Merge-and-Shrink Abstractions for Classical Planning Theory, Strategies, and Implementation

Silvan Sievers

University of Basel, Switzerland

PhD Defense

October 27, 2017

Background ●ooooooo	Theory 0000	Merge Strategies	Evaluation oo	Conclusions
Classical Pla	anning			

Examples

Background ●ooooooo	Theory 0000	Merge Strategies	Evaluation oo	Conclusions
Classical Pla	anning			

Examples

Representation: Transition Systems

Background o●oooooo	Theory 0000	Merge Strategies	Evaluation 00	Conclusions
Solving P	lanning Ta			

- Transition systems not given explicitly (too large)
- Compact description of planning tasks
- Use A* with admissible heuristics

Background o●oooooo	Theory 0000	Merge Strategies	Evaluation	Conclusions
Solving Pla	anning Ta	sks Optimally		

- Transition systems not given explicitly (too large)
- Compact description of planning tasks
- Use A* with admissible heuristics

Merge-and-shrink Heuristics [Dräger, Finkbeiner & Podelski, 2006; Helmert, Haslum & Hoffmann, 2007]

- Compute abstraction of transition system
- Use optimal abstract solution as heuristic

Background ooeooooo	Theory 0000	Merge Strategies	Evaluation 00	Conclusions	
Merge-and-shrink: Idea					

Factored transition system: set of small transitions systems representing a large transition system (synchronized product)

	ماميا بيا مانيا م	_		
0000000		000000		
Background	Theory	Merge Strategies	Evaluation	Conclusions

Merge-and-shrink: Idea

Factored transition system: set of small transitions systems representing a large transition system (synchronized product)

Background 0000000	oooo	Merge Strategies	evaluation	Conclusions
D I	TI ··· ·	Manual Objects with a		

Merge-and-shrink: Idea

Factored transition system: set of small transitions systems representing a large transition system (synchronized product)

Background ooo●oooo	Theory 0000	Merge Strategies	Evaluation oo	Conclusions

Background 0000●000	Theory 0000	Merge Strategies	Evaluation oo	Conclusions
		· · · · ·		

 Background
 Theory
 Merge Strategies
 Evaluation
 Conclusions

 0000
 0000
 0000
 00
 00
 00

Merge-and-shrink Transformations: Shrinking

 Background
 Theory
 Merge Strategies
 Evaluation
 Conclusions

 0000
 0000
 0000
 00
 00
 00

Merge-and-shrink Transformations: Shrinking

Merge-and-shrink Transformations: Shrinking

Merge-and-shrink Transformations: Shrinking

Background ooooooooo	Theory 0000	Merge Strategies	Evaluation 00	Conclusions
Merge-and-shrink: Ingredients				

- Omitted: abstraction mapping, label mapping
- How to merge? \rightarrow merge strategy

Background ooooooo●o	Theory 0000	Merge Strategies	Evaluation oo	Conclusions
Representing Merge Strategies				

Background ooooooeo	Theory 0000	Merge Strategies	Evaluation oo	Conclusions
Representin	ig Merge S	trategies		

Background ooooooooo	Theory 0000	Merge Strategies	Evaluation oo	Conclusions
Representin	ig Merge S	trategies		

Background ooooooo●	Theory 0000	Merge Strategies	Evaluation 00	Conclusions
Contributior	าร			

Merge-and-shrink Framework

Background ooooooo●	Theory 0000	Merge Strategies	Evaluation 00	Conclusions
Contributio	ns			

- Generalized Label Reduction
- Expressiveness

Merge-and-shrink Framework

Background	Theory 0000	Merge Strategies	Evaluation oo	Conclusions
Outline				

3 Merge Strategies

4 Evaluation

5 Conclusions

Background	Theory ●ooo	Merge Strategies	Evaluation oo	Conclusions 00
Merge-and-	shrink Trar	sformations: L	abel Reduct	ion

Combine different labels to reduce number of transitions

Background	Theory	Merge Strategies	Evaluation	Conclusions
	0000			

Merge-and-shrink Transformations: Label Reduction

Combine different labels to reduce number of transitions

Previous Label Reduction

- Based on syntax of underlying planning operators
- Full potential restricted to linear merge strategies

Background	Theory	Merge Strategies	Evaluation	Conclusions
	0000			

Merge-and-shrink Transformations: Label Reduction

Combine different labels to reduce number of transitions

Previous Label Reduction

- Based on syntax of underlying planning operators
- Full potential restricted to linear merge strategies

Generalized Label Reduction [S, Wehrle & Helmert, 2014]

- Clear and easy definition
- Transformation like merging and shrinking

Background	Theory o●oo	Merge Strategies	Evaluation oo	Conclusions
Generalized Label Reduction				

Apply abstraction to the common label set of the factored transition system

Background	Theory	Merge Strategies	Evaluation	Conclusions
	0000			

Generalized Label Reduction

Apply abstraction to the common label set of the factored transition system

Background	Theory	Merge Strategies	Evaluation	Conclusions
	0000			

Generalized Label Reduction

Apply abstraction to the common label set of the factored transition system

00000000	0000	000000					
Exact Label Reductions							

Locally equivalent labels: parallel transitions in a transition system
Eventiak		tiono		
	0000			
Background	Theory	Merge Strategies	Evaluation	Conclusions

Locally equivalent labels: parallel transitions in a transition system

Event Label Deductions						
Background	Theory ○○●○	Merge Strategies	Evaluation 00	Conclusions		

Locally equivalent labels: parallel transitions in a transition system

Combinable labels: locally equivalent in all but one transition systems

Event Lel		tione		
	0000			
Background	Theory	Merge Strategies	Evaluation	Conclusions

Locally equivalent labels: parallel transitions in a transition system

Combinable labels: locally equivalent in all but one transition systems

Event Label Deductions						
	0000					
Background	Theory	Merge Strategies	Evaluation	Conclusions		

Locally equivalent labels: parallel transitions in a transition system

Combinable labels: locally equivalent in all but one transition systems

Background	Theory ○○○●	Merge Strategies	Evaluation oo	Conclusions
Expressive I	Power of N	lerge-and-Shri	nk	

What functions can be **compactly represented** by non-linear and linear merge-and-shrink?

Background	Theory 000●	Merge Strategies	Evaluation oo	Conclusions
Expressive	Power of N	lerge-and-Shri	nk	

What functions can be compactly represented by non-linear and linear merge-and-shrink?

Theorem

 Non-linear merge-and-shrink strictly more powerful than linear merge-and-shrink

Background	Theory 0000	Merge Strategies	Evaluation oo	Conclusions
Outline				

2 Theory

3 Merge Strategies

4 Evaluation

5 Conclusions

Background	Theory 0000	Merge Strategies ●ooooo	Evaluation 00	Conclusions
First Non	-linear Me	rge Strategy fo	or Planning	

Adapted from model checking [Dräger, Finkbeiner & Podelski, 2006]

DFP Merge Strategy

- Score-based: assign each merge candidate a value
- Prefer products fine-grained in goal region

Background	Theory 0000	Merge Strategies o●oooo	Evaluation 00	Conclusions
Factored	Symmetri mert, Shleyfma	es n & Katz, 2015]		

Factored Symmetries

Goal-stable automorphisms of a factored transition system

Background	Theory 0000	Merge Strategies o●oooo	Evaluation 00	Conclusions
Factored S	Symmetri	es n & Katz, 2015]		

Factored Symmetries

Goal-stable automorphisms of a factored transition system

Background	Theory 0000	Merge Strategies ○●○○○○	Evaluation 00	Conclusions
Factored S	Symmetrie	es n & Katz 2015]		

Factored Symmetries

Goal-stable automorphisms of a factored transition system

Background	Theory 0000	Merge Strategies oo●ooo	Evaluation 00	Conclusions
Symmetry	-enhanc	ed Merge Strate	egies	

What to do with symmetries?

Shrinking by combining symmetric states

Background	Theory 0000	Merge Strategies oo●ooo	Evaluation 00	Conclusions
Symmetry-	enhanced	Merge Strategie	es	

What to do with symmetries?

- Shrinking by combining symmetric states
- Theorem: shrinking with atomic symmetries is exact

Background	Theory 0000	Merge Strategies	Evaluation 00	Conclusions
Symmetry	v-enhance	ed Merge Strate	egies	

What to do with symmetries?

- Shrinking by combining symmetric states
- Theorem: shrinking with atomic symmetries is exact
- Theorem: merging all transition systems affected by a non-atomic symmetry results in an atomic symmetry

Background	Theory 0000	Merge Str	rategies	Evaluation 00	Conclusions
•		1.1.4	0		

Symmetry-enhanced Merge Strategies

What to do with symmetries?

- Shrinking by combining symmetric states
- Theorem: shrinking with atomic symmetries is exact
- Theorem: merging all transition systems affected by a non-atomic symmetry results in an atomic symmetry

Framework to Enhance Merge Strategies with Symmetries

- Compute symmetries and select one
- In the next iterations, merge all affected transition systems
- Otherwise, use fallback merge strategy

Background	Theory 0000	Merge Strategies ○○○●○○	Evaluation 00	Conclusions
Another S	core-bas	ed Merge Strat	egy	

MIASM: maximum intermediate abstraction size minimizing [Fan, Müller & Holte, 2014]

Background	Theory 0000	Merge Strategies ○○○●○○	Evaluation 00	Conclusions

Another Score-based Merge Strategy

MIASM: maximum intermediate abstraction size minimizing [Fan, Müller & Holte, 2014]

Score-based MIASM Merge Strategy [S, Wehrle & Helmert, 2016]

• Score: ratio of alive to total states in the product system

Background	Theory 0000	Merge Strategies ○○○●○○	Evaluation 00	Conclusions

Another Score-based Merge Strategy

MIASM: maximum intermediate abstraction size minimizing [Fan, Müller & Holte, 2014]

Score-based MIASM Merge Strategy [S, Wehrle & Helmert, 2016]

• Score: ratio of alive to total states in the product system

Background	Theory 0000	Merge Strategies ○○○●○○	Evaluation 00	Conclusions

Another Score-based Merge Strategy

MIASM: maximum intermediate abstraction size minimizing [Fan, Müller & Holte, 2014]

Score-based MIASM Merge Strategy [S, Wehrle & Helmert, 2016]

• Score: ratio of alive to total states in the product system

Background	Theory	Merge Strategies	Evaluation	Conclusions	
	0000	0000●0	00	00	
Taxonomy of Morgo Stratogias					

Taxonom	v of l	Merae	Stra	teaies
	,		U u	

Precomputed	Score-based
merge	merge
strategies	strategies

Background 00000000	0000	Merge Strategies	Evaluation 00	00	
Taxanamy of Morga Stratagian					

Taxonomy of Merge Strategies

Precomputed	Score-based
merge	merge
strategies	strategies
Capture causal	
dependencies	

0000000	0000	occoeo	00	00
Tayonamu	of Mara	Stratagiaa		

Taxonom	y of I	Merge	St	rategies
---------	--------	-------	----	----------

Precomputed	Score-based
merge	merge
strategies	strategies
Capture causal	Interaction with
dependencies	other strategies

Taxanam	. of Mara	Ctratagiaa		
		000000		
Background	Theory	Merge Strategies	Evaluation	Conclusions

Taxonomy of Merge Strategies

Precomputed merge strategies			Score-based merge strategies
Capture causal dependencies	1		Interaction with other strategies
	Hybrid Merge S	Strategies	
	Precompute or of the merge tr	nly <mark>some part</mark> ee]

Background	Theory 0000	Merge Strategies ○○○○○●	Evaluation oo	Conclusions
SCC Fram	ework fo	r Merge Strate	gies	

- Precomputation: partition transition systems according to the SCCs of the causal graph
- Secondary score-based merge strategy:
 - First merge transition systems within partitions
 - Then merge resulting products

Background	Theory 0000	Merge Strategies	Evaluation	Conclusions
Outline				

3 Merge Strategies

5 Conclusions

Background	Theory 0000	Merge Strategies	Evaluation ●○	Conclusions
Experiment	al Study			

• Integration into Fast Downward

Background	Theory 0000	Merge Strategies	Evaluation ●0	Conclusions
Experiment	al Study			

- Integration into Fast Downward
- Evaluation on planning benchmarks: 1667 tasks
- Typical IPC limits: 30m, 2GB

Background	Theory 0000	Merge Strategies	Evaluation ●o	Conclusions
Experiment	al Study			

- Integration into Fast Downward
- Evaluation on planning benchmarks: 1667 tasks
- Typical IPC limits: 30m, 2GB
- Reporting coverage

Background	Theory 0000	Merge Strategies	Evaluation ○●	Conclusions
Evolution of	Merge-an	d-Shrink Heuri	stics	

Evalution of			ation	
Background	Theory 0000	Merge Strategies	Evaluation ⊙●	Conclusions

Evolution of Merge-and-Shrink Heuristics

Gen. Lab. Red.	
RL	
728	

Evalution of			ation	
Background	Theory 0000	Merge Strategies	Evaluation ⊙●	Conclusions

Evolution of Merge-and-Shrink Heuristics

Gen. Lab. Red.						
RL	DFP	MIASM				
728	746	773				

Evalution of			ation	
Background	Theory 0000	Merge Strategies	Evaluation ○●	Conclusions

Evolution of Merge-and-Shrink Heuristics

Gen. Lab. Red.						
RL	DFP	MIASM				
728	746	773				

Factored Symmetries						
	RL	DFP				
	743	752				

Evolution	of Morgo	and Shrink Uc	vurietiee	
Background	Theory 0000	Merge Strategies	Evaluation ○●	Conclusions

Background 0000000	Theory 0000	Merge Strategies	Evaluation ○●	Conclusions
Evolution of	Merge-and	d-Shrink Heuris	stics	

Old Lab. Red.	Gen. Lab. Red.			1	Fact	ored S	ymmetr	ries	
RL	R	L	DFP	MIASM			RL	DFP	
702	72	8	746	773			743	752	
State-of-the-art Merge Strategies									
sbMIAS	SM D	FP	(TB)						
755		76	60						

Background 0000000	Theory 0000	Merge Strategies	Evaluation ○●	Conclusions		
Evolution of Merge-and-Shrink Heuristics						

Old Lab. Red.	Gen.	Gen. Lab. Red.			actored S	ymmetries
RL	RL	DFP	MIASM		RL	DFP
702	728	746	773		743	752
State-of-the-ar	t Merge Str	ategies	\$			
sbMIA	SM DFP	(TB)	SCC-sbN	IIASM	SCC-D	FP
75	5 76	60	770)	780	

Background	Theory 0000	Merge Strategies	Evaluation ○●	Conclusions			
Evolution of Merge-and-Shrink Heuristics							

Background	Theory 0000	Merge Strategies	Evaluation 00	Conclusions
Outline				

Background

2 Theory

3 Merge Strategies

4 Evaluation

Background	Theory 0000	Merge Strategies	Evaluation 00	Conclusions ●○	
Contributions					

Merge-and-shrink Framework

Background	Theory 0000	Merge Strategies	Evaluation 00	Conclusions ●○	
Contributions					

Coloctod	Dublicatio	20		
Background	Theory 0000	Merge Strategies	Evaluation 00	Conclusions oo

Selected Publications

- Efficient Implementation of PDBs [S, Ortlieb & Helmert, 2012]
- Generalized Label Reduction [S, Wehrle & Helmert, 2014]
- Structural Symmetries [Shelyfman, Katz, S, Wehrle & Helmert, 2015]
- Factored Symmetries [S, Wehrle, Helmert, Shleyfman & Katz, 2015]
- Expressiveness of M&S
- Symmetries for Abs. Heuristics
- Merge Strategies
- PDBs with Symmetries

- [Helmert, Röger & S, 2015]
- [S, Wehrle, Helmert & Katz 2015]
 - [S, Wehrle & Helmert, 2016]
- [S, Wehrle, Helmert & Katz, 2017]

Factored Mappings

 $\Theta_1\otimes\Theta_2$

Factored Mappings

 $\Theta_1\otimes\Theta_2$

DFP: Example Computation

DFP: Example Computation

