Merge-and-Shrink Abstractions for Classical Planning

Theory, Strategies, and Implementation

Silvan Sievers

University of Basel, Switzerland

PhD Defense

October 27, 2017

Classical Planning

Examples

Classical Planning

Examples

Representation: Transition Systems

Solving Planning Tasks Optimally

- Transition systems not given explicitly (too large)
- Compact description of planning tasks
- Use A* with admissible heuristics

Solving Planning Tasks Optimally

- Transition systems not given explicitly (too large)
- Compact description of planning tasks
- Use A* with admissible heuristics

Merge-and-shrink Heuristics
[Dräger, Finkbeiner \& Podelski, 2006; Helmert, Haslum \& Hoffmann, 2007]

- Compute abstraction of transition system
- Use optimal abstract solution as heuristic

Merge-and-shrink: Idea

Factored transition system: set of small transitions systems representing a large transition system (synchronized product)

Merge-and-shrink: Idea

Factored transition system: set of small transitions systems representing a large transition system (synchronized product)

Merge-and-shrink: Idea

Factored transition system: set of small transitions systems representing a large transition system (synchronized product)

Merge-and-shrink Transformations: Merging

Replace two transition systems by their synchronized product

Merge-and-shrink Transformations: Merging

Replace two transition systems by their synchronized product

Merge-and-shrink Transformations: Merging

Replace two transition systems by their synchronized product

Merge-and-shrink Transformations: Merging

Replace two transition systems by their synchronized product

Merge-and-shrink Transformations: Merging

Replace two transition systems by their synchronized product

Merge-and-shrink Transformations: Merging

Replace two transition systems by their synchronized product

Merge-and-shrink Transformations: Merging

Replace two transition systems by their synchronized product

Merge-and-shrink Transformations: Shrinking

Apply abstraction to some transition system

Merge-and-shrink Transformations: Shrinking

Apply abstraction to some transition system

Merge-and-shrink Transformations: Shrinking

Apply abstraction to some transition system

Merge-and-shrink Transformations: Shrinking

Apply abstraction to some transition system

Merge-and-shrink Transformations: Shrinking

Apply abstraction to some transition system

Merge-and-shrink: Ingredients

- Omitted: abstraction mapping, label mapping
- How to merge? \rightarrow merge strategy

Representing Merge Strategies

Θ_{1}

Θ_{2}

Θ_{3}

Θ_{4}

Representing Merge Strategies

Θ_{1}

Θ_{2}
Θ_{3}

Θ_{4}

Representing Merge Strategies

Θ_{1}

Θ_{2}
Θ_{3}
Θ_{4}

Contributions

Merge-and-shrink Framework

Contributions

Theory:

- Generalized Label Reduction
- Expressiveness

Merge-and-shrink Framework

Contributions

Contributions

Outline

(1) Background

(2) Theory
(3) Merge Strategies
4. Evaluation
(5) Conclusions

Merge-and-shrink Transformations: Label Reduction

Combine different labels to reduce number of transitions

Merge-and-shrink Transformations: Label Reduction

Combine different labels to reduce number of transitions
Previous Label Reduction

- Based on syntax of underlying planning operators
- Full potential restricted to linear merge strategies

Merge-and-shrink Transformations: Label Reduction

Combine different labels to reduce number of transitions

Previous Label Reduction

- Based on syntax of underlying planning operators
- Full potential restricted to linear merge strategies

Generalized Label Reduction [s, Wehrle \& Helmert, 2014]

- Clear and easy definition
- Transformation like merging and shrinking

Generalized Label Reduction

Apply abstraction to the common label set of the factored transition system

Generalized Label Reduction

Apply abstraction to the common label set of the factored transition system

Generalized Label Reduction

Apply abstraction to the common label set of the factored transition system

Exact Label Reductions

Locally equivalent labels: parallel transitions in a transition system

Exact Label Reductions

Locally equivalent labels: parallel transitions in a transition system

Exact Label Reductions

Locally equivalent labels: parallel transitions in a transition system

Combinable labels: locally equivalent in all but one transition systems

Exact Label Reductions

Locally equivalent labels: parallel transitions in a transition system

Combinable labels: locally equivalent in all but one transition systems

Exact Label Reductions

Locally equivalent labels: parallel transitions in a transition system

Combinable labels: locally equivalent in all but one transition systems

Expressive Power of Merge-and-Shrink

 [Helmert, Röger \& S, 2015]What functions can be compactly represented by non-linear and linear merge-and-shrink?

Expressive Power of Merge-and-Shrink

 [Helmert, Röger \& S, 2015]What functions can be compactly represented by non-linear and linear merge-and-shrink?

Theorem

- Non-linear merge-and-shrink strictly more powerful than linear merge-and-shrink

Outline

(1) Background

(2) Theory
(3) Merge Strategies
4. Evaluation
(5) Conclusions

First Non-linear Merge Strategy for Planning

[S, Wehrle \& Helmert, 2014]

Adapted from model checking [Dräger, Finkbeiner \& Podelski, 2006]
DFP Merge Strategy

- Score-based: assign each merge candidate a value
- Prefer products fine-grained in goal region

Factored Symmetries

[S, Wehrle, Helmert, Shleyfman \& Katz, 2015]

Factored Symmetries

Goal-stable automorphisms of a factored transition system

Factored Symmetries

[S, Wehrle, Helmert, Shleyfman \& Katz, 2015]

Factored Symmetries

Goal-stable automorphisms of a factored transition system

Factored Symmetries

[S, Wehrle, Helmert, Shleyfman \& Katz, 2015]

Factored Symmetries

Goal-stable automorphisms of a factored transition system

- $\mathrm{T} \Leftrightarrow \mathrm{B}, \mathrm{L} \Leftrightarrow \mathrm{R}$
$\bullet \rightarrow \Leftrightarrow$

Symmetry-enhanced Merge Strategies

What to do with symmetries?

- Shrinking by combining symmetric states

Symmetry-enhanced Merge Strategies

What to do with symmetries?

- Shrinking by combining symmetric states
- Theorem: shrinking with atomic symmetries is exact

Symmetry-enhanced Merge Strategies

What to do with symmetries?

- Shrinking by combining symmetric states
- Theorem: shrinking with atomic symmetries is exact
- Theorem: merging all transition systems affected by a non-atomic symmetry results in an atomic symmetry

Symmetry-enhanced Merge Strategies

What to do with symmetries?

- Shrinking by combining symmetric states
- Theorem: shrinking with atomic symmetries is exact
- Theorem: merging all transition systems affected by a non-atomic symmetry results in an atomic symmetry

Framework to Enhance Merge Strategies with Symmetries

- Compute symmetries and select one
- In the next iterations, merge all affected transition systems
- Otherwise, use fallback merge strategy

Another Score-based Merge Strategy

MIASM: maximum intermediate abstraction size minimizing
[Fan, Müller \& Holte, 2014]

Another Score-based Merge Strategy

MIASM: maximum intermediate abstraction size minimizing
[Fan, Müller \& Holte, 2014]
Score-based MIASM Merge Strategy [S, Wehrle \& Helmert, 2016]

- Score: ratio of alive to total states in the product system

Another Score-based Merge Strategy

MIASM: maximum intermediate abstraction size minimizing
[Fan, Müller \& Holte, 2014]

Score-based MIASM Merge Strategy [S, Wehrle \& Helmert, 2016]

- Score: ratio of alive to total states in the product system

Another Score-based Merge Strategy

MIASM: maximum intermediate abstraction size minimizing
[Fan, Müller \& Holte, 2014]

Score-based MIASM Merge Strategy [S, Wehrle \& Helmert, 2016]

- Score: ratio of alive to total states in the product system

Taxonomy of Merge Strategies

Precomputed merge strategies

Score-based
 merge strategies

Taxonomy of Merge Strategies

Precomputed merge strategies

Score-based
 merge strategies

Capture causal dependencies

Taxonomy of Merge Strategies

Precomputed merge strategies
Capture causal
dependencies

Score-based merge strategies
 Interaction with other strategies

Taxonomy of Merge Strategies

Precomputed merge strategies

Capture causal dependencies

Score-based merge strategies

Interaction with other strategies

Hybrid Merge Strategies
Precompute only some part
of the merge tree

SCC Framework for Merge Strategies
 [S, Wehrle \& Helmert, 2016]

- Precomputation: partition transition systems according to the SCCs of the causal graph
- Secondary score-based merge strategy:
- First merge transition systems within partitions
- Then merge resulting products

Outline

(4) Evaluation
(5) Conclusions

Experimental Study

- Integration into Fast Downward

Experimental Study

- Integration into Fast Downward
- Evaluation on planning benchmarks: 1667 tasks
- Typical IPC limits: 30m, 2GB

Experimental Study

- Integration into Fast Downward
- Evaluation on planning benchmarks: 1667 tasks
- Typical IPC limits: 30m, 2GB
- Reporting coverage

Evolution of Merge-and-Shrink Heuristics

Old Lab. Red.

RL
702

Evolution of Merge-and-Shrink Heuristics

Gen. Lab. Red.
RL
728

Evolution of Merge-and-Shrink Heuristics

Gen. Lab. Red.
RL DFP MIASM
$728 \quad 746 \quad 773$

Evolution of Merge-and-Shrink Heuristics

Old Lab. Red.
$\frac{R L}{702}$

Gen. Lab. Red.		
RL	DFP	MIASM
728	746	773

Factored Symmetries

RL	DFP
743	752

Evolution of Merge-and-Shrink Heuristics

$\frac{R L}{}$ Old Lab. Red.
702

Gen. Lab. Red.		
RL	DFP	MIASM
728	746	773

Factored Symmetries

RL	DFP
743	752

State-of-the-art Merge Strategies
sbMIASM
755

Evolution of Merge-and-Shrink Heuristics

Old Lab. Red.
$\frac{\mathrm{RL}}{702}$

Gen. Lab. Red.

RL	DFP	MIASM
728	746	773

Factored Symmetries

RL	DFP
743	752

State-of-the-art Merge Strategies
sbMIASM DFP (TB)
$755 \quad 760$

Evolution of Merge-and-Shrink Heuristics

Old Lab. Red.
$\frac{\mathrm{RL}}{702}$

Gen. Lab. Red.

RL	DFP	MIASM
728	746	773

Factored Symmetries

RL	DFP
743	752

State-of-the-art Merge Strategies sbMIASM DFP (TB) SCC-sbMIASM SCC-DFP $\begin{array}{llll}755 & 760 & 770 & 780\end{array}$

Evolution of Merge-and-Shrink Heuristics

Old Lab. Red.
$\frac{\mathrm{RL}}{702}$

Gen. Lab. Red.		
RL	DFP	MIASM
728	746	773

Factored Symmetries

RL	DFP
743	752

State-of-the-art Merge Strategies sbMIASM DFP (TB) SCC-sbMIASM SCC-DFP $\begin{array}{llll}755 & 760 & 770 & 780\end{array}$

Outline

(1) Background

(2) Theory
(3) Merge Strategies
4. Evaluation
(5) Conclusions

Contributions

Merge-and-shrink Framework

Contributions

Theory:

- Generalized Label Reduction
- Algebraic view
- Expressiveness

Merge-and-shrink Framework

Contributions

Contributions

Selected Publications

- Efficient Implementation of PDBs
[S, Ortlieb \& Helmert, 2012]
- Generalized Label Reduction
[S, Wehrle \& Helmert, 2014]
- Structural Symmetries
[Shelyfman, Katz, S, Wehrle \& Helmert, 2015]
- Factored Symmetries [S, Wehrle, Helmert, Shleyfman \& Katz, 2015]
- Expressiveness of M\&S
[Helmert, Röger \& S, 2015]
- Symmetries for Abs. Heuristics
- Merge Strategies
- PDBs with Symmetries
[S, Wehrle, Helmert \& Katz 2015]
[S, Wehrle \& Helmert, 2016]
[S, Wehrle, Helmert \& Katz, 2017]

Merge-and-shrink Transformations: Pruning

Merge-and-shrink Transformations: Pruning

Merge-and-shrink Transformations: Pruning

(1)

Merge-and-shrink Transformations: Pruning

Factored Mappings

$$
\Theta_{1} \otimes \Theta_{2}
$$

Factored Mappings

DFP: Example Computation

DFP: Example Computation

