ONCE FP LR LR 2TS ONCE FP LR LR 2TS ONCE FP

CGGL 628 686 685 680 682 480 505 503 502 502 542 597 597 568 565
GCGL 614 673 674 670 669 491 513 508 512 512 541 560 563 537 533
L 618 676 676 674 674 499 519 517 517 517 541 560 563 536 535
RL 664 702 702 720 720 469 481 483 500 500 498 589 586 555 552
DFP 654 - 719 737 736 495 - 514 523 522 499 - 586 555 552
MIASM 655 - 731 745 746 534 - 540 559 562 482 - 557 548 547

Table 6.2.: Coverage of different variants of (not) using label reduction: no label reduction (No
LR), previous label reduction (Old LR), and the variants 2TS, ONCE, and FP of
generalized label reduction (generalized LR), the latter two using a randomized order
of transition systems. Columns are grouped by the shrink strategy used, and each row
shows the results for a different merge strategy. Best coverage highlighted in bold
within each group of shrink strategy and merge strategy.

more expensive variants that compute combinable labels for all factors. For RL and the non-
linear merge strategies DFP and MIASM, ONCE and FP perform significantly better than 2TS
(and than Old LR with merge strategy RL), i.e. for these merge strategies, reducing labels as
much as possible pays off.

A closer look at the linear merge strategies CGGL, GCGL, and L shows that their variable
orders are often “similar” in the sense that they often only differ in a few variables being ordered
differently in the front part of the variable order, because also CGGL and GCGL use L as a
tiebreaker. This has the effect that for large parts of the merge order (and for the remainder of
the merge order after merging all differently ordered variables), exactly the same labels can be
reduced for all three merge strategies. On the other hand, RL is the opposite variable order of
L. Thus, with CGGL/GCGL/L, the variant 2TS that considers only the two transition systems
merged next necessarily computes different label reductions as with RL. A possible reason why
2TS works better with CGGL/GCGL/L than with RL (and DFP/MIASM) is that 2TS misses
combinable labels in early iterations of the merge-and-shrink computation that can be combined
if using 2TS with RL, which has the effect that these labels can later on be combined in a different
way. This means that in the case of 2TS, the order in which label reductions are performed
matters, however not within an iteration of the fixed point algorithm but across several stages of
label reductions in the merge-and-shrink algorithm.

While there is no obvious reason that the “full label reduction” methods ONCE and FP should
perform better with RL or the non-linear merge strategies DFP and MIASM, we hold on to the
observation that the impact of label reduction clearly depends on the chosen merge strategy.
We also note that these three merge strategies achieve much higher coverage than the three
linear ones CGGL/GCGL/L, out of which CGGL is the best performer, and in particular, the
introduction of the first non-linear merge strategy clearly improves the performance of merge-
and-shrink heuristics, which is only surpassed by the non-linear merge strategy MIASM (which
uses DFP as a fallback mechanism).

Investigating the impact of label reduction on the non-linear merge strategies DFP and MI-
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ASM, we observe that they benefit even more from label reduction than the linear merge strate-
gies. One explanation for this observation is that non-linear merge strategies involve more com-
plex products (merges) than linear ones, and hence benefit more from label reduction collapsing
multiple parallel transitions into one. In linear merge strategies, at least one of the merged tran-
sition systems is always atomic, and atomic transition systems tend to have a comparatively low
density of transitions. Another reason is that label reduction interacts favorably with the merge
strategy DFP, which – unlike merge strategies previously considered in planning – takes the
labels into account directly in order to decide which transition systems to merge next.

We now turn towards the results of the shrink strategy F, shown in the second block of Ta-
ble 6.2 in columns 7–11. Similarly to the results for B, using any kind of label reduction in-
creases coverage compared to not using label reduction, but the impact is smaller. The likely
reason is that f-preserving shrinking, unlike bisimulation-based shrinking, does not profit from
label reduction because it only considers states and their g- and h-values but not their transi-
tions. We again also observe that with RL, DFP, and MIASM, using the more expensive label
reduction variants ONCE and FP pay off, while the same is not true for CGGL, GCGL, and L,
which perform best with the previous label reduction. Unlike with B, using F is stronger com-
bined with GCGL and L than combined with RL, but the non-linear merge strategies DFP and
MIASM are still the strongest performers.

Table 6.2 also shows the results of the shrink strategy G in the last block in columns 12–16.
Here, we observe different trends than with G and F: for all merge strategies, the cheapest variant
of generalized label reduction 2TS achieves the best coverage, followed by the previous label
reduction where applicable (for RL, the order of Old LR and 2TS is swapped). While using
any variant of label reduction is still strongly beneficial most of the time, with GCGL and L,
it is even preferable to not reduce labels at all compared to using ONCE or FP. We think that
these expensive-to-compute variants of generalized label reduction, compared to the relatively
cheap-to-compute shrink strategy G, do not pay off in particular because greedy bisimulation
often drastically shrinks transition systems so that they are of small size anyway. Considering
the linear merge strategies, similarly to using B, we observe that RL profits most from label
reduction, achieving the worst coverage without label reduction and the best with the previous
label reduction. Independently of the used variant of label reduction, RL and CGGL perform
better than L and GCGL.

Finally, comparing the three shrink strategies, it is clear that B is much stronger than F and G,
regardless of the used merge strategy or label reduction technique. G achieves better coverage
results than F (except with MIASM), mostly because the heuristic is very fast to compute and
hence can be computed for more tasks. For the remainder of this chapter, we will mostly focus
on using B as shrink strategy, following the practice used in most of recent work on merge-and-
shrink. We sometimes briefly discuss the results if using F or G instead, but usually include the
data only in the appendix to keep the presentation readable. Since we focus on B and to avoid
reporting results for all linear merge strategies, we only report results for RL, the best linear
merge strategy if using B, and CGGL, the best of the three similar remaining strategies. While
RL and CGGL are also the best strategies if using G, leaving out L and GCGL may sometimes
result in reporting slightly worse performance for F than what could be achieved using L instead.

For the best shrink strategy B, and also for the different type of shrink strategy that is F, using
the full fixed point computation FP usually comes close to the best performance or delivers the
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CGGL RL DFP MIASM

No Old FP No Old FP No FP No FP

Coverage 628 686 682 664 702 720 654 736 655 746
Exp 50th perc 8063 2915 2915 11k 1191 1494 6058 1074 7705 701
Exp 75th perc 1302k 1085k 1085k 1162k 934k 886k 1058k 591k 558k 457k
Search time 0.31 0.24 0.24 0.40 0.23 0.24 0.33 0.21 0.28 0.19
Total time 2.95 2.71 3.23 3.22 2.62 2.74 3.46 3.06 8.48 7.86
# constr 1030 1307 1338 1142 1286 1413 1081 1389 1029 1367
Constr time 44.33 37.73 43.77 39.62 33.52 36.78 57.52 45.27 33.83 30.59
Constr oom 635 350 184 501 356 112 558 134 550 149
Constr oot 2 10 145 24 25 142 28 144 88 151
Perfect h 205 257 257 191 265 265 197 266 228 307

Table 6.3.: Detailed results of different variants of label reductions (No, Old, and generalized
fixed point label reduction) for merge strategies CGGL, RL, DFP, and MIASM, all
using shrink strategy B. Values aggregated and highlighted for each of the four merge
strategies individually.

best performance among all variants. For the remainder of this study, we stick to using the full
fixed point computation rather than ONCE or 2TS, hence using the same configuration as for all
results reported in other papers using generalized label reduction to the best of our knowledge.
Reducing labels as much as possible is not only important for allowing a better comparison to
previously reported results, but also with respect to the result of Nissim et al. (2011) which states
that for certain planning domains, using bisimulation-based shrinking with fully label reduced
transition systems, we can obtain perfect heuristics in polynomial time.

Having settled on a subset of merge-and-shrink configurations to consider, we now report a
few more detailed results to show the impact of label reduction and our non-linear merge strategy
DFP. Table 6.3 shows more attributes than above Table 6.2, restricted to the four mentioned
merge strategies, the shrink strategy B, and the variant of generalized label reduction that uses
the fixed point computation.

Apart from the already discussed increase in coverage, we observe that expansions gener-
ally decrease for all configurations, and except for RL with the 50th percentile, generalized
label reduction (FP) requires the fewest number of expansions. This decrease also transfers to
search time, however total time does not always decrease significantly if using generalized la-
bel reduction but may even increase due to its expensive computation. Another indicator for
the increases heuristic quality is the increased number of tasks for which the perfect heuristic
can be computed. Still, the increase in heuristic quality due to label reduction in conjunction
with bisimulation-based shrinking is not the only benefit. We also observe that label reduction
(both the old and the generalized variant) is a crucial ingredient for the efficient computation
of merge-and-shrink abstractions: the number of tasks for which the computation finishes (#
constr) increases significantly already with the previous label reduction, and even more with
generalized label reduction. This increase is achieved mainly due to a more compact represen-
tation of merge-and-shrink abstractions, as the computation fails less times due to reaching the
memory limit (Constr oom), at the price of an increased number of cases where the computation
reaches the time limit. However, on average, the construction time of merge-and-shrink abstrac-
tions (Constr time) even decreases with generalized label reduction, in spite of the expensive
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Figure 6.1.: Expansions of DFP with no label
reduction (No LR) and with fixed
point generalized label reduction
(FP).
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Figure 6.2.: Construction time of RL with old
label reduction (Old LR) and with
fixed point generalized label re-
duction (FP).

computation of label reduction.
We now show some domain-wise results for the best linear merge strategy RL and our non-

linear merge strategy DFP. Table 6.4 shows domain-wise coverage for RL and DFP with the
available variants of label reductions, aggregating domains with equal coverage of all variants
in the second-to-last row. It confirms that label reduction is very useful across the board, over a
wide range of domains. For the linear merge strategy RL, generalized label reduction increases
coverage in 10 domains compared to the baseline where no labels are reduced, while decreas-
ing coverage in only 2 domains by only 1 task. For the non-linear DFP merge strategy, label
reduction increases coverage in 19 domains and decreases it in 1 domain by 1 task.

To provide another detailed view, Figure 6.1 shows the number of expansions of DFP, with and
without label reduction. The figure plots the results without label reduction against the results
with our new label reduction approach, over all instances in the benchmark suite. The figure
clearly shows the significant impact that label reduction has on performance in many cases.

To compare the previous label reduction against generalized label reduction (only possible
for the linear merge strategies), Figure 6.2 compares the time to construct the merge-and-shrink
abstraction for the merge strategy RL. With generalized label reduction, even though it is much
more expensive to compute than the previous one, the merge-and-shrink computation terminates
faster and runs out of memory far less frequently.

Figure 6.3 compares expansions for the same configurations, showing that the heuristics are
similarly informative in both cases. It is mainly the ability to complete the computation of the
abstraction (see Figure 6.2) that makes the difference between the old and new label reduction
here.

Finally, we compare DFP against the best linear merge strategy RL. Figure 6.4 compares the
number of expanded states for both strategies using generalized label reduction. The comparison
shows that while DFP achieves a higher coverage (cf. Table 6.3), the two merge strategies are
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RL DFP

No LR Old LR FP No LR FP

airport (50) 19 19 18 18 18
blocks (35) 25 25 25 25 26
depot (22) 7 6 6 6 6
elevators-opt08-strips (30) 11 11 11 16 16
elevators-opt11-strips (20) 9 9 9 13 13
floortile-opt11-strips (20) 4 5 5 4 5
freecell (80) 14 11 19 9 20
grid (5) 2 2 2 1 2
gripper (20) 7 20 20 7 20
hiking-opt14-strips (20) 11 11 11 13 13
miconic (150) 58 72 72 58 72
mprime (35) 14 16 23 6 23
mystery (30) 11 10 16 8 16
nomystery-opt11-strips (20) 16 18 18 16 18
parcprinter-08-strips (30) 16 16 16 14 14
parcprinter-opt11-strips (20) 12 12 12 10 10
pipesworld-notankage (50) 16 16 16 14 16
pipesworld-tankage (50) 13 15 15 11 14
psr-small (50) 49 50 49 50 50
rovers (40) 7 8 8 7 8
satellite (35) 5 6 6 5 6
scanalyzer-08-strips (30) 12 12 12 12 13
scanalyzer-opt11-strips (20) 9 9 9 9 10
sokoban-opt08-strips (30) 24 24 24 26 25
sokoban-opt11-strips (20) 19 19 19 20 20
tetris-opt14-strips (17) 0 2 2 0 1
transport-opt14-strips (20) 6 6 6 7 7
trucks-strips (30) 6 7 6 6 6
woodworking-opt08-strips (30) 11 11 11 11 13
woodworking-opt11-strips (20) 6 6 6 6 7
zenotravel (20) 9 12 12 10 12

Sum (1050) 428 466 484 418 500

Remaining domains (617) 236 236 236 236 236

Sum (1667) 664 702 720 654 736

Table 6.4.: Domain-wise coverage of merge strategies RL and DFP with using no label reduc-
tion (No LR), previous label reduction (Old LR, only for RL), and generalized label
reduction based on the fixed point computation (FP), using shrink strategy B.
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Figure 6.4.: Expansions of DFP and RL with
fixed point generalized label re-
duction (FP).

quite complementary, with both strategies greatly outperforming each other on a significant
number of instances, thus confirming the domain-wise coverage results shown in Table 6.4.

Concluding this part, we have shown that label reduction and in particular generalized label
reduction has a strictly positive impact on the performance of merge-and-shrink heuristics. They
do not only increase the efficiency of the merge-and-shrink computation a lot, but also allow
shrink strategies based on bisimulation to reduce transition systems in a less lossy way, thus
increasing the quality of the resulting heuristic. Furthermore, we also evaluated the first non-
linear merge strategy DFP that we adapted to planning, as well as the follow-up non-linear merge
strategy MIASM and showed that they both outperform existing linear merge strategies.

6.3. Factored Symmetries

In this section, we evaluate the symmetry-enhancing framework for merge strategies which we
described in Section 5.3. Unless stated otherwise, all results are obtained using shrink strategy B
and exact generalized label reduction using the fixed point algorithm. We mainly reproduce the
results of our original work (Sievers, Wehrle, Helmert, Shleyfman, & Katz, 2015), but addition-
ally also report results for the variant choosing a symmetry affecting the fewest transition sys-
tems (smallest). The additional approach that does not use the manually determined non-linear
merge order for merging the affected transition systems but instead uses the fallback merge strat-
egy, cannot easily be implemented in the non-optimized implementation we use in this section.
We hence evaluate this alternative approach for merging according to symmetries in Section 6.5.

Furthermore, we also evaluate the two ways of limiting the resources of the symmetry com-
putation described in Section 5.3. The variant which computes symmetries only once, i.e. com-
putes symmetries of the induced factored transition system, is called symm1. The second variant,
where we assign a total budget of 60s to all computations of symmetries of the merge-and-shrink
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algorithm, is called symm. While the choice of 60s is arbitrary, we will see below that 60s is
enough to compute symmetries many times within single merge-and-shrink computations.

In addition to the data we usually report (cf. Table 6.1), we also consider the following at-
tributes of planner runs:

• Fallback: the percentage of # constr for which no symmetries are found for merging, i.e.
the strategy behaves as the original variant.

• Bliss comp: the number of bliss attempts at computing symmetries.

• B time avg (am/gm): The arithmetic mean of the run times of bliss of a single merge-and-
shrink computation, aggregated with the usual two-level process as either the arithmetic
mean (am) or the geometric mean (gm).

• Bliss oom/Bliss oot: the number of computations of bliss which fail due to reaching the
memory or time limit.

• Symm attempts: the summed number of times a non-atomic symmetry is selected for
merging.

• Symm fail: out of the number of attempts of merging for symmetries, the number of
times the merge-and-shrink algorithm prunes unreachable states or, shrinks any of the
affected transition systems, thus potentially breaking the symmetry that the merge strategy
currently aims for.

Table 6.5 shows results of the available merge strategies, enhanced with symmetries in the
variants discussed above. We first compare coverage of all variants. We observe that indepen-
dently of choosing smallest or largest and symm1 or symm, merging according to symmetries
improves coverage (except for DFP-symm1-smallest, where it is the same). This is true even if
computing factored symmetries only on the induced factored transition system (symm1). The
increase is very large for the linear merge strategies, e.g. CGGL improves from 682 to 729 for
the best variant symm-largest, and RL from 720 to 740. For DFP and MIASM, the gains are less
pronounced (+8 for DFP, +7 for MIASM8), but still non-negligible.

Comparing the variants symm1 and symm, we see that coverage further increases, indepen-
dently of choosing smallest or largest (except for MIASM), if computing symmetries in poten-
tially many merge-and-shrink iterations (symm instead of only the first one (symm1). This in-
crease is much stronger for largest (except RL) than for smallest. Comparing symm1 and symm
more generally, we expected that choosing a smaller symmetry leads to higher chance of merging
all affected transition systems without intermediate shrinking or pruning of unreachable states,
so that the symmetry is not broken and can be exploited for exact shrinking afterwards. How-
ever, choosing smallest tends to perform better than largest only with symm1 (except CGGL),
but for the generally stronger variant symm, largest tends to perform better than smallest.

8As explained in Section 5.4.3, combining precomputed merge strategies like MIASM with factored symmetries
breaks the precomputed merge order of such merge strategies, thus also potentially breaking the original aim of
MIASM, which is to minimize the size of intermediate transition systems.
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orig symm1 symm orig symm1 symm

largest smallest largest smallest largest smallest largest smallest

CGGL RL

Coverage 682 724 712 729 723 720 732 734 740 737
Exp 50th perc 8920 8359 8359 8359 8359 2132 11k 5302 12k 10k
Exp 75th perc 1167k 951k 1035k 827k 562k 934k 739k 695k 570k 564k
Search time 0.30 0.24 0.26 0.24 0.23 0.22 0.24 0.21 0.24 0.23
Total time 3.69 3.01 3.13 5.39 5.11 3.40 3.30 3.14 6.25 5.86
# constr 1338 1364 1344 1367 1355 1413 1417 1407 1426 1416
Constr time 92.60 75.90 87.68 87.84 87.70 97.64 99.48 108.25 114.20 112.11
Constr oom 184 147 168 158 170 112 93 104 94 106
Constr oot 145 156 155 142 142 142 157 156 147 145
Perfect h 257 284 272 279 277 265 274 267 269 267
Linear tree 99.85 35.12 38.24 29.26 29.89 99.86 30.35 30.42 28.75 29.38
Fallback - 26.03 26.26 27.36 27.68 - 27.24 27.58 28.12 28.46
Bliss comp - 1361 1342 18584 19266 - 1414 1405 20324 20965
B time avg (am) - 13.63 12.02 6.67 6.38 - 14.17 13.65 7.16 7.11
B time avg (gm) - 0.42 0.37 0.96 0.91 - 0.46 0.44 1.00 0.93
Bliss oom - 273 273 382 385 - 273 273 332 337
Bliss oot - 0 0 438 454 - 0 0 458 468
Symm attempts - 1008 991 2959 3424 - 1030 1019 3164 3668
Symm fail - 0 0 1448 1426 - 0 0 1582 1577

DFP MIASM

Coverage 736 736 743 745 742 746 747 753 751 752
Exp 50th perc 2295 12k 6934 12k 12k 881 3264 1883 12k 12k
Exp 75th perc 548k 943k 651k 513k 503k 528k 827k 507k 706k 706k
Search time 0.21 0.25 0.21 0.25 0.25 0.19 0.25 0.22 0.26 0.24
Total time 3.35 3.23 3.17 6.10 5.81 8.21 8.28 8.31 12.15 11.63
# constr 1389 1399 1389 1405 1396 1367 1376 1362 1381 1377
Constr time 93.13 92.90 97.02 105.04 105.32 83.52 74.39 90.80 86.74 84.11
Constr oom 134 114 124 114 127 149 130 143 132 137
Constr oot 144 154 154 148 144 151 161 162 154 153
Perfect h 266 270 267 265 265 307 285 289 284 284
Linear tree 88.98 33.60 47.01 28.19 28.87 58.30 16.35 22.39 14.19 14.02
Fallback - 26.66 26.85 28.26 28.51 - 26.53 26.80 28.89 29.05
Bliss comp - 1394 1384 17992 18434 - 1372 1356 19437 20363
B time avg (am) - 14.15 14.06 7.13 7.08 - 13.28 12.28 7.58 7.32
B time avg (gm) - 0.44 0.43 1.08 1.03 - 0.40 0.39 0.94 0.82
Bliss oom - 273 273 341 343 - 156 155 221 221
Bliss oot - 0 0 493 510 - 0 0 430 441
Symm attempts - 1023 1013 2961 3445 - 1009 993 2900 3412
Symm fail - 0 0 1451 1441 - 0 0 1445 1452

Table 6.5.: Results of unmodified merge strategies (orig) and combinations of the following
symmetry-enhanced variants: only computing factored symmetries once (symm1) or
as long as the time budget of 60s allows (symm), choosing a symmetry affecting the
most (largest) or fewest (smallest) factors. All configurations with shrink strategy B.
Values aggregated and highlighted for each of the four merge strategies individually.
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A possible reason for this behavior can be seen by looking at the number of times a merge
strategy attempts to merge according to a chosen symmetry (Symm attempts) and the number of
times this symmetry will likely not be present after completing all merges due to intermediate
shrinking or pruning of unreachable states (Symm fail). While for factored symmetries of the
induced factored transition system (symm1), we can always merge all affected factors without
breaking the symmetry, for symm, the same is not true: roughly one half of the attempts fails if
using largest, and roughly 40% if using smallest. Hence choosing a large symmetry might pay
off because it allows merging according to symmetries for more merge-and-shrink iterations
(under the assumption that this is beneficial even with intermediate shrinking and pruning of
unreachable states, which the data suggests).

We now investigate the reasons why the symmetry-enhanced merge strategies perform bet-
ter than the original variants, but will also do so in more detail below for one of the merge
strategies and one of its symmetry-enhanced variants. Looking at the aggregated expansions,
we see that expansions decrease slightly comparing the original with all symmetry-enhanced
variants, however not significantly (most of the times not an order of magnitude), which also
transfers to a slight decrease in search time on average. However, this decrease in expansions
and search cannot solely explain the sometimes large gains in coverage. The second reason is
that symmetry-enhanced merge strategies improve the efficiency of the merge-and-shrink com-
putation, as can be seen by the fact that most of the symmetry-enhanced variants can finish the
merge-and-shrink computation for more tasks than the baseline, and in particular, symm-largest
achieves the highest values for all variants. While the average construction time usually in-
creases, especially with symm, the number of times the computation fails due to hitting the time
limit (Constr oot) does not increase a lot. Furthermore, the number of times the computation fails
due to hitting the memory limit (Constr oom) always decreases, thus explaining the increase in
the number of tasks for which the heuristic can be constructed.

A further reason for the more efficient computation lies in the observation that enhancing
merge strategies results in computing non-linear merge trees much more frequently compared
to the baseline (Linear tree). Roughly 30% of the symmetry-enhanced linear merge strategies
and DFP (which in its original form produces linear merge orders for nearly 90% of the tasks)
are linear, and with MIASM, the symmetry-enhanced strategy produces as few as 14% linear
merge trees compared to the original strategy which does so for more than half of the tasks. As
discussed in Chapter 4, non-linear merge strategies are more powerful in theory, and our results
here suggest that they can be computed more compactly than linear ones (less tasks for which
the memory limit is reached). This efficiency improvement in particular explains the huge gains
for the linear merge strategies. Finally, we note that symmetries arise in many domains and
tasks: only in roughly 26%–27% of all tasks, the merge strategy is the same as the original one
because no symmetries can be used for merging (Fallback).

We also investigate the efficiency of the computation of symmetries. We see that even if
computing factored symmetries of the induced factored transition system (symm1 variants), the
graph automorphism tool bliss (without a time limit) exhausts memory in 273 (156 for MIASM;
Bliss oom) out of 1356–1413 times in which bliss is tasked to compute such symmetries (Bliss
comp). With the variant symm, we observe that Bliss is tasked to compute symmetries between
17976 and 20966 times in total across all merge-and-shrink iterations on all tasks, but fails
between 332 and 386 (386 for MIASM) times due to reaching the memory limit and between
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436 and 510 times due to exhausting the time budget. For example, for CGGL-largest-symm,
this means that Bliss exhausts resources in 27.6% of the times. We also observe that for the
symm1 variants, there is no overhead incurred by computing symmetries (the total time tends
to decrease). However with the symm variants, the total time increases significantly on average,
which clearly is due to the computation of symmetries, because search time tends to slightly
decrease and construction time, which includes the time to compute symmetries, increases.

These observations mean that the computation of factored symmetries does not come for free
and can incur quite a substantial overhead. Still, we also see that on average, a single run of
Bliss to compute factored symmetries of the induced factored transition system (symm1) takes
12.02–14.17 seconds in the arithmetic mean or 0.37–0.46 in the geometric mean. For the vari-
ant symm, the arithmetic mean of the average computation time decreases, but the geometric
mean increases. While the latter is what we would expect, the reason for the decrease of the
arithmetic mean is that for some domains, the induced factored transition system contains very
large factors. For such induced factored transition systems, the merge-and-shrink computation
usually considerably reduces the sizes of the factors within the first iteration, using label reduc-
tion and (exact) shrink transformations. This in turn reduces the computation time of bliss in
the following iterations significantly. We further observed that towards the end of the merge-
and-shrink algorithm, the average time to compute symmetries with bliss decreases again. It
typically peaks towards the “middle” of the computation, where the factored transition system
still contains many factors and many of these are of larger sizes in terms of both the numbers
of transitions and states. These observations suggest that it may be worth investigating further
variants of limiting bliss computations, e.g. by limiting each single call together with imposing a
general budget. This would allow later iterations of the merge-and-shrink algorithm to compute
factored symmetries again. We leave these considerations as future work.

Based on the above analysis of the performance of the different variants of enhancing merge
strategies through symmetries, we restrict all our further experiments to the variant symm-largest
that achieves best or close-to-best coverage and call it symm instead of the longer symm-largest,
writing symm-X to denote a symmetry-enhanced merge strategy X. This choice matches all
results reported for symmetry-enhanced merge strategies in previous work.

In the following, we go into more detail for the CGGL merge strategy, the merge strategy
which profits most from symmetries. We compare the baseline CGGL against the symmetry-
enhanced variant symm-CGGL. To verify that the improvements obtained through symmetries
affects a broad range of domains, Figure 6.5a shows domain-wise coverage. We see that cover-
age improves in 16 out of 57 domains, whereas it decreases in only 4 domains, and then only
by 1 task. In the remaining 37 domains, both variants achieve equal coverage, displayed in an
aggregated row.

To consider the quality of the resulting heuristic, Figure 6.5b compares the number of expan-
sions of CGGL base against symm-CGGL on all domains. Figure 6.6 shows the same data in
a way that allows distinguishing the different domains, for clarity restricted to the domains of
Table 6.5a where the two strategies do not achieve the same coverage. Finally, we also compare
the runtime of both configurations on the full benchmark set (Figure 6.5c). While there is a
larger number of cases where the symmetry-based configuration requires fewer expansions than
the baseline, the clearest distinguishing characteristic is that there are far more tasks that the
symmetry-based configuration solves but the baseline does not.
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CGGL

orig symm diff

airport (50) 11 15 +4
elevators-opt08-strips (30) 12 13 +1
elevators-opt11-strips (20) 10 11 +1
gripper (20) 7 18 +11
logistics98 (35) 5 4 −1
miconic (150) 72 77 +5
parking-opt11-strips (20) 0 4 +4
parking-opt14-strips (20) 0 6 +6
pipesworld-notankage (50) 12 15 +3
pipesworld-tankage (50) 9 14 +5
satellite (35) 7 6 −1
sokoban-opt08-strips (30) 26 30 +4
tetris-opt14-strips (17) 0 1 +1
tidybot-opt11-strips (20) 1 0 −1
trucks-strips (30) 7 8 +1
visitall-opt11-strips (20) 9 10 +1
visitall-opt14-strips (20) 4 6 +2
woodworking-opt08-strips (30) 11 12 +1
woodworking-opt11-strips (20) 6 7 +1
zenotravel (20) 11 10 −1

Sum (688) 220 267 +47

Remaining domains (979) 462 462 ±0

Sum (1667) 682 729 +47

(a) Domain-wise coverage of CGGL and symm-
CGGL with shrink strategy B. The last row ag-
gregates domains with equal coverage. The
number in parenthesis after each domain indi-
cates the number of tasks of that domain.
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(b) Expansions of CGGL and symm-CGGL.
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(c) Total runtime of CGGL and symm-CGGL.

Figure 6.5.: Detailed comparison of CGGL and symm-CGGL.

CGGL

orig symm diff

Coverage 682 729 +37
Constr oom 184 158 −26
Constr oot 145 142 −3
Search oom 648 629 −19
Search oot 4 4 ±0

Table 6.6.: Comparison of reasons of failure to solve a task for CGGL orig and symm: merge-
and-shrink computation reaching a limit (Constr oom/Constr oot) or search reaching
a limit (Search oom/Search oot) (four tasks recognized as unsolvable omitted).
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Figure 6.6.: Expansions of CGGL and symm-CGGL on domains where expansions are not equal.

To further investigate the reasons of failure of the two CGGL variants in addition to the data
reported in Table 6.5 above, Table 6.6 also lists the number of tasks for which the search runs out
of memory or time (Search oom/Search oot). We also again display coverage and the number of
tasks for which the construction of the heuristic fails. As observed above already, using symme-
tries drastically decreases the number of tasks where the configuration runs out of memory while
also not increasing the failures due to reaching the time limit at the same time. Looking at the
reasons of failure of search, we observe a similar trend. These results confirm the previous ob-
servations: while the symmetry-enhanced symmetry requires fewer expansions more frequently
than the other way round, the “other half” of the gains in coverage is due to the increased effi-
ciency, which transfers to a higher amount of tasks for which the merge-and-shrink computation
succeeds.

Finally, we briefly discuss results obtained using the other two shrink strategies, i.e. F and
G. Table A.1 in the appendix on page 171 shows a pairwise comparison of the original (orig)
and symmetry-enhanced (symm, in the configuration as used above) variant of each of the the
four merge strategies we consider. We observe that with F, coverage only increases with the two
linear merge strategies but decreases a lot with DFP. The latter is due to finishing the merge-
and-shrink computation for fewer tasks than with the original merge strategy. Using G, the
results are even more damning: coverage decreases significantly for all merge strategies, due
to not finishing the merge-and-shrink computation for many tasks. For both shrink strategies,
this is due to reaching the memory limit for more tasks. This can be explained by the fact
that the goal of using factored symmetries for merging is to perform exact bisimulation-based
shrinking, exploiting the fact that shrinking based on atomic factored symmetries is captured by
non-approximate bisimulations. Neither F nor the greedy bisimulation-based shrinking variant
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G capture these shrinking opportunities.
To summarize this part, we showed that using factored symmetries to enhance merge strategies

is indeed beneficial. To some extent, the increased performance is due to an increased efficiency
in the computation of merge-and-shrink abstractions, but for some variants (e.g. CGGL), the
resulting heuristic is also of much higher quality.

6.4. Optimized Implementation

In the following, we compare the non-optimized implementation of merge-and-shrink based on
generalized label reduction to the most recent, optimized implementation in Fast Downward.
Recall that in contrast to the optimized implementation, in the non-optimized implementation,
we do not use locally equivalent labels to group transitions and we do not enforce the valid-state
invariant for transition systems. The latter means that pruning only happens before shrinking in
contrast to always keeping all transitions pruned according to the prune strategy. Furthermore,
transitions are sorted and duplicates are removed only before shrinking and merging but not af-
ter merging. Most importantly, for exact label reduction based on Θ-combinability, we have to
compute the local equivalence relations on labels for each label reduction (caching local equiv-
alence relations, whenever possible, across all reductions within the label reduction algorithm,
but not over several merge-and-shrink iterations). Finally, the computation of product transition
systems is more expensive due to not grouping labels in the non-optimized implementation, For
more details, we refer to the discussion in Section 3.8.3.

In an ideal world, we would investigate some of the above differences of the implementation
in isolation. However, since most of these changes were implemented together and depend
on each other, we can only carry out a before-after comparison that includes all improvements
we discussed. In the following, we refer to the non-optimized implementation as base, to the
optimized one as opt, and we show the difference diff between opt and base and also list the
number of tasks for which opt is better (+) and worse (-) than base. As always, unless stated
otherwise, we use exact generalized label reduction based on the fixed point algorithm and the
shrink strategy B, and all symmetry-enhanced merge strategies (symm) correspond to the variant
largest-symm as discussed in the previous section. Also recall that for MIASM in the optimized
implementation, we use the re-implementation provided by its authors, adapted to switch to
DFP in case the merge strategy does not find a non-trivial partitioning of the state variables of
the planning task, which makes the results of MIASM less comparable.

Table 6.7 shows the comparison for shrink strategy B and the merge strategies we considered
so far. We begin with the non-symmetry enhanced strategies of the first two vertical blocks.
We observe that the changes in the implementation are indeed improvements with respect to the
efficiency of the merge-and-shrink computation. There is a huge decrease in the time required to
compute the abstraction (Constr time), which is due to the much smaller amount of transitions
required to be stored for transition systems that also transfers to running out of memory and
time less frequently. Besides these savings in memory and runtime, with the new valid-state
invariant, all dead states are always pruned immediately after each transformation. This effect is
visible through the maximum size of intermediate transition systems (MITSS), which decreases
for more tasks than for which it increases (except for MIASM, which is a re-implementation and
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base opt diff + - base opt diff + -

CGGL RL

Coverage 682 712 30 30 0 720 728 8 9 1
Search time 0.30 0.31 0.01 58 305 0.27 0.28 0.01 64 311
Total time 4.35 3.37 −0.99 531 75 3.73 2.92 −0.81 546 105
Exp 75th perc 1170k 1170k 0 12 32 992k 1353k 361 26 24
# constr 1338 1441 103 107 4 1413 1503 90 92 2
Constr time 117.16 49.18 −67.98 1183 151 95.10 57.34 −37.76 1219 192
Constr oom 184 95 −89 121 32 112 36 −76 96 20
Constr oot 145 131 −14 44 30 142 128 −14 29 15
MITSS 46802.63 46650.66 −151.96 160 94 46420.03 45756.11 −663.92 161 89

DFP MIASM

Coverage 736 746 10 13 3 746 773 27 40 13
Search time 0.29 0.28 −0.01 284 114 0.23 0.20 −0.03 203 182
Total time 4.42 3.23 −1.20 613 53 10.25 3.53 −6.72 606 113
Exp 75th perc 1047k 1040k −7 40 40 710k 696k −14 132 146
# constr 1389 1491 102 104 2 1367 1470 103 105 2
Constr time 109.68 57.78 −51.91 1212 175 105.74 66.75 −38.99 819 546
Constr oom 134 42 −92 114 22 149 104 −45 106 61
Constr oot 144 134 −10 31 21 151 93 −58 91 33
MITSS 46948.16 45004.23 −1943.93 227 140 44440.46 45417.77 977.31 380 384

symm-CGGL symm-RL

Coverage 729 741 12 20 8 740 743 3 10 7
Search time 0.29 0.32 0.02 59 328 0.30 0.32 0.02 75 318
Total time 8.09 5.53 −2.56 638 55 7.51 4.66 −2.85 661 42
Exp 75th perc 980k 1012k 32 35 85 947k 1010k 63 64 85
# constr 1367 1468 101 105 4 1426 1504 78 80 2
Constr time 121.14 86.20 −34.95 1260 103 115.12 74.23 −40.88 1333 90
Constr oom 158 72 −86 114 28 94 36 −58 78 20
Constr oot 142 127 −15 35 20 147 127 −20 32 12
MITSS 45263.84 44970.77 −293.07 343 229 46195.63 44546.67 −1648.96 444 244

symm-DFP symm-MIASM

Coverage 745 752 7 10 3 751 771 20 31 11
Search time 0.31 0.32 0.00 160 252 0.28 0.24 −0.04 157 251
Total time 8.22 5.45 −2.77 681 33 14.97 5.56 −9.41 653 73
Exp 75th perc 970k 971k 1 54 62 709k 709k 0 118 108
# constr 1405 1496 91 94 3 1381 1472 91 95 4
Constr time 125.48 81.06 −44.42 1284 117 111.52 75.70 −35.81 1032 345
Constr oom 114 44 −70 93 23 132 102 −30 93 63
Constr oot 148 127 −21 34 13 154 93 −61 95 34
MITSS 46170.15 44452.02 −1718.13 312 227 43607.21 44605.48 998.27 401 364

Table 6.7.: Comparison of the non-optimized implementation of merge-and-shrink based on
generalized label reduction to the optimized one, for several merge strategies and
shrink strategy B. Values aggregated and highlighted for each merge strategy indi-
vidually.
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symm

CGGL RL DFP MIASM CGGL RL DFP MIASM

Coverage 712 728 746 773 741 743 752 771

Table 6.8.: Coverage of the four considered merge strategies and their symmetry-enhanced coun-
terparts in the state-of-the-art implementation, using shrink strategy B.

the comparison must be taken with care). All of these reasons also transfer to a high increase of
the number of tasks for which the computation succeeds, which in turn results in better coverage
for all configurations. It is also worth noting that neither the number expansions nor the search
time decreases on average, but only total time does. Hence the optimizations are indeed only
optimizations that affect the efficiency of the computation of the merge-and-shrink algorithm,
but mostly not the heuristic quality. We remark that MIASM is much stronger here than reported
in previous work (Sievers et al., 2016) because it now uses a fallback mechanism that switches
to DFP, as the first implementation of MIASM did.

For the symmetry-enhanced strategies, shown in the last two vertical blocks, the picture is
similar: we observe improved performance in terms of construction time and coverage for all
strategies, however in a slightly less notable amount. The obtained improvements are smaller
for symmetry-enhanced merge strategies than for the original ones because enhancing merge
strategies through factored symmetries is, to some extent, an efficiency improvement, and so is
using the optimized implementation. Hence combining the two ways of improving the efficiency
is not fully orthogonal, however still beneficial.

We now briefly discuss the effect of the optimized implementation on the shrink strategies F
and G. Table A.3 on page 172 in the appendix shows the results. For F, we observe the same
trends as when using B, i.e. the performance of all merge strategies increases. However the
improvements are less significant for all merge strategies except DFP, which profits a lot from
the efficiency improvements. For MIASM, coverage even decreases, however this is likely due
to the different implementation used in the optimized code base. We also again observe that
the symmetry-enhanced variants do not work as well with F as with B. With G, the changes in
performance caused by the optimized implementation are even smaller, however still beneficial.

To summarize this part, it is safe to say that the optimizations of the implementation based
on generalized label reduction are indeed optimizations in the sense that the merge-and-shrink
algorithm can be computed more efficiently.

As a point of reference for the remaining parts of our study, Table 6.8 shows coverage of
the merge strategies we investigate for the optimized implementation, evaluated using shrink
strategy B. The data is the same as the data shown in column opt of Table 6.7 that compares the
non-optimized to the optimized implementation.

6.5. More Variants of Using Symmetries

In this section, we first discuss the new alternative way of enhancing merge strategies with fac-
tored symmetries, called FB, that we did not evaluate on the non-optimized implementation,
since it is not implemented there. FB merges the transition systems affected by the chosen
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CGGL RL DFP MIASM

orig symm FB orig symm FB orig symm FB orig symm FB

Coverage 712 741 732 728 743 733 746 752 759 773 771 746
E 50th perc 20k 20k 20k 2132 9120 3037 2343 12k 6528 1478 9120 3471
E 75th perc 1168k 897k 922k 942k 639k 762k 611k 504k 504k 491k 616k 552k
Search time 0.38 0.31 0.32 0.21 0.24 0.23 0.20 0.26 0.23 0.15 0.20 0.20
Total time 4.15 5.02 4.88 2.98 4.43 4.43 3.40 5.58 5.75 2.76 4.48 6.46
# constr 1441 1468 1482 1503 1504 1502 1491 1496 1488 1470 1472 1367
Constr time 94.24 100.02 98.29 85.72 105.48 106.94 96.74 119.98 127.98 51.46 58.09 223.35
Constr oom 95 72 54 36 36 37 42 44 46 104 102 43
Constr oot 131 127 131 128 127 128 134 127 133 93 93 257
Perfect h 257 274 271 265 266 270 268 264 278 324 306 334
Linear tree 100.00 19.96 31.51 100.00 16.56 29.76 87.79 18.98 62.37 73.47 12.36 40.60

Table 6.9.: Comparison of original merge strategies (orig) against the previous symmetry-
enhanced variant (symm) and the alternative approach that uses the fallback merge
strategy to merge transition systems affected by the chosen symmetry (FB). All al-
gorithms use shrink strategy B. Values aggregated and highlighted for each merge
strategy individually.

symmetry in the order computed by the fallback merge strategy that is being enhanced. In the
second part of this section, we evaluate alternative ways of exploiting information from sym-
metries, which are using structural symmetries for pruning the A∗ search and using symmetric
lookups over merge-and-shrink heuristics. In particular, we also combine the three alternatives
in all possible ways. This evaluation reproduces some results of the study performed in our work
on using symmetries for abstraction heuristics (Sievers, Wehrle, Helmert, & Katz, 2015).

Table 6.9 evaluates the variant FB of symmetry-enhanced merge strategies, comparing it both
to the original merge strategy (orig) and the previous way of enhancing merge strategies through
symmetries (symm). Like symm, FB chooses symmetries affecting the most factors and uses a
time budget of 60s for computations of symmetries.

The general observation is that the results are mixed, i.e. differ from merge strategy to merge
strategy. Considering coverage, CGGL, RL, and MIASM are better with symm than with FB,
only DFP improves over symm with FB. Also concerning heuristic quality, i.e. number of expan-
sions and search time, there are no clear trends. With symm, the merge-and-shrink computation
finishes for more tasks than for FB and results in non-linear merge trees more frequently. To
summarize, the merge order for merging the transition systems affected by the chosen symmetry
clearly affects the overall performance. However no clear trends allows preferring one method
over the other. For this reason, we stick with the previous variant symm in the remainder of the
study.

We now proceed with evaluating the merge strategy DFP with alternative approaches of using
symmetries. In particular, we evaluate symmetric lookups which we introduced to planning in
our original paper (Sievers, Wehrle, Helmert, & Katz, 2015), and orbit space search, a represen-
tative of symmetry-based pruning algorithms due to Domshlak et al. (2015). See Section 2.4 for
a description of both techniques.

To use symmetric lookups and orbit space search in combination with merge-and-shrink
heuristics, we need to make sure that the heuristics yield admissible values for all symmetric
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orig IP SLone SLsub5 SLsub10 SL

Coverage 746 745 748 753 754 753
Exp 50th perc 11k 14k 11k 8773 8562 8773
Exp 75th perc 786k 803k 618k 715k 582k 715k
Search time 0.26 0.32 0.45 0.52 0.61 0.52
Total time 3.79 4.94 5.55 5.93 6.33 5.95

Table 6.10.: Results of original DFP (orig) compared to the variant that does not prune unreach-
able states (IP) and variants of using symmetric lookups over a set of symmetric
states of different sizes (SLone/SLsub5/SLsub10/SLall), using shrink strategy B.

states. While this might seem obvious at first glance, admissibility is no longer guaranteed
when pruning unreachable states because the symmetries we use do not stabilize the initial state.
Hence a non-dead-end state could have a symmetric state which is unreachable and thus pruned.
To address this issue, we simply disable this pruning within the computation of merge-and-
shrink in all experiments that combine merge-and-shrink heuristics with symmetric lookups or
orbit space search.9

Following the experimental study of our original paper, we first evaluate several variants of
computing a set S of symmetric states of a state s that should be evaluated by the symmetric
lookups heuristic hSL. Let Γ be the set of symmetries of the planning task. We always include
s itself into S. The most simple variant of computing a single symmetric state is to perform a
short “random walk” (here: 5 steps) by repeatedly applying random symmetries from Γ starting
from s and adding the resulting state to S. We call this variant SLone. For all other variants of
computing more symmetric states, we systematically sample symmetric states of the orbit of s
by performing a breadth-first search starting from s using the symmetry generators from Γ. We
evaluate the variants that generate 5 (SLsub5), 10 (SLsub10), and all (SLall) symmetric states.

Table 6.10 shows the original strategy DFP (orig), the variant that does not prune unreachable
states (for naming consistency with Section 6.7 called IP for pruning irrelevant states), and the
discussed variants of using symmetric lookups over the merge-and-shrink heuristic computed
with DFP without pruning unreachable states. Besides the observation that not pruning unreach-
able states apparently is not very harmful to the computation of merge-and-shrink abstractions
with DFP (we investigate the impact of pruning in Section 6.7), computing symmetric lookups
over merge-and-shrink heuristics slightly decreases expansions for all variants we consider. This
decrease in expansions is expected, since we improve the quality of the heuristic by maximiz-
ing heuristic values over more states. On the other hand, computing symmetric states for each
heuristic evaluation is expensive, as can be seen by the significantly increased search time (and
hence total time, since the computation of the merge-and-shrink abstraction is the same in all
variants). However, since coverage also increases for all variants, the increase in heuristic quality
outweighs the increase in search time.

Comparing the different variants of computing symmetric states, we observe that computing
a single symmetric state does not improve performance a lot, but considering some and even all
symmetric states achieves the highest coverage and largest reduction in expansions. Figures 6.7

9This contrasts the approach in our original work where with symmetric lookups, we only ignored symmetric dead-
ends but did not disable pruning of unreachable states entirely.
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Figure 6.7.: Expansions of DFP without and
with symmetric lookups (SLall),
both without pruning unreachable
states (IP).
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Figure 6.8.: Search time of DFP without and
with symmetric lookups (SLall),
both without pruning unreachable
states (IP).

and 6.8 provide a detailed comparison for the variant SLall against the baseline (without pruning
unreachable states), confirming that expansions are strictly decreased and search time increases
for most tasks. While SLsub10, for this comparison, achieves slightly better results than SLall,
we stick to the variant SLall, simply called “SL” from now on, for the remaining experiments in
this section, because we are interested to see how far the expensive increase in heuristic quality
fares.

In our original paper, we also evaluated a technique called bidirectional pathmax that origi-
nated in the heuristic search community (Felner et al., 2011). Informally speaking, BPMX “re-
pairs” inconsistent jumps in the heuristic values for s and successor state s(o) (and vice versa)
by adapting the values accordingly. Since the implementation used for our original paper is not
compatible with the most recent version of Fast Downward, and because in our original paper,
we found the technique to not be beneficial for planning, we drop its evaluation here.

We now continue with evaluating all symmetry-based techniques, i.e. orbit space search (OSS)
and symmetry-enhanced merge strategies (symm) in addition to the symmetric lookups heuristic
(SL), both alone and in all combinations. We extend the evaluation of our original paper to
include further merge strategies and do not restrict the results to using DFP.

Table 6.11 shows results, vertically grouping results for CGGL, RL, DFP, and MIASM. Con-
sidering coverage, we observe that all single techniques improve compared to the baseline merge
strategy.10 For combined techniques, however, only the combination OSS+symm always im-
proves over the best coverage of its components, but all other combinations only sometimes do,
such as SL+symm for CGGL and RL, but not for DFP and MIASM, OSS+SL for all merge
strategies but MIASM, and OSS+SL+symm is never better than OSS+symm. Concerning expan-
sions, the picture is less clear. Generally, symmetry-based pruning (OSS) improves performance

10These results have to be taken with a grain of salt, though, because for merge strategies other than DFP, there is a
considerable decrease in coverage due to not pruning unreachable states.

138



IP symm SL OSS OSS+symm SL+symm OSS+SL OSS+SL+symm

CGGL

Coverage 703 735 710 791 804 737 792 802
Exp 50th perc 32k 30k 25k 8244 8994 15k 7872 5523
Exp 75th perc 1274k 934k 1270k 583k 414k 819k 467k 413k
Search time 0.43 0.34 0.72 0.32 0.28 0.61 0.44 0.40

RL

Coverage 727 738 728 795 802 739 795 800
Exp 50th perc 2771 15k 2709 2373 7928 13k 2373 5202
Exp 75th perc 945k 717k 917k 350k 314k 603k 327k 301k
Search time 0.27 0.29 0.46 0.22 0.24 0.50 0.31 0.34

DFP

Coverage 745 747 753 809 813 751 810 813
Exp 50th perc 6233 15k 4795 4597 7928 13k 3214 5210
Exp 75th perc 712k 717k 596k 284k 290k 706k 264k 283k
Search time 0.25 0.28 0.40 0.21 0.23 0.50 0.28 0.33

MIASM

Coverage 749 750 756 815 819 752 813 815
Exp 50th perc 7545 13k 4795 2310 6895 9635 1771 5202
Exp 75th perc 482k 648k 424k 264k 290k 636k 200k 283k
Search time 0.23 0.27 0.37 0.19 0.23 0.50 0.26 0.33

Table 6.11.: For CGGL, RL, DFP, and MIASM, comparison of different symmetry-based tech-
niques, in isolation and all combinations: original merge strategy without prun-
ing unreachable states (IP), symmetry-enhanced merge strategy (symm), orbit space
search (OSS), symmetric lookups (SL). All variants use shrink strategy B.

139



symm

CGGL DFP L MIASM RL CGGL DFP L MIASM RL

Coverage 710 745 704 757 725 747 752 742 749 749

Table 6.12.: Coverage of the considered merge strategies using shrink strategy B on the Fast
Downward version used in the original work (Sievers, Wehrle, & Helmert, 2016).

in terms of coverage, expansions, and search time by far the most, and symmetric lookups (SL)
seem to be the least useful if combining it with the other techniques. Still, using symmetric
lookups are beneficial if used as a single technique for enhancing merge-and-shrink heuristics.

To summarize this part, we showed that the framework for enhancing merge strategies can
still be altered to obtain further improvements, e.g. by changing the merge order when merging
according to information from factored symmetries. Furthermore, we compared using factored
symmetries to symmetry-based pruning and symmetric lookups. While symmetry-based pruning
is much stronger than the other two techniques, its performance can be further improved by
combining it with merge-and-shrink heuristics that use symmetry-enhanced merge strategies.

6.6. An Analysis of Merge Strategies

In this section, we analyze the untapped potential of merge strategies by investigating all possible
merge strategies on small planning tasks and large sample sets of random merge strategies on the
entire benchmark set. Further, we discuss the impact of tie-breaking on the score-based merge
strategy DFP and then evaluate our score-based variant of MIASM, sbMIASM, using the same
tie-breaking criteria. Finally, we also evaluate the SCC framework for merge strategies, using
DFP and sbMIASM with the same tie-breaking strategies as secondary merge strategies.

The evaluation of strategies in this section follows the study of our original paper (Sievers
et al., 2016), and some of the text in this section, in particular in Section 6.6.1, is borrowed from
this paper.

6.6.1. Considering All and Random Merge Strategies

Many of the results reported for merge-and-shrink (and generally in the planning literature) are
of the form “strategy X solves more tasks than Y” or “strategy X requires fewer expansions than
Y”. While certainly useful, this tells us little about the quality of X and Y in absolute terms. Is X
strong and Y poor? Is Y strong, but X even stronger? Can we do better than X? In this small part
of our experimental study, we aim at analyzing the potential of (non-linear) merge strategies and
to see how existing merge strategies fare with respect to that potential. To do so, we consider
all possible merge strategies on small planning tasks and large sets of randomly sampled merge
strategies on all planning benchmarks.

Since generating the data of all merge strategies for small planning tasks and large sets of
random merge strategies for all planning tasks requires millions of planner runs and takes more
than a month even on a large compute cluster, we could not regenerate the data for the latest
Fast Downward version and instead reuse the data of our original work. While this is certainly
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Figure 6.9.: Expansions for Zenotravel #5 with all 1587600 possible merge strategies.

not ideal, we hope that given that we consider all or large sets of random merge strategies, the
qualitative results remain the same even if the absolute numbers could be slightly better with
the most recent version of Fast Downward. For this reason, Table 6.12 shows overall coverage
(number of tasks solved) of the four merge strategies we consider and L (since it is included
in the original data) as well as their symmetry-enhanced variants, however generated with the
Fast Downward version used in the original work. Differences to the values shown in Table 6.8
are due to different Fast Downward versions, due to not using DFP as a fallback mechanism in
MIASM and due other small differences in the merge-and-shrink implementations.

In our first experiment, we consider small planning tasks where we can compare the strategies
from the literature to all possible merge strategies. This is only feasible for tasks with up to 8
state variables (which already give rise to 1587600 merge strategies). Most such tasks are so
simple that all merge strategies result in a perfect heuristic, but there are exceptions. Here, we
report results for Zenotravel #5.

Figure 6.9 shows the quality of all merge strategies for this instance as a cumulative distribu-
tion function. For example, a data point at (62, 83.0%) means that 83% of all merge strategies
require 62 or fewer expansions to reach the final f -layer of an A∗ search. The curve starts
at (0, 50.2%), showing that 50.2% of all merge strategies reach the final f -layer immediately.
Given this, the results for the merge strategies from the literature may appear somewhat disap-
pointing: only CGGL, MIASM and symm-MIASM have 0 expansions until the final f -layer;
DFP, RL and all other symmetry-enhanced variants require 4, and L requires 21.

For larger planning tasks, evaluating all merge strategies is infeasible. However, it is still pos-
sible to assess how strong a given merge strategy is in absolute terms by sampling a large subset
of random merge strategies. We conducted experiments with 1000 merge strategies per task on
the entire benchmark set. This showed that the existing merge strategies are quite well suited for
many planning domains: The expected coverage of random merge strategies is 680.107, worse
than any strategy from the literature we consider. Moreover, we found 72 tasks in 19 domains
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Figure 6.10.: Expansions for NoMystery-2011 #9 with 1000 random merge strategies and those
from the literature.

which were solved by at least one merge strategy from the literature but by none of the 1000
random merge strategies.

However, interestingly, we also found 21 tasks in 9 domains solved by at least one random
merge strategy but by no strategy from the literature. For example, in the NoMystery-2011
domain, only 18 tasks are solved by existing strategies, but all 20 tasks are solved by some
random strategy. Moreover, solving these tasks is not a rare occurrence, with most of them
solved by all 1000 random strategies and the hardest one solved by 26.4%. Another domain
with clear room for improvement is Elevators-2008, where only 18 tasks are solved by any of
the existing strategies, but 22 tasks are solved by some random strategy.

In these two domains, we performed additional experiments with the merge strategies from
the literature with no time limit and a 64 GiB memory limit in order to determine how much
better the good random strategies (with the regular limits of 2 GiB and 30m) are compared to
the state of the art. Figures 6.10 and 6.11 show the results (again as cumulative distribution
function of expansions) for two of these tasks.11 For example, we see that in NoMystery-2011
#9, the best existing merge strategies require roughly 1000 times as many expansions as the best
random ones. The results look similar for other instances of these two domains (not shown). In
particular, the best random merge strategy always performs strictly better on all non-trivial tasks
which are not perfectly solved by any merge strategy.

The experiment also showed that in 8 of the 11 tasks that the RL strategy can solve in
Elevators-2008, its heuristic quality is equal to the worst of the 1000 random merge strategies.
Similarly damning, the L strategy is consistently as bad as the worst 5% of random strategies in
the NoMystery-2011 domain.

11The y-axis only goes up to 28% (19%) because only 278 (192) out of 1000 random merge strategies solved these
instances. However, also note that none of the considered merge strategies from the literature (except symm-DFP
in Elevators-2008 #7) can solve these instances within the regular time and memory limits.
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To summarize this first part of our analysis, our experiments show that current merge strategies
clearly have an untapped potential of being significantly improved, since some these merge
strategies have a notable gap of performance compared to large sets of random merge strategies.
However, it remains unclear how to improve existing merge strategies or how to design new ones
to fully use their potential.

6.6.2. The Impact of Tie-breaking on DFP

Next, we take a closer look at the merge strategy DFP. Recall that DFP is score-based and that
it prefers to merge transition systems if there exist labels that are relevant for both transition
systems and that occur in transitions close to the abstract goal states. Since we observed that in
practice, DFP evaluates many candidate pairs of transition systems with the same best score, we
investigate several tie-breaking strategies for DFP. In particular, we determine a total order on
transition systems which induces a total order of merge candidate pairs. The first choice is to
prefer composite (PC) or atomic transition systems (PA). For the atomic transition systems, we
consider the three orders reverse level (RL), level (L), and random (RND). For the composite
transition systems, we consider the three orders new to old (NTO), old to new (OTN), and
random (RND). We remark that all results reported in the original paper use NTO for the third
choice. Finally, we also consider a fully randomized order (Random). Again note that the
combination PC/RL/NTO corresponds to the implementation of DFP as reported in the literature.
For more details, we refer to Section 5.4 on page 108.

Table 6.13 shows the result of an experiment with all tie-breaking strategies. Considering
coverage, we observe a huge variability in performance, ranging from 696–760 solved tasks,
from worse than the worst merge strategies (combined with the best shrink strategy B) in the
literature (coverage of 712 with CGGL in Table 6.8) to better than the best merge strategy,
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RL L RND Random

NTO OTN RND NTO OTN RND NTO OTN RND

Prefer composite (PC)

Coverage 746 746 746 729 731 731 696 696 696 707
Exp 50th perc 1267 1267 1267 5725 5725 5725 19k 19k 19k 14k
Exp 75th perc 539k 539k 539k 786k 786k 786k 1025k 1025k 1025k 1163k
Search time 0.18 0.18 0.18 0.24 0.24 0.24 0.30 0.29 0.30 0.36
# constr 1491 1491 1492 1435 1438 1437 1479 1479 1480 1477
Constr time 61.86 61.97 61.97 86.97 86.37 86.63 73.69 73.91 74.08 55.72
Constr oom 42 42 42 93 93 93 52 52 52 57
Constr oot 134 134 133 139 136 137 136 136 135 133
Perfect h 268 268 268 273 272 271 228 229 228 221
Linear tree 87.79 87.79 87.80 88.78 88.80 88.80 90.20 90.26 90.27 12.46

Prefer atomic (PA)

Coverage 727 711 720 760 735 736 733 708 723
Exp 50th perc 11k 9332 5407 1690 5178 4010 5613 11k 8096
Exp 75th perc 719k 936k 884k 364k 718k 656k 826k 871k 862k
Search time 0.27 0.27 0.26 0.17 0.22 0.23 0.26 0.28 0.26
# constr 1477 1477 1480 1489 1480 1479 1478 1469 1474
Constr time 89.15 79.91 83.15 88.36 80.76 83.47 85.10 79.30 81.70
Constr oom 57 61 55 49 57 59 57 65 59
Constr oot 133 129 132 129 130 129 132 133 134
Perfect h 239 223 228 251 224 233 228 202 216
Linear tree 8.73 8.73 8.72 8.87 8.92 8.92 8.66 8.71 8.68

Table 6.13.: DFP with different tie-breaking strategies, using shrink strategy B.

excluding MIASM, which also uses DFP as a fallback mechanism.
We first consider the upper half of the table where we fix the first parameter to preferring

composite transition systems. We observe that the order of atomic transition systems has a huge
impact on performance: RL achieves higher coverage than L which in turn is better than RND,
which achieves a lower coverage even than the fully randomized tie-breaking strategy Random.
On the other hand, the third parameter, i.e. the order of composite transition systems (NTO,
OTN, or RND), does not influence performance a lot: coverage of these variants is nearly the
same for a fixed order of atomic transition systems. This can be explained by looking at the
percentage of linear merge strategies among these variants, which is very high (more than 88%)
for all of them. This means that after the initial merge (which necessarily merges two atomic
transition systems), PC tends to repeatedly include the only existing composite in the next merge
(hence there is no need to order composite transition systems), which leads to a linear merge
strategy.

Considering the other attributes shown in the table, they mostly fit the observation with respect
to coverage: within each vertical block of the three variants RL, L, and RND, performance is
very similar, and across the three blocks, it follows the comparison of coverage. For example,
the variant RL for ordering atomic transition systems, which achieves the highest coverage, also
requires the fewest expansions, shortest runtime for search and for heuristic construction (except
for Random, which has the lowest construction time), which it also completes more often than
the other variants, and it runs out of memory and time during the merge-and-shrink computation
less frequently than the other variants. The variant L solves significantly fewer tasks, mostly
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because it finishes the merge-and-shrink computation less frequently, and the randomized order
produces heuristics of worse quality.

We now consider the variant PA shown in the bottom half of the table. Here, both the sec-
ond and third parameter, i.e. the order of atomic and composite transition systems, have a large
influence on performance. For the order of atomic transition systems, L achieves the best perfor-
mance in terms of all attributes, except construction time, independently of the other parameters,
whereas the performance of RL is only on the level of the performance of the randomized order
RND. Concerning the order of composite transition systems for a given order of atomic tran-
sition systems, NTO always performs significantly better than the alternatives OTN and RND.
Another notable difference to the results of the upper half of the table is that all merge strategies
compute non-linear merge trees very frequently (less than 9%). While this does not necessar-
ily lead to higher coverage, the best variant of all variants we consider here is the combination
Prefer Atomic/L/NTO which computes a high percentage of non-linear merge trees.

We also briefly discuss results for shrink strategies F and G, shown in Table A.4 on page 173 in
the appendix. Also with F, tie-breaking has a notable effect on coverage which ranges from 515–
596, and we observe mostly similar trends as with B: preferring composite transition systems
results in mostly linear merge strategies and a removal of the influence of the order of composite
transition systems. Unlike when using B, preferring atomic transition systems clearly dominates
preferring composite transition systems, and also the fully randomized tie-breaking variant is
among the top-performing variants. With G, conforming with our previous observations for
this shrink strategy, the computed heuristics are of the same or similar quality for all variants
(mostly the same amount of expansions), and the major difference appears being the efficiency
of the computation of the heuristic. While most variants achieve a coverage ranging in 553–560,
the variants Prefer composite/L and the variant PA/L/OTN achieve a much higher coverage of
605 and 597, exclusively due to finishing the computation of the heuristic for many more tasks.

To summarize, these results clearly indicate that there is more to the DFP merge strategy than
initially meets the eye and that it is very susceptible to tie-breaking strategies. As the strategy
is a simple score-based merge strategy, one way to alleviate the problem of tie-breaking is to
combine the strategy with other simple merge strategies or to integrate it into more complex
ones. To better use the potential of DFP directly by e.g. improving its evaluation function, a
better understanding of the approach is needed.

For the remainder of our study, we will evaluate both the “previous” variant of DFP that
corresponds to PC/RL/NTO and the best variant Prefer atomic/L/NTO.

6.6.3. The Score-based MIASM strategy

We continue with an evaluation of our score-based variant of the original MIASM strategy, using
the same tie-breaking strategies for the evaluation. Table 6.14 shows the results in the same way
as Table 6.13 for DFP.

The results in the table show similar trends as those for DFP, but linear strategies with PC are
somewhat less common (45%–53%) because there are more cases where merging is driven by
differences in scores rather than tie-breaking. This is also reflected in the smaller overall variance
of coverage, which ranges from 721–755, and the fact that the order of composite transition
systems also plays a role if preferring composite transition system. Unlike for DFP, where
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RL L RND Random

NTO OTN RND NTO OTN RND NTO OTN RND

Prefer composite (PC)

Coverage 750 748 745 726 734 730 722 727 722 739
Exp 50th perc 449 572 460 3809 1980 1799 1199 1214 485 1502
Exp 75th perc 443k 443k 396k 537k 518k 502k 562k 562k 562k 543k
Search time 0.17 0.18 0.18 0.21 0.20 0.20 0.18 0.18 0.19 0.18
Total time 5.50 5.28 5.45 6.83 6.56 6.75 6.67 6.41 6.44 4.67
# constr 1324 1331 1337 1299 1304 1304 1319 1326 1315 1388
Constr time 173.79 165.78 175.22 219.32 204.88 213.95 212.14 200.54 204.90 121.17
Constr oom 42 42 42 44 44 43 44 44 44 43
Constr oot 301 294 288 324 319 320 304 297 308 236
Perfect h 332 332 334 316 316 316 309 311 313 297
Linear tree 44.94 44.70 44.58 52.50 52.30 52.30 51.33 51.06 51.48 14.84

Prefer atomic (PA)

Coverage 747 755 752 750 748 742 737 745 741
Exp 50th perc 1932 1396 1056 2065 5914 5367 2828 5481 4214
Exp 75th perc 556k 714k 583k 589k 521k 666k 892k 574k 688k
Search time 0.18 0.20 0.18 0.20 0.21 0.23 0.23 0.21 0.21
Total time 5.49 4.71 4.94 5.61 4.93 5.49 5.82 4.72 5.27
# constr 1384 1403 1408 1374 1384 1379 1389 1409 1405
Constr time 168.71 135.34 141.81 164.49 141.92 155.61 169.50 143.75 149.31
Constr oom 45 51 43 43 42 44 43 43 44
Constr oot 238 213 216 250 241 244 235 215 218
Perfect h 307 310 303 314 311 306 301 286 300
Linear tree 10.12 9.98 10.01 10.19 10.12 10.15 10.22 10.08 10.11

Table 6.14.: sbMIASM with different tie-breaking strategies, using shrink strategy B.
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Figure 6.12.: Expansions of MIASM (with
DFP PC/RL/NTO as fallback)
and sbMIASM (PA/RL/OTN).
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Figure 6.13.: Expansions of DFP (PA/L/NTO)
and sbMIASM (PA/RL/OTN).

NTO always dominated the other orders, we do not observe that any of the orders of composite
transition systems NTO, OTN, or RND would always perform better than the others. While
the order RL for atomic transition systems is the strongest if preferring composite transition
systems, there is no clear best single option if preferring atomic transition systems.

Another notable difference to the results of DFP is the time required to compute the merge-
and-shrink abstractions, which is very high with sbMIASM, since it requires (tentatively) per-
forming all possible merges in order to compute the scores. Still, the results show that this effort
is usually not prohibitive. One reason could be the higher quality of heuristics, as indicated by
the smaller amount of expansions required compared to DFP and the much higher number of
tasks for which perfect heuristics can be computed.

We also briefly discuss results for shrink strategies F and G, shown in Table A.5 on page 174
in the appendix. With F, the impact of tie-breaking is much smaller than with B: coverage
ranges from 569–586, and there is not always a clearly visible correspondence between those
variants with highest coverage and those with lowest expansions, total or construction time. Like
when using B, preferring composite transition systems results in a smaller fraction of non-linear
merge strategies. With G, we again observe that all variants compute heuristics of the same or
similar quality (same amount of expansions), but also coverage has a very small range of 558–
571, unlike for DFP. The percentage of linear merge trees is very small even when preferring
composite transition systems, and is the smallest of all merge-and-shrink variants we considered
so far for the variant preferring atomic transition systems.

Focusing again on the shrink strategy B, we compare the best variant Prefer atomic/RL/OTN
against the original MIASM strategy and other merge strategies: sbMIASM solves 755 tasks,
which is still behind MIASM that solves 773 tasks (cf. Table 6.8), but better than any other non-
symmetry-enhanced merge strategy, including DFP in its previously known form (corresponding
to PC/RL/NTO). Figures 6.12 and 6.13 compare expansions of MIASM12 against sbMIASM in

12MIASM uses previous DFP, i.e. with tie-breaking Prefer composite/RL/NTO as fallback. In Section 6.8, we
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RL L RND Random Linear

NTO OTN RND NTO OTN RND NTO OTN RND

to
p

DFP Pref comp 776 777 778 752 753 753 734 734 734 733 CGGL
DFP Pref atom 751 730 736 764 748 744 741 734 741 744
sbMIASM Pref comp 765 756 750 739 736 734 746 741 742 761 RL
sbMIASM Pref atom 767 769 766 766 763 757 757 762 764 762

rt
op

DFP Pref comp 778 774 777 753 748 751 736 731 731 732 CGGL
DFP Pref atom 753 727 733 766 745 746 743 731 734 744
sbMIASM Pref comp 766 755 753 742 733 736 747 739 738 757 RL
sbMIASM Pref atom 769 767 768 768 761 759 758 760 759 762

in
c

DFP Pref comp 780 774 777 753 748 752 736 731 731 732 CGGL
DFP Pref atom 755 727 739 766 743 744 745 731 734 746
sbMIASM Pref comp 766 754 752 741 733 736 746 738 737 756 RL
sbMIASM Pref atom 770 767 767 768 761 759 758 760 759 761

de
c

DFP Pref comp 778 774 774 754 747 749 736 730 732 728 CGGL
DFP Pref atom 754 728 733 766 743 740 745 731 739 744
sbMIASM Pref comp 766 758 752 741 736 735 746 741 741 759 RL
sbMIASM Pref atom 769 769 766 768 764 758 759 763 762 761

Table 6.15.: Coverage of SCC-X for merge strategies DFP and sbMIASM in all tie-breaking
variants, and merge strategies CGGL and RL. All variants use shrink strategy B.

its best variant, and DFP in its best variant against sbMIASM in its best variant. We see that
sbMIASM is orthogonal to both state-of-the-art merge strategies. Given these observations,
given that sbMIASM is much simpler to implement, and given that it is even more expensive to
compute than MIASM, we think that simple score-based merge strategies offer much potential
for further research.

For the remainder of our study, when writing sbMIASM, we always refer to the tie-breaking
variant PA/RL/OTN that leads to the best performance of sbMIASM.

6.6.4. The SCC Framework

Finally, we evaluate the SCC framework for merge strategies. In our original paper, we only
used the topological sort of SCCs and the merge strategy DFP to decide on the merge order both
when merging atomic transition systems corresponding to an SCC and for merging the resulting
product systems. Here, we also use CGGL, RL, and sbMIASM as secondary merge strategies
and consider the four orders of SCCs discussed in Section 5.4: topological (top), reverse of
topological (rtop), and decreasing (dec) or increasing (inc) in the size of the SCCs, breaking ties
with the topological order.

Table 6.15 shows coverage of the four different orders of SCCs in vertical blocks as indicated
in the first column, using the mentioned merge strategies, with all tie-breaking variants for DFP
and sbMIASM. The linear merge strategies are shown separately in the right-most column. Best
results of each row are highlighted in bold.

We first compare the impact of the order of SCCs, hence comparing the four vertical blocks,
leaving all other aspects invariant (i.e. comparing the third entry of the first row of the first

evaluate MIASM with different fallback strategies.
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block to the third entry of the first row of the second block). This comparison reveals no large
differences in coverage of merge strategies between all four variants, the largest difference being
4 (e.g. top vs inc for DFP PC/RL/NTO, 776 vs 780). This result is not very surprising, since
after merging all atomic factors of all SCCs, the resulting factored transition system contains
the same elements, independently of the order in which the SCCs are considered. The only
influence the order of SCCs has is the order of the resulting product factors in the intermediate
factored transition system, which can play a role for future decisions of merge or label reduction
strategies.

Next, we compare the results to plain CGGL and RL (cf. Table 6.8), DFP (cf. Table 6.13), and
sbMIASM (cf. Table 6.14): independently of the order of SCCs (vertical blocks), using the SCC
framework always improves coverage compared to using the plain strategies. This important
observation shows that the hybrid approach of the strategy – combining a priori information
from the causal graph and using simple merge strategies for the remaining merge decisions –
effectively pays off.

In the following, we stick to the topological order of SCCs, which seems to be the most natural
choice, and which achieves the highest overall coverage summed within each of the four alter-
natives (30060 compared to 30030, 30033, and 30039 for rtop, inc, and dec). We observe that
with DFP and sbMIASM, the different tie-breaking strategies have similar impact as with the
original merge strategies. For example, using DFP with preferring composite transition systems,
the order RL of atomic transition systems is the best choice, and if preferring atomic transition
systems, L is the best. However, the best performance of SCC-DFP is achieved with the com-
bination PC/RL/RND (closely followed by the variants that substitute NTO or OTN for RND),
which does not match the best variant of DFP if used alone, which is DFP Prefer atomic/L/NTO.
While using the linear merge strategy CGGL as secondary merge strategy in the SCC framework
cannot compete with high coverage values of DFP and sbMIASM, using RL comes a bit closer,
solving 762 tasks compared to the best result of 780. For the interested reader, Table A.6 on
page 175 in the appendix contains more detailed results that allow a direct comparison to plain
CGGL, RL, DFP, sbMIASM also with respect to other attributes than coverage.

In absolute terms, the SCC framework sets a new record of coverage (780) compared to any of
the previous merge-and-shrink combinations, where the best competitor is MIASM that solves
773 tasks (cf. Table 6.8). Figure 6.14 compares the expansions of MIASM (still with the variant
DFP PC/RL/NTO as fallback strategy) against SCC-DFP in the same tie-breaking configuration
(although this variant only solves 776 tasks). We observe that both merge strategies are orthog-
onal, requiring orders of magnitude more (or fewer) expansions for many tasks. Figure 6.15
compares the expansions of sbMIASM (755 coverage) against SCC-sbMIASM (769), with the
tie-breaking PA/RL/OTN that achieves the best performance both with original sbMIASM and
SCC-sbMIASM. In this comparison, the two merge strategies are more similar to each other,
requiring the same amount of expansions (points on the diagonal) for the majority of tasks,
however the SCC-enhanced variant solves more tasks.

Finally, we briefly comment on results for SCC-enhanced merge strategies (topological order
of SCCs) with shrink strategies F and G, shown in Tables A.7 and A.8 on pages 176 and 177
in the appendix. With F, we observe similar variations in performance of SCC-DFP as with
B: coverage ranges from 520–592, however only the entirely randomized tie-breaking variant
Random and the variant PA/L/RND achieve the highest coverage values, mainly due to finishing
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Figure 6.15.: Expansions of sbMIASM and
SCC-sbMIASM, both with PA/
RL/OTN.

the merge-and-shrink computation for more tasks. With SCC-sbMIASM, the variation is very
small, but still non-negligible. With G, the results of SCC-DFP are very similar to those of DFP:
only few variants achieve a high coverage and the remaining ones are all on a similar but lower
level. For SCC-sbMIASM, the variance of performance is again much smaller, to the point that
no clear recommendation on which tie-breaking is best can be made.

To conclude, the SCC framework for merge strategies, which we consider producing hybrid
merge strategies because it integrates a “global analysis” (partitioning variables of the planning
task) of precomputed merge strategies with simple (score-based) merge strategies, produces
the strongest known merge-and-shrink heuristics. The merge strategies it computes are still
susceptible to tie-breaking like the original merge strategies used as secondary merge strategies,
which, on the negative side, means that these merge strategies are fragile. On the positive side,
this means that there is still considerable room for stronger merge-and-shrink heuristics and that
investigating better merge strategies appears to be a fruitful direction for future research.

6.7. The Impact of Pruning

In this section, we evaluate the impact that pruning has on the computation of merge-and-shrink
heuristics. While pruning has always been present in merge-and-shrink implementations to the
extent that transition systems have been fully pruned, we described pruning as a configurable
transformation of the merge-and-shrink framework and also implemented it as a separate, con-
figurable step. As discussed in Section 3.5, we consider two different techniques for pruning:
the original variant which has previously been used, where dead states and their transitions are
entirely removed from transition systems rather than mapping the dead states to a special state.
The alternative approach formalizes pruning as abstraction, thus mapping dead states to special
states but keeping the transitions. Furthermore, we evaluate four different variants of pruning
strategies: full pruning (FP), where all dead states are pruned, pruning of only irrelevant states
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(IP), pruning of only unreachable states (UP), and no pruning at all (NP).
Table 6.16 shows results for the merge strategies CGGL, RL, DFP (tie-breaking configura-

tion PA/L/NTO), MIASM, sbMIASM (PA/RL/OTN), and SCC-DFP (PC/RL/NTO). The first
impression is that FP in the previous implementation (original) is indeed the best variant of all.
It achieves the highest coverage among all variants (except for merge strategy RL), finishes the
merge-and-shrink computation for the highest number of tasks, requires the shortest runtime
(total time), and computes perfect heuristics for the highest number of tasks. Also for the other
attributes, FP usually achieves the best result (bold values in the first data column). This comes
as expected, since pruning in general increases the efficiency of the computation due to re-
duced memory and runtime requirements. In some cases, this can even transfer to an improved
heuristic because the savings in sizes of the transition systems allows for fewer lossy shrink
transformations. Furthermore, pruning by removing states has a potential positive side-effect on
all transformation strategies that consider states and/or transitions, such as bisimulation-based
shrinking or the DFP merge strategy.

However, there is more to pruning than initially meets the eye. For example, with RL, full
pruning (FP) is better if used with abstraction than with original pruning. Furthermore, with
original pruning, pruning of unreachable states appears to be a lot more important than pruning
of irrelevant states: for all six merge strategies, the variant UP achieves coverage much closer to
full pruning (FP) compared to only pruning irrelevant states (IP), which lags behind significantly.
The reason is that the total runtime is higher on average with IP, and the resulting heuristics are
perfect for significantly fewer tasks. With abstraction pruning, the effect is still present (except
for DFP), however less pointed. A possible reason is the interaction of pruning with bisimu-
lation: since bisimulation considers the outgoing transitions of states (cf. Definition 3.14) and
states must have the “same behavior” with respect to their successor states and hence ultimately
some goal states, irrelevant states are less of a concern than unreachable states. All irrelevant
states have the same h-value of∞ since they cannot lead to goal states, which makes them can-
didates for being bisimilar in the first place. For unreachable states, the same is not true: they
can have different h-values, in which case they cannot be bisimilar. Hence, completely remov-
ing unreachable states allows finding more bisimulations. This observation also explains why
pruning as abstractions, where unreachable states are condensed into a single state, is also less
effective in combination with bisimulation-based shrinking.

The results for F and G, shown in the appendix in Tables A.9 and A.10 on pages 178 and 179,
also confirm this hypothesis: with F, pruning only irrelevant states, i.e. not pruning unreachable
states, is better than the other way around for half of the six merge strategies, whereas with
G, like with B, UP strictly dominates IP, usually by large margins, and comes close to the per-
formance of FP (except for SCC-DFP). Other than that, the results for F generally also have a
clear tendency that original full pruning (FP) is the best choice, with a few minor exceptions
such as sbMIASM, where pruning as abstraction solves slightly more tasks. Similarly with G,
original full pruning (FP) is the best performer except for MIASM, where abstraction pruning
of reachable states (UP) solves three tasks more.

Concluding this part, we saw that pruning is indeed an important ingredient to the efficient
computation of merge-and-shrink heuristics, increasing the number of successful computations
of merge-and-shrink heuristics which also transfers to higher coverage. Furthermore, we ob-
served that with bisimulation-based shrinking B, pruning of unreachable states is particularly
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original abstraction original abstraction

FP IP UP NP FP IP UP FP IP UP NP FP IP UP

CGGL RL

Coverage 712 703 711 705 710 704 711 728 727 731 728 731 728 731
E 50th perc 15k 28k 15k 25k 15k 25k 15k 5353 9911 5353 9911 5353 9911 5353
E 75th perc 1197k 1304k 1197k 1304k 1197k 1304k 1197k 1246k 1246k 1246k 1246k 1246k 1246k 1246k
Search time 0.36 0.42 0.36 0.42 0.36 0.42 0.36 0.28 0.34 0.29 0.34 0.29 0.34 0.29
Total time 3.98 5.51 4.27 5.66 4.56 5.86 4.75 3.48 4.52 3.74 4.76 3.90 4.65 4.14
# constr 1441 1438 1439 1439 1438 1440 1438 1503 1495 1502 1497 1494 1495 1493
Constr time 81.17 83.00 83.03 81.52 92.18 86.80 89.33 87.95 89.62 88.93 89.48 92.93 90.37 90.92
Constr oom 95 98 94 97 92 94 95 36 43 37 43 44 43 44
Constr oot 131 131 134 131 137 133 134 128 129 128 127 129 129 130
Perfect h 257 209 257 207 257 207 257 265 226 260 225 261 226 260

DFP PA/L/NTO MIASM

Coverage 760 747 759 744 744 747 746 773 749 767 749 767 751 764
E 50th perc 7182 12k 7182 12k 12k 12k 12k 9038 14k 9038 14k 9073 14k 9073
E 75th perc 1178k 1178k 1178k 1178k 1192k 1178k 1192k 768k 857k 768k 857k 751k 857k 768k
Search time 0.28 0.33 0.28 0.33 0.30 0.33 0.30 0.23 0.30 0.24 0.30 0.23 0.30 0.24
Total time 3.20 3.92 3.32 3.83 3.69 3.98 3.76 4.34 5.94 4.66 6.25 4.94 6.18 5.20
# constr 1489 1486 1482 1482 1479 1486 1477 1470 1441 1465 1439 1451 1441 1450
Constr time 89.29 88.84 89.68 87.96 98.35 89.76 95.46 96.10 97.78 97.88 97.52 108.14 101.85 106.68
Constr oom 49 52 55 57 56 52 57 104 130 108 134 119 131 121
Constr oot 129 129 130 128 132 129 133 93 96 94 94 97 95 96
Perfect h 251 214 250 212 240 213 240 324 256 317 255 319 256 316

sbMIASM PA/RL/OTN SCC-DFP PC/RL/NTO

Coverage 776 752 773 753 760 755 757 755 713 731 707 749 711 727
E 50th perc 7051 9278 7051 9278 4445 9278 4445 1502 4470 1502 7025 1603 7025 1547
E 75th perc 826k 851k 832k 854k 879k 851k 887k 671k 779k 452k 732k 695k 779k 695k
Search time 0.26 0.31 0.26 0.31 0.27 0.31 0.27 0.19 0.27 0.21 0.29 0.21 0.28 0.22
Total time 3.31 4.37 3.54 4.71 3.98 4.58 4.17 4.69 12.98 6.19 15.18 6.12 13.45 7.40
# constr 1491 1465 1487 1466 1484 1466 1481 1403 1306 1353 1280 1311 1298 1306
Constr time 86.25 89.11 91.29 89.77 97.09 90.50 95.85 123.70 242.81 142.17 279.62 196.13 273.71 209.13
Constr oom 40 63 43 63 43 63 46 51 37 46 38 66 37 60
Constr oot 136 139 137 138 140 138 140 213 324 268 349 290 332 301
Perfect h 310 248 308 247 306 248 300 310 228 283 221 308 224 287

Table 6.16.: Comparison of different pruning mechanisms: pruning via throwing away states
(original) and pruning via abstracting (abstraction), full pruning (FP), pruning only
irrelevant states (IP), pruning only unreachable states (UP), and no pruning (NOP).
All algorithms use shrink strategy B. Values aggregated and highlighted for each
merge strategy individually.
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important. For the remaining parts of this study, we continue using original FP for all variants
we consider.

6.8. Overview of the State-of-the-Art

In this section, we summarize the previous parts of our study and give an overview of the dif-
ferent merge strategies we considered so far, including a few new combinations. In particular,
Table 6.17 shows results for the following merge strategies:

• CGGL/RL: the vanilla linear merge strategies.

• DFP1/DFP2: DFP1 corresponds to the previous notion of DFP, i.e. the tie-breaking con-
figuration PC/RL/NTO, whereas DFP2 is the best variant of DFP with tie-breaking con-
figuration PA/L/NTO.

• sbMIASM: the best configuration with tie-breaking PA/L/OTN.

• MIASM1/MIASM2/MIASM3: the original MIASM strategy with different fallback
merge strategies DFP1, DFP2, and sbMIASM as above. MIASM1 corresponds to the
previous notion of MIASM and the other two variants have not been tested previously.

• SCC: the best variant ordering SCCs in increasing size and using DFP2 as a secondary
merge strategy.

• symm: symmetry-enhanced variants of all above merge strategies (except for SCC, for
which no direct integration is possible), including the new combinations with sbMIASM
and different tie-breaking variants of DFP and MIASM.

While we already discussed most of the results shown in the table, it serves as a point of
reference for future work aiming at improving merge-and-shrink heuristics, and also for the
comparison against other abstraction heuristics in the final part of our study. We still discuss
several observations, mainly regarding new combinations of merge strategies. In the appendix,
Table A.11 on page 181 also shows the results for F and G which we do not discuss further here.

Using MIASM with DFP2 instead of DFP1 improves performance compared to DFP2 (+14
coverage), however the improvement is much smaller compared to the improvement obtained
with MIASM1 over DFP1 (+27). Generally, the performance of MIASM with different variants
of DFP as fallback achieves similar performance. Combining MIASM with sbMIASM (MI-
ASM3) is not better than only using sbMIASM (−7 coverage), although MIASM3 can compute
the heuristic for more tasks and is faster to compute. Among all merge strategies, the SCC
variant using DFP1 as secondary merge strategy is still the state-of-the-art merge strategy.

Comparing the plain merge strategies with their symmetry-enhanced variants, we observe that
using DFP2, coverage decreases compared to plain DFP2 (−7), while it increases with the pre-
vious configuration of DFP, i.e. DFP1. For the combination with MIASM, we have the opposite
behavior: while with the previous variant MIASM1, using symmetries is not beneficial (−2 cov-
erage), it increases coverage by 2 if using MIASM2. Furthermore, also for the merge strategy
sbMIASM, using symmetries is beneficial, even though the combination is most expensive to
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CGGL RL DFP1 DFP2 sbMIASM MIASM1 MIASM2 MIASM3 SCC

Coverage 712 728 746 760 755 773 774 748 780
Exp 50th perc 4437 1148 1754 2141 1245 421 1300 333 1754
Exp 75th perc 846k 690k 394k 255k 326k 370k 283k 547k 440k
Search time 0.26 0.18 0.16 0.17 0.15 0.12 0.13 0.16 0.15
Total time 3.28 2.30 2.40 2.05 3.46 2.63 2.42 3.40 2.05
# constr 1441 1503 1491 1489 1403 1470 1471 1427 1490
Constr time 64.62 39.28 49.14 43.99 162.54 63.12 61.25 127.14 44.16
Constr oom 95 36 42 49 51 104 104 105 40
Constr oot 131 128 134 129 213 93 92 135 137
Perfect h 257 265 268 251 310 324 315 309 310
Linear tree 100.00 100.00 87.79 8.87 9.98 73.47 25.97 26.98 60.87

symm

CGGL RL DFP1 DFP2 sbMIASM MIASM1 MIASM2 MIASM3

Coverage 741 743 752 753 757 771 775 753
Exp 50th perc 12k 12k 12k 12k 1686 4593 12k 1686
Exp 75th perc 886k 847k 589k 589k 450k 706k 450k 536k
Search time 0.27 0.26 0.26 0.26 0.19 0.21 0.21 0.21
Total time 5.54 4.65 5.42 5.42 5.26 5.63 5.27 5.93
# constr 1468 1504 1496 1497 1418 1472 1468 1429
Constr time 103.79 91.20 102.46 103.52 189.50 103.16 101.13 158.13
Constr oom 72 36 44 44 46 102 110 102
Constr oot 127 127 127 126 203 93 89 136
Perfect h 274 266 264 264 308 306 306 308
Linear tree 19.96 16.56 18.98 18.97 2.40 12.36 5.72 5.46

Table 6.17.: Overview of state-of-the-art merge-and-shrink configurations using shrink strategy
B. DFP1: PC/RL/NTO, DFP2: PA/L/NTO, sbMIASM: PA/RL/OTN, MIASM1:
with fallback DFP1, MIASM2: with fallback DFP2, MIASM3: with fallback sb-
MIASM, SCC: order SCCs in increasing size, with secondary strategy DFP1.
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compute in terms of construction time: coverage increases by 2 and the already low percentage
of linear merge strategies of sbMIASM becomes even lower, achieving the best result of 2.4%
among all merge strategies considered here. Finally, also for the combination of MIASM with
sbMIASM (MIASM3), using symmetries is beneficial (+5 coverage), however coverage is still
below that of plain sbMIASM (−2).

Concerning the best non-symmetry-enhanced merge strategy SCC-DFP1, as explained earlier,
we cannot use it directly within the symmetry-enhancing framework, since the SCC framework
requires simple merge strategies for deciding on the merge order of a subset of factors. In future
work, we would like to restrict the computation of factored symmetries to a subset of factors,
thus allowing their use within the SCC framework.

To conclude this part of the study, we compare the state-of-the-art of merge-and-shrink to
the state before the addition of generalized label reduction, and thus before the contributions
made in this thesis. The best coverage of any of the linear merge strategies with previous label
reduction is 702 (cf. Table 6.3), compared to the best coverage of 780 of our merge strategy
SCC-DFP, which is an increase of 78, a difference to be considered very large given that planning
tasks of the benchmarks tend to scale exponentially in difficulty. As we have seen throughout
our study, this large increase of coverage is due to several techniques: first, the addition of
generalized label reduction increased the efficiency of the computation of merge-and-shrink
heuristics. Secondly, it allowed for conceptual efficiency improvements in the implementation
of merge-and-shrink within Fast Downward. Finally, using new non-linear merge strategies
and improving existing merge strategies through using the symmetry-enhancing or the SCC
framework pushed the performance of merge-and-shrink heuristics even further.

6.9. Comparison to State-of-the-Art Planners

In this final part of our study, we compare the best merge-and-shrink strategies against other
state-of-the-art planning techniques. In particular, we compare against a single PDB heuristic
that, starting with all goal variables, includes causally relevant variables to the already selected
variables to be part of the pattern until reaching a size limit of 1 million abstract states in the
PDB. Furthermore, we include results for iPDB, using a time limit of 900s as suggested by
Scherrer, Pommerening, and Wehrle (2015). For both PDB-based techniques, we use the im-
plementation within Fast Downward, which we describe in our paper (Sievers et al., 2012). To
also evaluate Cartesian abstractions, the third class of abstractions besides PDBs and merge-
and-shrink abstractions, we use a state-of-the-art configuration, called hSCP

hybrid-opt, that computes
diverse saturated cost partitioning heuristics (Seipp et al., 2017b; Seipp, 2017) over the com-
bination of PDBs computed by the hill climbing of iPDB, systematic PDBs (Pommerening et
al., 2013), and Cartesian abstractions (Seipp & Helmert, 2013) of the goal and landmark task
decompositions (Seipp & Helmert, 2014).

We also compare against the winner of the last IPC, SymBA∗
2 (Torralba, Alcázar, Borrajo,

Kissmann, & Edelkamp, 2014; Torralba et al., 2016), a planner based on symbolic search. It
performs several symbolic bidirectional A∗ searches on different search spaces, starting in the
original state space. Whenever search is deemed to become too hard, the planner switches
to a previously started bidirectional symbolic search in an abstract state space or starts a new
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RL DFP2 sbM M2 SCC PDB iPDB hSCP
hybrid-opt

Coverage 728 760 755 774 780 697 815 1043
Exp 50th perc 679 1300 808 738 425 5196 1947 216
Exp 75th perc 690k 255k 285k 255k 394k 963k 187k 59k
Search time 0.15 0.15 0.11 0.11 0.13 0.27 0.14 0.10
Total time 2.22 1.96 3.16 2.23 1.96 0.99 1.94 223.30

h2

RL DFP2 sbM M2 SCC PDB iPDB hSCP
hybrid-opt SPM&S SymBA∗

1 SymBA∗
2

Coverage 784 822 800 702 817 732 833 1078 933 1013 1011
Total time 1.25 1.18 1.96 1.95 1.21 0.84 1.26 222.93 1.99 0.48 0.48

Table 6.18.: Comparison of state-of-the-art merge-and-shrink configurations as in Table 6.17
and competitors: single PDB heuristic with 1 million states (PDB), iPDB with 900s
time limit, hSCP

hybrid-opt, and the IPC 2014 planners SPM&S, SymBA∗
1, and SymBA∗

2.
Results obtained without (upper block) and with (lower block) using the h2 mutex
preprocessor.

such search, using the current frontiers of the original state space search as perimeters to de-
rive (symbolic) abstraction heuristics. SymBA∗

2 uses merge-and-shrink abstractions with B and
N = 10000 and some linear variable order (BDDs can only represent linear merge-and-shrink
heuristics), and three different PDBs obtained through selecting variables in different (linear) or-
ders. The variant SymBA∗

1 is the same planner but does not use merge-and-shrink abstractions.
Another planner that also participated in IPC 2014 is SPM&S (Torralba et al., 2013; Torralba,

Alcázar, López, et al., 2014), a planner using explicit A∗ search but with symbolic (abstrac-
tion) heuristics, enhanced through using a perimeter. In particular, to derive symbolic merge-
and-shrink heuristics, the planner performs a symbolic backward search, interleaving expanding
further sets of states during the search with relaxing the current frontiers through using merge-
and-shrink abstractions (using the same setting as in SymBA∗

2 above). Similarly, it generates
symbolic PDB heuristics using four different (linear) variable orders.

All three of the planners are mostly about leveraging the strengths of symbolic search rather
than using good strategies to compute informed abstraction heuristics.13 Quantifying the impact
of symbolic (perimeter) merge-and-shrink abstractions within these planners is additionally hard
because they also use PDBs. Since all three planners also use the h2 mutex preprocessor of
Alcázar and Torralba (2015), we also provide results for our merge-and-shrink variants as well
as PDB, iPDB, and hSCP

hybrid-opt using planning tasks preprocessed with that preprocessor.
Consider Table 6.18. In the upper part, it shows coverage, expansions, search time, and

total time for all planners not using the h2 mutex preprocessor. We see that single merge-and-
shrink abstraction heuristics are stronger than single PDB heuristics, however the canonical PDB
heuristic over pattern collections (iPDB) already solves more tasks than any variant of merge-
and-shrink. Using saturated cost partitionings over diverse Cartesian abstractions and PDBs
(hSCP

hybrid-opt) outperforms the other variants by a large margin. The number of expansions and
search time correlate with the results for coverage: only for total time, we observe that hSCP

hybrid-opt

13Personal communication of Torralba.
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is more expensive to compute (it spends 200s to find good saturated cost partitionings), and that
PDBs are fastest to use (a simple table lookup) compared to the other approaches.

Consider now the results in the lower part. (Since the symbolic search based planners do
not report a number of expansions or search time in a comparable manner to the explicit search
planners, we omit these attributes.) We observe that all merge-and-shrink variants profit from
using the h2 mutex preprocessor, with the exception of MIASM, which uses information on
mutexes to seed its computation of variable partitionings and thus suffers from a reduced amount
of left-over mutexes in the SAS+ representation. Furthermore, some of the merge-and-shrink
strategies profit more than others. For example, DFP2 solves 62 tasks more and becomes the best
performer, while the previously best variant SCC-DFP1 only increases coverage by 37. iPDB
also profits from mutexes, but the gap between merge-and-shrink and iPDB is reduced from 35
down to 11 due to using the h2 mutex preprocessor. The planners involving symbolic search or
symbolic abstraction heuristics, shown in the last three columns, perform better than the explicit
merge-and-shrink and PDB-based heuristics, but their coverage is still below that of hSCP

hybrid-opt.
While these results clearly show that single merge-and-shrink heuristics cannot compete with

state-of-the-art cost partitioning techniques, we think that it is possible that using cost partition-
ing could also improve the performance of several merge-and-shrink abstractions. A difficulty
that merge-and-shrink abstractions face is that they cannot easily be refined like Cartesian ab-
stractions, which makes it harder to guide their computation towards producing abstractions that
are refined in certain regions of the state space. To achieve this for merge-and-shrink abstrac-
tions, one solution would be to have shrink strategies perform more selective shrink transforma-
tions, possibly seeded by additional parameters to guide them towards achieving a certain goal.
An alternative way of tailoring merge-and-shrink abstractions towards being fine-granulated in
specific regions of the state space is to use partial and non-orthogonal abstractions, i.e. comput-
ing merge-and-shrink for (overlapping) subsets of variables of planning tasks. Then a suitably
chosen cost partitioning could take care of admissibly combining the abstractions.
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7. Conclusion

Merge-and-shrink abstractions were already an established approach for optimally solving clas-
sical planning tasks previous to the contributions made in this thesis. In particular, they were
among the few approaches able to compute perfect heuristics in polynomial time for several
planning domains. This was achieved by using shrinking based on bisimulation and fully label-
reduced transition systems. However, the previous theory of label reduction had several limita-
tions, with the most important consequence being that all practical merge-and-shrink algorithms
used linear merge strategies. By introducing generalized label reduction, we removed these
restrictions: it now is a purely semantic transformation that is safe to be applied at every inter-
mediate step of the merge-and-shrink computation. Furthermore, it is more powerful, allowing
the reduction of more labels, while at the same time being much simpler to understand and
reason about. Finally, generalized label reduction laid the foundation for practical merge-and-
shrink algorithms using non-linear merge strategies. In our experimental study, we confirmed
the importance of (generalized) label reduction and also showed that the first non-linear merge
strategy we devised outperforms all previous linear merge-and-shrink heuristics.

Our second theoretical contribution is the formal description of the entire merge-and-shrink
framework in terms of transformations of (factored) transition systems. Besides the name-giving
merging and shrinking, we showed that also pruning and label reductions (based on generalized
label reduction) can be described in terms of the transformation framework. We studied all four
types of transformations in terms of desirable formal properties of transformations and showed
that heuristics induced by transformations of certain properties are admissible and consistent,
or even perfect. Finally, we also described how to efficiently implement the merge-and-shrink
framework based on generalized label reduction, using memory-efficient representations of label
groups and their transitions.

Our final theoretical contribution concerns the expressive power of merge-and-shrink. We
proved that non-linear factored mappings are strictly more powerful than linear ones by show-
ing that there exist problem families that can be represented compactly with general factored
mappings but not with linear ones. We also gave a precise bound that quantifies the necessary
blowup incurred by conversions from general factored mappings to linear ones.

On the side of transformation strategies, we also made several contributions. Firstly, we
transferred the notion of structural symmetries to factored transition systems, introducing fac-
tored symmetries. We showed how factored symmetries interact with the merge-and-shrink
transformations and proved that under certain conditions, shrinking based on factored symme-
tries is captured by bisimulation-based shrinking and thus an exact transformation. Based on
these results, we devised a framework to enhance existing merge strategies by preferably merg-
ing symmetric factors, thus increasing the amount of exact shrinking opportunities based on
bisimulation. Our experimental results confirmed that such enhanced merge strategies are more
efficiently computable and also result in more informed merge-and-shrink heuristics. Further-
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more, we showed that the resulting heuristics can be combined with symmetry-based pruning to
further increase coverage compared to both techniques used alone.

Secondly, we performed an experimental analysis of existing merge strategies by comparing
them against all merge strategies on small planning tasks and large sets of randomly sampled
merge strategies on all planning benchmarks, revealing an untapped potential of many existing
merge strategies. Based on these observations, we further investigated the simple score-based
merge strategy DFP and found that it is highly susceptible to tie-breaking. As an alternative
to the successful but complicated precomputed merge strategy MIASM, we presented a sim-
ple score-based variant whose performance comes close to that of DFP, although being very
expensive to compute. Since precomputed and simple score-based merge strategies both have
advantages and disadvantages, we devised a framework for creating hybrid merge strategies that
combine the best of both worlds. This framework is based on the strongly connected components
(SCCs) of the causal graph. As a precomputation step, it partitions the atomic factors according
to the SCCs and only then uses the given merge strategy for merging the atomic factors within the
partitions and finally the resulting products. Our experiments confirmed that SCC-based merge
strategies indeed improve over the original merge strategies, and that certain combinations of
SCC and DFP set a new high water mark for the performance of merge-and-shrink heuristics.

On the practical sides of contributions, we performed a large experimental study, showing the
evolution of merge-and-shrink heuristics from before the addition of generalized label reduction
until the most recent state-of-the-art techniques. Besides evaluating the above-mentioned tech-
niques, we also confirmed experimentally that our optimized implementation indeed improves
the efficiency of computing merge-and-shrink abstractions significantly. All of our practical
contributions led to improving merge-and-shrink heuristics further, yielding a large increase in
coverage compared to the previous state of the art. Finally, we also provided a comparison
against planners making use of symbolic search or symbolic abstraction heuristics, and against
other planners based on explicit search and abstraction heuristics, including the state-of-the-art
planner using saturated cost partitionings over several diverse abstractions such as PDBs and
Cartesian abstractions. While even the best merge-and-shrink heuristics cannot compete with
the best planners, we think that there is still further room for improvements, which we discuss
next.

7.1. Future Work

Based on our study which suggests an untapped potential of existing merge strategies, one ob-
vious direction for future work is to further investigate merge strategies. More precisely, we
already suggested to further improve the performance of symmetry-enhanced merge strategies
by considering different merge orders when merging according to factored symmetries. Addi-
tionally, limiting each computation of symmetries separately could allow searching for symme-
tries in more merge-and-shrink iterations. More generally, we think that better combinations of
existing merge strategies are possible, such as combining factored symmetries with MIASM or
other precomputed merge strategies, and the combination of the frameworks for using factored
symmetries and SCCs. Finally, the SCC framework could be extended to support searching for
good variable partitionings in general instead of only using SCCs. Such a framework would then
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also cover MIASM, allowing an easier combination of MIASM with other merge strategies.
While exact label reductions are obviously preferable to non-exact ones, recent work suggests

that requiring labels to have the same costs often represents an obstacle to reducing many la-
bels (Fan et al., 2017). Fan et al. use delta cost partitionings to leverage more label reductions,
but an alternative could be to use non-exact label reductions by ignoring label costs. Also, in-
dependently of non-unit-cost domains, using non-exact label reductions could help in planning
domains with many labels and few opportunities for exact label reductions. Similarly to how the
parameter N controls the size of transition systems, a parameter for the maximum amount of
transitions could trigger inexact label reductions that reduce labels even if they are not combin-
able to reduce the number of distinct transitions.

Our comparison to other planners showed that symbolic search, even with linear merge-and-
shrink abstractions, is very powerful, and a natural question to ask is how to use non-linear
merge strategies to devise symbolic merge-and-shrink abstractions. A promising alternative to
BDDs (which are polynomially equivalent to linear factored mappings) are sentential decision
diagrams (Darwiche, 2011), which also replace variable orders by variable trees, however using
a different generalization than non-linear factored mappings compared to linear ones. More
generally, our results showing that non-linear factored mappings are more powerful than linear
ones also indicate that it may be worth questioning the ubiquity of BDD representations for
symbolic search in automated planning and other areas.

Finally, the comparison against the state-of-the-art planner which uses sophisticated ways of
computing (saturated) cost partitionings also suggests that using costs partitionings over several
abstractions results in much stronger heuristics than using single heuristics. While in theory
there is no need to use several merge-and-shrink abstractions and combine them additively be-
cause single merge-and-shrink abstractions can encode arbitrary abstractions, with the advent of
general cost partitionings, this has changed. Using partial and non-orthogonal merge-and-shrink
abstractions, i.e. several abstractions computed for overlapping subsets of the variables, could
help in devising diverse abstractions that can then be combined by cost partitioning.
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A. Appendix: Additional Tables

Section 6.3: Factored Symmetries

CGGL RL DFP MIASM

orig symm orig symm orig symm orig symm

Coverage 502 504 500 502 522 505 562 559
Exp 50th perc 0 0 825 305 443 1522 0 275
Exp 75th perc 741k 659k 776k 499k 726k 625k 376k 457k
Search time 0.12 0.12 0.13 0.12 0.15 0.16 0.10 0.14
Total time 2.00 6.60 1.94 6.27 2.17 6.45 5.84 12.57
# constr 979 1000 1055 1074 1095 1057 1121 1115
Constr time 87.21 114.97 85.24 105.24 64.15 95.97 54.46 82.20
Constr oom 566 544 479 458 434 470 399 405
Constr oot 122 123 133 135 138 140 147 147
Perfect h 280 274 242 245 262 252 321 280
Linear tree 99.80 32.50 99.81 32.96 86.21 31.50 58.52 16.59

Table A.1.: Pairwise comparison of plain merge strategies (orig) to their symmetry-enhanced
counterparts (symm), using shrink strategy F.

CGGL RL DFP MIASM

orig symm orig symm orig symm orig symm

Coverage 565 515 552 517 552 519 547 524
Exp 50th perc 2617 2617 4177 4177 4177 4177 2617 2617
Exp 75th perc 969k 969k 969k 969k 969k 969k 969k 969k
Search time 0.18 0.18 0.21 0.21 0.22 0.21 0.18 0.17
Total time 1.44 2.52 1.51 2.62 1.60 2.73 7.00 8.50
# constr 1069 1030 1206 1091 1184 1069 1097 1026
Constr time 73.93 82.76 99.07 111.98 98.03 110.70 57.75 69.44
Constr oom 461 503 310 425 335 447 416 487
Constr oot 137 134 151 151 148 151 154 154
Perfect h 76 61 71 61 71 61 71 61
Linear tree 99.81 23.40 99.83 24.66 89.27 25.54 55.42 10.04

Table A.2.: Pairwise comparison of plain merge strategies (orig) to their symmetry-enhanced
counterparts (symm), using shrink strategy G.
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Section 6.4: Optimized Implementation

base opt diff + - base opt diff + -

CGGL RL

Coverage 502 520 18 18 0 500 507 7 8 1
Search time 0.15 0.15 0.00 44 154 0.17 0.17 0.00 52 179
Total time 2.35 2.24 −0.11 221 201 2.44 2.42 −0.03 179 243
Exp 75th perc 741k 741k 0 67 73 801k 801k 0 96 75
# constr 979 1095 116 119 3 1055 1144 89 92 3

DFP MIASM

Coverage 522 576 54 76 22 562 586 24 35 11
Search time 0.15 0.08 −0.07 151 74 0.14 0.13 −0.01 117 110
Total time 2.36 2.15 −0.21 124 310 6.84 2.14 −4.70 485 51
Exp 75th perc 726k 300k −426 144 65 1106k 792k −314 84 99
# constr 1095 1067 −28 111 139 1121 1240 119 131 12

symm-CGGL symm-RL

Coverage 504 522 18 25 7 502 512 10 15 5
Search time 0.14 0.15 0.01 35 163 0.16 0.16 0.01 56 176
Total time 5.90 4.89 −1.01 346 127 6.39 5.08 −1.31 362 112
Exp 75th perc 745k 827k 82 73 65 522k 507k −15 85 101
# constr 1000 1123 123 136 13 1074 1166 92 104 12

symm-DFP symm-MIASM

Coverage 505 514 9 14 5 559 549 −10 15 25
Search time 0.17 0.18 0.00 107 120 0.14 0.14 −0.00 93 145
Total time 6.68 5.52 −1.15 409 67 12.06 5.43 −6.64 446 73
Exp 75th perc 724k 918k 194 86 90 828k 772k −56 106 95
# constr 1057 1152 95 99 4 1115 1183 68 95 27

CGGL RL

Coverage 565 579 14 14 0 552 554 2 2 0
Search time 0.17 0.17 0.01 25 280 0.23 0.23 0.01 12 323
Total time 1.98 1.67 −0.30 362 119 1.80 1.61 −0.19 305 158
# constr 1069 1084 15 20 5 1206 1209 3 10 7

DFP MIASM

Coverage 552 554 2 2 0 547 548 1 10 9
Search time 0.23 0.23 0.00 122 213 0.21 0.21 0.00 101 224
Total time 1.89 1.67 −0.22 346 121 7.55 2.07 −5.47 465 56
# constr 1184 1213 29 35 6 1097 1149 52 65 13

symm-CGGL symm-RL

Coverage 515 531 16 16 0 517 520 3 7 4
Search time 0.19 0.19 0.00 22 285 0.19 0.19 0.01 29 281
Total time 2.67 1.73 −0.93 414 66 2.39 1.57 −0.81 411 66
# constr 1030 1032 2 25 23 1091 1052 −39 24 63

symm-DFP symm-MIASM

Coverage 519 525 6 9 3 524 524 0 6 6
Search time 0.19 0.19 0.00 60 253 0.18 0.18 0.00 79 234
Total time 2.50 1.62 −0.87 427 54 8.65 2.26 −6.39 459 43
# constr 1069 1059 −10 32 42 1026 1048 22 39 17

Table A.3.: Comparison of the non-optimized implementation against the optimized one, for
shrink strategies F (upper half) and G (lower half).
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Section 6.6.2: DFP Tie-breaking

RL L RND Random

NTO OTN RND NTO OTN RND NTO OTN RND

Prefer composite (PC)

Coverage 539 537 540 531 528 533 517 515 516 575
Exp 50th perc 703 703 709 3 3 12 545 545 541 1012
Exp 75th perc 394k 394k 394k 346k 346k 346k 406k 406k 406k 436k
Search time 0.12 0.12 0.12 0.09 0.09 0.09 0.12 0.12 0.12 0.13
Total time 1.50 1.49 1.50 1.35 1.35 1.35 1.45 1.44 1.45 1.18
# constr 1196 1197 1189 1095 1095 1099 1068 1068 1075 1190
Constr time 39.20 39.13 39.05 41.36 41.57 41.44 49.28 49.02 49.46 37.18
Constr oom 331 331 338 437 438 434 453 453 445 338
Constr oot 140 139 140 135 134 134 146 146 147 139
Perfect h 263 263 263 276 274 273 255 255 255 238
Linear tree 92.89 92.90 93.36 84.57 84.57 84.71 92.23 92.23 92.09 15.46

Prefer atomic (PA)

Coverage 549 573 558 572 569 596 549 572 565
Exp 50th perc 766 939 1370 63 660 421 523 717 503
Exp 75th perc 604k 624k 572k 375k 812k 486k 459k 539k 634k
Search time 0.12 0.15 0.15 0.11 0.13 0.12 0.12 0.14 0.14
Total time 1.05 0.96 1.12 1.20 0.94 1.13 1.26 1.00 1.09
# constr 1187 1245 1226 1191 1233 1283 1155 1198 1197
Constr time 27.47 22.88 24.55 32.09 23.24 24.17 32.31 22.84 25.75
Constr oom 340 288 304 345 302 252 375 333 331
Constr oot 140 134 137 131 132 132 137 136 139
Perfect h 248 226 236 259 227 237 235 216 234
Linear tree 10.78 10.28 10.44 10.92 10.54 10.21 10.56 10.18 10.19

Prefer composite (PC)

Coverage 554 554 554 605 605 605 560 560 560 557
Exp 50th perc 3919 3919 3919 3919 3919 3919 3919 3919 3919 3919
Exp 75th perc 1058k 1058k 1058k 1058k 1058k 1058k 1058k 1058k 1058k 1058k
Search time 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
Total time 1.60 1.59 1.59 1.48 1.48 1.48 1.65 1.65 1.65 1.52
# constr 1213 1214 1214 1249 1249 1249 1209 1210 1209 1210
Constr time 78.22 77.89 77.70 75.08 75.11 75.40 81.89 81.15 81.30 74.63
Constr oom 322 322 322 288 288 288 324 326 326 327
Constr oot 132 131 131 130 130 130 134 131 132 130
Perfect h 71 71 71 81 81 81 71 71 71 72
Linear tree 33.39 33.36 33.36 34.59 34.59 34.59 34.08 34.05 34.08 8.76

Prefer atomic (PA)

Coverage 582 553 553 558 597 555 557 556 558
Exp 50th perc 4356 4288 4375 4300 4288 4288 4379 4288 4288
Exp 75th perc 1129k 1129k 1129k 1129k 1129k 1129k 1129k 1129k 1129k
Search time 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
Total time 1.42 1.29 1.43 1.48 1.34 1.43 1.47 1.35 1.42
# constr 1236 1206 1206 1209 1251 1207 1206 1208 1211
Constr time 77.07 74.28 76.01 74.57 71.96 74.00 78.97 76.55 78.75
Constr oom 300 330 330 324 283 327 326 328 326
Constr oot 131 131 131 134 133 133 135 131 130
Perfect h 81 74 72 74 72 72 76 74 74
Linear tree 5.34 5.47 5.47 5.87 5.68 5.88 5.64 5.63 5.62

Table A.4.: Tie-breaking with DFP, for shrink strategies F (upper half) and G (lower half).
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Section 6.6.3: sbMIASM Tie-breaking

RL L RND Random

NTO OTN RND NTO OTN RND NTO OTN RND

Prefer composite (PC)

Coverage 576 569 574 576 573 577 582 569 579 572
Exp 50th perc 0 0 0 9 9 0 8 8 16 29
Exp 75th perc 317k 313k 307k 279k 279k 279k 268k 268k 268k 404k
Search time 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.12 0.11 0.11
Total time 3.08 2.99 3.04 3.44 3.36 3.40 3.39 3.31 3.35 2.83
# constr 1063 1056 1053 1058 1056 1054 1060 1051 1051 1059
Constr time 138.87 137.21 143.18 143.88 141.37 144.33 168.65 167.47 170.49 155.30
Constr oom 262 271 274 271 278 281 253 264 250 276
Constr oot 342 340 340 338 333 332 354 352 366 332
Perfect h 322 319 327 316 317 321 308 305 313 292
Linear tree 61.71 62.12 61.82 62.19 62.31 62.52 62.08 62.51 62.61 14.64

Prefer atomic (PA)

Coverage 578 571 575 576 582 572 578 586 575
Exp 50th perc 572 572 572 35 572 293 520 293 227
Exp 75th perc 367k 459k 405k 773k 662k 661k 255k 396k 538k
Search time 0.13 0.13 0.14 0.14 0.13 0.14 0.13 0.14 0.14
Total time 3.00 2.68 2.95 3.05 2.63 2.98 3.04 2.66 3.04
# constr 1073 1083 1073 1079 1089 1060 1068 1076 1060
Constr time 107.21 100.57 127.22 119.37 104.31 114.77 127.38 106.81 124.97
Constr oom 269 268 276 276 273 299 285 303 301
Constr oot 325 316 318 312 305 308 314 288 306
Perfect h 294 289 290 306 297 299 289 280 290
Linear tree 10.72 10.62 10.62 11.40 11.39 11.79 10.96 10.97 11.13

Prefer composite (PC)

Coverage 557 558 558 570 571 571 566 567 567 560
Exp 50th perc 4177 4177 4177 4177 4177 4177 4177 4177 4177 4177
Exp 75th perc 1129k 1129k 1129k 1129k 1129k 1129k 1129k 1129k 1129k 1129k
Search time 0.26 0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Total time 1.86 1.83 1.85 2.06 2.04 2.03 2.10 2.09 2.10 2.03
# constr 1157 1161 1165 1162 1173 1175 1162 1175 1167 1154
Constr time 124.29 116.60 117.89 119.01 106.09 107.48 132.62 118.26 119.59 107.78
Constr oom 264 267 265 263 262 258 259 252 259 283
Constr oot 246 239 237 242 232 234 246 240 241 230
Perfect h 71 71 71 76 76 76 72 72 72 71
Linear tree 9.08 9.04 9.01 10.24 10.14 10.13 9.98 9.87 9.94 5.11

Prefer atomic (PA)

Coverage 564 558 565 566 567 567 560 560 564
Exp 50th perc 4177 4177 4177 4177 4177 4177 4177 4177 4177
Exp 75th perc 1129k 1129k 1129k 1129k 1129k 1129k 1129k 1129k 1129k
Search time 0.25 0.26 0.26 0.26 0.26 0.25 0.25 0.25 0.25
Total time 2.16 1.86 1.98 1.94 1.86 2.06 2.21 2.03 2.11
# constr 1163 1154 1171 1158 1163 1168 1156 1167 1164
Constr time 129.03 118.50 118.06 119.69 105.05 107.64 133.82 116.80 119.08
Constr oom 263 278 262 273 275 271 274 268 271
Constr oot 241 235 234 236 229 228 237 232 232
Perfect h 76 71 71 71 72 76 73 72 74
Linear tree 1.46 1.47 1.45 1.73 1.72 1.71 1.47 1.46 1.46

Table A.5.: Tie-breaking with sbMIASM, for shrink strategies F (upper half) and G (lower half).
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Section 6.6.4: The SCC Framework

RL L RND Random

NTO OTN RND NTO OTN RND NTO OTN RND

Prefer composite (PC)

Coverage 776 777 778 752 753 753 734 734 734 733
Exp 50th perc 1267 1267 1267 2175 2175 2175 10k 10k 16k 9481
Exp 75th perc 509k 509k 509k 749k 749k 749k 701k 701k 701k 1164k
Search time 0.17 0.17 0.17 0.22 0.21 0.22 0.26 0.26 0.26 0.26
Total time 2.30 2.31 2.31 2.85 2.82 2.86 2.84 2.81 2.83 2.31
# constr 1491 1490 1488 1442 1442 1441 1487 1485 1486 1494
Constr time 58.07 58.14 58.47 81.13 80.72 80.68 69.76 69.98 70.36 54.89
Constr oom 40 42 42 91 93 92 43 45 45 40
Constr oot 136 135 137 134 132 134 137 137 136 133
Perfect h 310 309 307 294 294 291 277 278 278 273
Linear tree 60.83 60.94 60.95 61.17 61.23 61.21 63.35 63.43 63.39 10.11

Prefer atomic (PA) CGGL

Coverage 751 730 736 764 748 744 741 734 741 744
Exp 50th perc 4603 6054 8049 1994 6947 3631 7767 14k 12k 2915
Exp 75th perc 693k 1110k 769k 605k 785k 677k 856k 933k 816k 920k
Search time 0.23 0.27 0.25 0.18 0.23 0.22 0.23 0.27 0.24 0.21
Total time 2.05 1.74 1.97 2.11 1.71 1.88 2.27 1.82 1.95 3.10
# constr 1493 1494 1492 1501 1498 1494 1491 1490 1490 1441
Constr time 59.09 52.94 54.67 57.17 51.20 52.82 58.09 53.21 54.69 79.38
Constr oom 40 42 42 40 42 44 42 44 44 95
Constr oot 134 131 133 126 127 129 134 133 133 131
Perfect h 279 265 270 282 271 275 275 258 268 300
Linear tree 6.16 6.16 6.17 6.33 6.34 6.36 6.17 6.17 6.17 65.09

Prefer composite (PC)

Coverage 765 756 750 739 736 734 746 741 742 761
Exp 50th perc 1001 1277 1001 1799 1799 1799 1345 1345 1319 995
Exp 75th perc 459k 482k 459k 487k 487k 487k 562k 562k 562k 552k
Search time 0.19 0.20 0.20 0.21 0.21 0.20 0.20 0.20 0.21 0.19
Total time 4.68 4.50 4.61 5.73 5.55 5.71 5.43 5.27 5.31 4.11
# constr 1377 1376 1379 1345 1344 1342 1359 1357 1353 1405
Constr time 141.08 136.42 142.88 202.01 192.05 200.59 182.08 177.09 184.14 113.71
Constr oom 41 40 41 42 43 42 44 43 42 44
Constr oot 249 251 247 280 280 283 264 267 272 218
Perfect h 336 328 328 318 310 310 322 314 323 318
Linear tree 36.38 36.34 36.19 35.84 35.86 35.84 35.91 35.96 36.07 13.88

Prefer atomic (PA) RL

Coverage 767 769 766 766 763 757 757 762 764 762
Exp 50th perc 4977 1724 6967 1823 3877 5707 3736 4756 3617 1730
Exp 75th perc 466k 503k 611k 449k 478k 546k 893k 540k 508k 927k
Search time 0.17 0.17 0.18 0.17 0.18 0.19 0.19 0.18 0.18 0.23
Total time 4.53 3.67 4.20 4.37 3.97 4.39 4.47 3.84 4.22 2.64
# constr 1406 1432 1426 1409 1414 1408 1416 1426 1426 1498
Constr time 177.54 134.13 145.10 160.37 136.18 151.30 161.56 133.26 145.23 37.22
Constr oom 43 41 42 40 40 43 42 43 42 40
Constr oot 218 194 199 218 213 216 209 198 199 129
Perfect h 330 321 316 334 321 320 325 314 328 301
Linear tree 11.10 10.89 10.94 10.36 10.33 10.37 10.10 10.03 10.03 53.27

Table A.6.: Tie-breaking with SCC-DFP (top) and SCC-sbMIASM (bottom), and results for
SCC-CGGL (top) and SCC-RL (bottom), all using shrink strategy B.
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RL L RND Random

NTO OTN RND NTO OTN RND NTO OTN RND

Prefer composite (PC)

Coverage 538 537 538 548 540 546 523 520 520 584
Exp 50th perc 292 292 292 0 0 8 443 443 439 152
Exp 75th perc 517k 416k 492k 334k 334k 333k 419k 396k 397k 363k
Search time 0.12 0.13 0.13 0.09 0.09 0.09 0.12 0.11 0.11 0.11
Total time 1.51 1.52 1.51 1.24 1.22 1.22 1.33 1.32 1.33 1.11
# constr 1153 1151 1148 1095 1099 1099 1057 1057 1058 1200
Constr time 36.19 36.12 36.17 38.87 38.86 38.99 41.48 41.59 41.33 29.37
Constr oom 372 374 374 432 431 432 466 464 465 332
Constr oot 142 141 142 137 135 135 143 144 144 135
Perfect h 266 263 265 294 289 292 271 270 271 265
Linear tree 55.42 55.52 55.23 51.32 51.32 51.41 53.74 53.64 53.69 12.83

Prefer atomic (PA) CGGL

Coverage 545 568 553 564 576 592 538 573 554 537
Exp 50th perc 80 266 79 66 89 70 36 78 72 0
Exp 75th perc 383k 564k 399k 352k 460k 459k 466k 322k 346k 418k
Search time 0.12 0.13 0.12 0.11 0.12 0.12 0.12 0.12 0.12 0.10
Total time 1.00 0.93 0.95 1.08 0.96 0.99 1.14 0.97 0.98 1.26
# constr 1182 1223 1202 1158 1225 1265 1142 1198 1187 1084
Constr time 31.54 27.34 28.79 33.04 27.47 28.75 32.97 27.90 29.80 44.42
Constr oom 347 311 329 378 309 270 388 331 343 455
Constr oot 137 133 135 131 132 132 136 137 135 128
Perfect h 263 244 259 265 245 255 261 237 255 306
Linear tree 7.61 7.36 7.49 8.20 7.76 7.51 8.14 7.68 7.75 57.38

Prefer composite (PC)

Coverage 563 557 562 568 565 563 566 557 558 563
Exp 50th perc 0 26 8 41 45 45 25 25 76 188
Exp 75th perc 210k 256k 289k 204k 249k 257k 257k 249k 257k 293k
Search time 0.10 0.10 0.10 0.10 0.11 0.10 0.10 0.10 0.10 0.11
Total time 2.64 2.58 2.60 2.90 2.86 2.91 2.80 2.76 2.78 2.57
# constr 1080 1076 1073 1070 1068 1061 1076 1065 1069 1037
Constr time 113.26 112.39 112.77 116.13 114.94 115.44 123.04 123.45 122.87 119.39
Constr oom 286 290 290 288 291 303 273 283 274 336
Constr oot 299 300 304 308 306 301 317 319 324 293
Perfect h 310 302 306 311 302 305 304 297 305 297
Linear tree 40.00 40.15 39.89 40.84 40.64 40.90 40.52 40.85 40.69 16.20

Prefer atomic (PA) RL

Coverage 579 562 566 576 577 567 578 576 570 521
Exp 50th perc 0 0 0 0 0 0 0 0 0 878
Exp 75th perc 90k 173k 105k 145k 223k 169k 147k 147k 103k 416k
Search time 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.12
Total time 1.47 1.37 1.42 1.45 1.38 1.42 1.60 1.43 1.53 1.63
# constr 1082 1084 1073 1075 1093 1070 1070 1084 1069 1122
Constr time 83.42 75.56 78.09 86.01 75.39 80.62 90.32 81.05 85.09 32.52
Constr oom 285 296 314 320 293 322 311 323 317 418
Constr oot 298 286 277 272 276 269 286 260 279 127
Perfect h 303 284 298 302 292 300 306 283 297 261
Linear tree 11.09 11.07 11.09 11.35 11.16 11.21 10.37 10.24 10.48 46.08

Table A.7.: Tie-breaking with SCC-DFP (top) and SCC-sbMIASM (bottom), and results for
SCC-CGGL (top) and SCC-RL (bottom), all using shrink strategy F.
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RL L RND Random

NTO OTN RND NTO OTN RND NTO OTN RND

Prefer composite (PC)

Coverage 563 563 563 606 605 606 570 570 570 562
Exp 50th perc 4177 4177 4177 4177 4177 4177 4177 4177 4177 4177
Exp 75th perc 988k 988k 988k 988k 988k 988k 988k 988k 988k 988k
Search time 0.21 0.21 0.21 0.20 0.20 0.20 0.21 0.21 0.21 0.21
Total time 1.70 1.69 1.69 1.62 1.63 1.62 1.82 1.81 1.81 1.68
# constr 1165 1165 1165 1196 1195 1195 1170 1172 1169 1159
Constr time 81.27 80.76 79.98 80.32 80.19 80.43 86.34 86.27 86.26 74.68
Constr oom 366 366 366 338 338 338 360 358 361 375
Constr oot 136 136 136 133 134 134 137 137 137 133
Perfect h 71 71 71 81 81 81 71 71 71 72
Linear tree 27.55 27.55 27.55 28.18 28.12 28.20 26.32 26.28 26.35 6.47

Prefer atomic (PA) CGGL

Coverage 592 562 563 569 609 567 568 567 570 578
Exp 50th perc 3662 3662 3662 3662 3662 3662 3662 3662 3662 3662
Exp 75th perc 680k 680k 680k 680k 680k 680k 680k 680k 680k 680k
Search time 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17
Total time 1.28 1.17 1.30 1.33 1.20 1.28 1.34 1.22 1.28 1.40
# constr 1187 1163 1156 1166 1207 1163 1160 1161 1167 1085
Constr time 68.91 68.41 68.87 66.38 64.09 66.14 68.95 69.06 68.44 67.43
Constr oom 346 371 376 366 327 371 371 372 366 461
Constr oot 134 133 135 135 133 133 136 134 134 121
Perfect h 81 74 72 74 72 72 76 74 74 76
Linear tree 2.61 2.67 2.68 2.92 2.82 2.92 2.84 2.84 2.83 54.10

Prefer composite (PC)

Coverage 569 569 569 571 571 571 567 567 567 564
Exp 50th perc 4177 4177 4177 4177 4177 4177 4177 4177 4177 4177
Exp 75th perc 988k 988k 988k 988k 988k 988k 988k 988k 988k 988k
Search time 0.23 0.24 0.24 0.22 0.23 0.23 0.22 0.23 0.23 0.23
Total time 2.04 2.01 2.02 2.21 2.20 2.18 2.26 2.24 2.26 2.15
# constr 1123 1135 1129 1123 1135 1128 1119 1126 1123 1122
Constr time 110.39 105.36 104.04 102.29 99.28 96.70 110.40 107.09 108.05 102.72
Constr oom 306 301 308 310 305 312 308 308 310 321
Constr oot 238 231 230 234 227 227 240 233 234 224
Perfect h 71 71 71 76 76 76 72 72 72 71
Linear tree 9.97 9.87 9.92 10.33 10.22 10.28 10.10 10.04 10.06 4.46

Prefer atomic (PA) RL

Coverage 567 569 567 569 568 567 567 567 567 561
Exp 50th perc 4177 4177 4177 4177 4177 4177 4177 4177 4177 4177
Exp 75th perc 802k 802k 802k 802k 802k 802k 802k 802k 802k 802k
Search time 0.20 0.21 0.21 0.21 0.21 0.20 0.20 0.20 0.20 0.22
Total time 1.90 1.67 1.76 1.70 1.66 1.83 1.95 1.81 1.88 1.63
# constr 1121 1133 1127 1120 1130 1125 1120 1126 1125 1162
Constr time 88.49 84.54 83.34 78.08 74.49 76.04 89.11 84.71 85.49 62.73
Constr oom 311 306 313 318 316 321 315 316 315 371
Constr oot 235 228 227 229 221 221 232 225 227 134
Perfect h 76 71 71 71 73 76 73 72 74 71
Linear tree 1.52 1.50 1.51 1.79 1.86 1.78 1.52 1.51 1.51 50.09

Table A.8.: Tie-breaking with SCC-DFP (top) and SCC-sbMIASM (bottom), and results for
SCC-CGGL (top) and SCC-RL (bottom), all using shrink strategy G.
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Section 6.7: Pruning

original abstraction original abstraction

FP IP UP NP FP IP UP FP IP UP NP FP IP UP

CGGL RL

Coverage 520 517 505 462 508 508 502 507 507 499 481 506 499 501
E 50th perc 137 143 137 143 143 143 143 1425 2090 1525 2090 1436 2090 1436
E 75th perc 1342k 1342k 1342k 1342k 1342k 1342k 1342k 1133k 1133k 1133k 1133k 1133k 1133k 1133k
Search time 0.23 0.24 0.24 0.23 0.24 0.24 0.23 0.19 0.19 0.19 0.19 0.19 0.19 0.19
Total time 2.17 2.98 2.35 3.82 2.75 3.58 2.91 2.57 3.36 2.65 3.57 3.23 3.67 3.29
# constr 1095 1085 1067 998 1078 1081 1053 1144 1123 1131 1075 1144 1122 1127
Constr time 81.58 82.80 83.28 94.24 127.83 113.19 126.57 80.60 81.78 80.73 82.70 102.79 88.65 101.68
Constr oom 444 454 471 540 446 455 473 396 419 410 467 389 420 407
Constr oot 128 128 129 129 143 131 141 127 125 126 125 134 125 133
Perfect h 286 285 284 254 284 285 282 242 239 238 225 243 239 239

DFP PA/L/RND MIASM

Coverage 596 593 589 581 590 585 588 586 564 568 524 576 550 568
E 50th perc 4658 7118 7007 7786 9056 7786 9056 2056 2056 2056 3071 2056 2056 2056
E 75th perc 1124k 1124k 1124k 1251k 1194k 1194k 1194k 780k 788k 781k 910k 780k 787k 780k
Search time 0.25 0.30 0.26 0.32 0.28 0.31 0.28 0.18 0.20 0.20 0.23 0.18 0.21 0.20
Total time 1.86 2.40 1.99 2.63 2.36 2.76 2.47 3.18 4.16 3.57 5.25 3.92 4.95 4.30
# constr 1283 1281 1270 1263 1283 1280 1261 1240 1225 1216 1165 1227 1214 1204
Constr time 54.98 52.65 52.42 53.70 65.78 61.59 63.99 87.53 90.97 93.06 91.86 115.62 111.62 115.53
Constr oom 252 256 266 275 251 255 273 329 347 351 407 334 347 359
Constr oot 132 130 131 129 133 132 133 98 95 100 95 106 106 104
Perfect h 237 226 230 215 232 223 228 327 296 313 272 325 296 313

sbMIASM PA/RL/OTN SCC-DFP PC/RL/NTO

Coverage 580 584 586 566 587 570 579 586 535 541 461 566 535 541
E 50th perc 2102 6315 2102 8508 2102 6662 2102 786 857 861 860 843 858 993
E 75th perc 643k 1016k 829k 1113k 829k 1016k 829k 786k 691k 667k 691k 667k 691k 667k
Search time 0.22 0.28 0.23 0.31 0.23 0.31 0.24 0.15 0.14 0.13 0.15 0.13 0.15 0.13
Total time 1.67 2.30 1.84 2.68 2.13 2.77 2.34 1.85 4.46 1.97 5.74 2.29 4.77 2.50
# constr 1237 1260 1265 1257 1263 1261 1261 1076 969 984 857 1039 974 968
Constr time 55.97 55.69 55.44 56.73 68.21 64.53 66.12 113.80 173.18 115.60 180.88 163.50 185.78 169.87
Constr oom 262 277 272 279 271 274 275 303 259 348 424 266 257 337
Constr oot 131 130 130 131 133 132 131 288 439 335 386 362 436 362
Perfect h 249 236 245 230 250 235 243 280 283 278 238 303 287 289

Table A.9.: Comparison of different pruning mechanisms: pruning via throwing away states
(original) and pruning via abstracting (abstraction), full pruning (FP), pruning only
irrelevant states (IP), pruning only unreachable states (UP), and no pruning (NP).
Results for different merge strategies, all using shrink strategy F.
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original abstraction original abstraction

FP IP UP NP FP IP UP FP IP UP NP FP IP UP

CGGL RL

Coverage 579 529 578 527 578 527 577 554 550 554 548 552 550 552
E 50th perc 3919 3919 3919 3919 3919 3919 3919 4296 4296 4296 4296 4296 4296 4296
E 75th perc 1132k 1132k 1132k 1132k 1132k 1132k 1132k 1058k 1058k 1058k 1058k 1058k 1058k 1058k
Search time 0.21 0.21 0.21 0.21 0.22 0.21 0.22 0.22 0.22 0.22 0.22 0.23 0.22 0.23
Total time 1.40 1.69 1.43 1.75 1.49 1.72 1.50 1.53 1.79 1.56 1.82 1.63 1.81 1.65
# constr 1084 1034 1083 1032 1079 1032 1079 1209 1206 1210 1204 1205 1206 1204
Constr time 76.15 88.64 77.18 88.99 80.26 89.55 79.38 79.89 87.67 80.63 88.77 81.95 88.64 81.32
Constr oom 462 513 462 512 468 513 467 324 328 324 330 330 328 330
Constr oot 121 120 122 123 120 122 121 134 133 133 133 132 133 133
Perfect h 76 71 76 71 76 71 76 71 71 71 71 71 71 71

DFP PA/L/RND MIASM

Coverage 605 552 603 552 603 552 603 548 544 549 542 548 544 551
E 50th perc 3919 3919 3919 3919 3919 3919 3919 4232 4232 4232 4232 4232 4232 4232
E 75th perc 1058k 1058k 1058k 1058k 1058k 1058k 1058k 806k 806k 806k 806k 806k 806k 806k
Search time 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
Total time 1.57 1.90 1.60 1.96 1.66 1.93 1.66 2.12 2.43 2.17 2.49 2.23 2.46 2.24
# constr 1249 1196 1247 1196 1247 1196 1247 1149 1144 1150 1142 1147 1142 1151
Constr time 77.28 93.52 77.09 93.91 80.03 95.32 80.35 70.94 78.56 73.19 79.65 79.29 80.23 78.82
Constr oom 288 341 289 339 292 340 294 422 428 422 429 423 427 423
Constr oot 130 130 131 132 128 131 126 96 95 95 96 97 98 93
Perfect h 81 76 81 76 81 76 81 71 71 71 71 71 71 71

sbMIASM PA/RL/OTN SCC-DFP PC/RL/NTO

Coverage 609 594 609 594 607 594 607 571 503 534 502 534 504 534
E 50th perc 7066 7068 7066 7068 7066 7068 7066 2183 2183 2183 2183 2183 2183 2183
E 75th perc 999k 999k 999k 999k 999k 999k 999k 715k 715k 715k 715k 715k 715k 715k
Search time 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.15 0.14 0.14 0.14 0.14 0.14 0.14
Total time 1.59 1.70 1.59 1.69 1.69 1.78 1.70 1.26 2.24 1.70 2.30 1.74 2.27 1.75
# constr 1207 1193 1208 1192 1206 1193 1205 1175 865 890 856 890 858 889
Constr time 77.13 75.80 75.10 75.81 76.57 76.86 77.72 94.64 104.29 99.33 105.85 103.22 105.12 108.54
Constr oom 327 342 327 342 331 342 331 258 636 615 645 608 623 627
Constr oot 133 132 132 133 130 132 131 234 166 162 166 169 186 151
Perfect h 72 72 72 72 72 72 72 76 76 78 76 78 76 78

Table A.10.: Comparison of different pruning mechanisms: pruning via throwing away states
(original) and pruning via abstracting (abstraction), full pruning (FP), pruning only
irrelevant states (IP), pruning only unreachable states (UP), and no pruning (NP).
Results for different merge strategies, all using shrink strategy G.
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Section 6.8: State of the Art

Compared to Table 6.17, the merge strategies use different tie-breaking criteria depending on the
shrink strategy they are combined with. For F (upper half of Table A.11), we use the following
variants:

• CGGL/RL: the vanilla linear merge strategies.

• DFP1/DFP2: DFP1 corresponds to the previous notion of DFP, i.e. the tie-breaking con-
figuration PC/RL/NTO, whereas DFP2 is the best variant of DFP with tie-breaking con-
figuration PA/L/RND.

• sbMIASM: the best configuration with tie-breaking PA/RND/OTN.

• MIASM1/MIASM2/MIASM3: the original MIASM strategy with different fallback
merge strategies DFP1, DFP2, and sbMIASM as above. MIASM1 corresponds to the
previous notion of MIASM and the other two variants have not been tested previously.

• SCC: the best variant ordering SCCs in topological order and using DFP2 as a secondary
merge strategy.

• symm: symmetry-enhanced variants of all above merge strategies (except for SCC for
which no direct integration is possible), including the new combinations with sbMIASM
and different tie-breaking variants of DFP and MIASM.

For G (lower half of Table A.11), we use the following variants:

• CGGL/RL: the vanilla linear merge strategies.

• DFP1/DFP2: DFP1 corresponds to the previous notion of DFP, i.e. the tie-breaking con-
figuration PC/RL/NTO, whereas DFP2 is the best variant of DFP with tie-breaking con-
figuration PC/L/RND.

• sbMIASM: the best configuration with tie-breaking PC/L/RND.

• MIASM1/MIASM2/MIASM3: the original MIASM strategy with different fallback
merge strategies DFP1, DFP2, and sbMIASM as above. MIASM1 corresponds to the
previous notion of MIASM and the other two variants have not been tested previously.

• SCC: the best variant ordering SCCs in topological order and using DFP2 as a secondary
merge strategy.

• symm: symmetry-enhanced variants of all above merge strategies (except for SCC for
which no direct integration is possible), including the new combinations with sbMIASM
and different tie-breaking variants of DFP and MIASM.
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CGGL RL DFP1 DFP2 sbMIASM MIASM1 MIASM2 MIASM3 SCC

Coverage 520 507 539 596 586 586 618 590 592
Exp 50th perc 0 437 151 306 0 0 0 0 75
Exp 75th perc 420k 505k 489k 186k 258k 101k 145k 258k 356k
Search time 0.09 0.13 0.11 0.10 0.07 0.06 0.06 0.06 0.09
Total time 1.18 1.55 1.32 0.89 1.16 1.01 0.88 1.20 0.81
# constr 1095 1144 1196 1283 1076 1240 1279 1152 1265
Constr time 30.21 30.60 26.23 16.33 109.34 19.58 15.50 86.30 11.93
Constr oom 444 396 331 252 303 329 293 332 270
Constr oot 128 127 140 132 288 98 95 183 132
Perfect h 286 242 263 237 280 327 306 308 255
Linear tree 100.00 100.00 92.89 10.21 10.97 75.81 24.78 25.78 7.51

symm

CGGL RL DFP1 DFP2 sbMIASM MIASM1 MIASM2 MIASM3

Coverage 522 512 514 553 548 549 563 564
Exp 50th perc 0 358 476 87 0 19 25 9
Exp 75th perc 404k 428k 460k 160k 313k 202k 160k 230k
Search time 0.10 0.14 0.14 0.10 0.08 0.09 0.08 0.08
Total time 4.07 4.63 5.03 3.00 3.10 4.40 3.83 4.03
# constr 1123 1166 1152 1227 1038 1183 1208 1128
Constr time 60.05 57.78 59.18 46.52 134.37 56.03 52.46 110.27
Constr oom 417 375 389 314 337 395 368 362
Constr oot 127 126 126 126 292 89 91 177
Perfect h 276 238 252 244 280 292 282 288
Linear tree 23.86 25.21 28.21 4.65 5.59 19.61 8.11 8.95

CGGL RL DFP1 DFP2 sbMIASM MIASM1 MIASM2 MIASM3 SCC

Coverage 579 554 554 605 571 548 594 556 609
Exp 50th perc 3139 3139 3139 3139 3139 3139 3139 3139 3139
Exp 75th perc 715k 715k 715k 715k 715k 715k 715k 715k 715k
Search time 0.19 0.18 0.18 0.17 0.17 0.18 0.18 0.18 0.17
Total time 1.26 1.28 1.32 1.24 1.46 1.77 1.56 1.63 1.09
# constr 1084 1209 1213 1249 1175 1149 1182 1128 1207
Constr time 54.69 52.26 49.92 49.87 78.43 51.43 53.29 69.03 48.05
Constr oom 462 324 322 288 258 422 394 382 327
Constr oot 121 134 132 130 234 96 91 157 133
Perfect h 76 71 71 81 76 71 76 71 72
Linear tree 100.00 100.00 33.39 34.59 10.13 42.73 42.89 27.30 2.82

symm

CGGL RL DFP1 DFP2 sbMIASM MIASM1 MIASM2 MIASM3

Coverage 531 520 525 535 535 524 532 529
Exp 50th perc 3919 3919 3919 3919 3919 3919 3919 3919
Exp 75th perc 859k 859k 859k 859k 859k 859k 859k 859k
Search time 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
Total time 1.55 1.57 1.61 1.47 1.44 2.03 1.95 1.87
# constr 1032 1052 1059 1063 1052 1048 1053 1037
Constr time 67.70 68.59 69.07 66.20 74.84 68.84 69.05 74.80
Constr oom 509 489 482 472 451 528 521 527
Constr oot 126 126 126 132 164 91 93 103
Perfect h 63 63 63 63 63 63 63 63
Linear tree 8.53 8.65 4.53 4.23 2.19 6.39 6.65 6.36

Table A.11.: Overview of state-of-the-art merge-and-shrink configurations, see the list in the text
for details on the used tie-breaking criteria. Used shrink strategies: F (upper half)
and G (lower half).
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