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Abstract. We propose doppelkopf, a trick-taking card game with similarities to
skat, as a benchmark problem for AI research. While skat has been extensively
studied by the AI community in recent years, this is not true for doppelkopf. How-
ever, it has a substantially larger state space than skat and a unique key feature
which distinguishes it from skat and other card games: players usually do not
know with whom they play at the start of a game, figuring out the parties only in
the process of playing.
Since its introduction in 2006, the UCT algorithm has been the dominating ap-
proach for solving games in AI research. It has notably achieved a playing strength
comparable to good human players at playing go, but it has also shown good per-
formance in card games like Klondike solitaire and skat. In this work, we adapt
UCT to play doppelkopf and present an algorithm that generates random card
assignments, used by the UCT algorithm for sampling. In our experiments, we
discuss and evaluate different variants of the UCT algorithm, and we show that
players based on UCT improve over simple baseline players and exhibit good
card play behavior also when competing with a human player.

1 Introduction

Doppelkopf (literally “double head”) is a trick-taking card game for four players. It
is mostly played in Germany, with a popularity only slightly lower than that of skat,
which has been well-studied by the AI community in recent years [16, 14, 5, 17, 10, 11].
However, to the best of our knowledge, doppelkopf has not been subject to AI research
yet, although it has a much larger state space than skat and a unique feature which
potentially makes it harder for computers playing it due to increasing uncertainty: at
the start of a game, the parties are usually not known to the players until specific cards
have been revealed, and hence collaboration at the beginning is difficult and subject
to assumptions and inference. This work aims at introducing doppelkopf as a research
topic and providing a baseline against which future work can compare.

Upper Confidence Bounds applied to Trees (UCT) [15] is a Monte Carlo tree search
algorithm which has experienced a lot of success since its first application to the game
of go [12]: It has successfully been used for (complete information) General Game
Playing [9], and for many scenarios of acting under uncertainty, including the Canadian
Traveler’s Problem [8], probabilistic planning [13], Klondike solitaire [4], and multi-
player games like hearts, spades, Chinese checkers [23], and skat [19]. Hence, it seems
natural to use UCT to establish a baseline computer player for doppelkopf. To be able
to use UCT on a full game state space in contrast to the actual belief state space the



doppelkopf players are confronted with, we present an algorithm that computes random
card assignments consistent with the game history, which can then be used by the UCT
algorithm for game simulations. In our experiments, we evaluate different variants of
UCT in different settings, showing that players based on UCT improve over baseline
players and show good card play behavior also when playing with a human.

2 Doppelkopf

In this section, we present doppelkopf in a short form, discussing only the basic rules.
Official rules have only been defined after the foundation of the Deutscher Doppelkopf
Verband (German Doppelkopf Association; DDV) in 1982 [1]. Consequently, there is a
large pool of house rules used by hobby players. In this work, we exclusively consider
the official rules which are used for tournament play. For an exhaustive description of
the game, we refer to the first author’s Master’s thesis [22] or the DDV [1].

2.1 Game Play

Doppelkopf is a trick-taking card game for four players. The deck consists of a double
shortened French deck, with a total of 48 cards (the 2s to 8s are removed). This means
there are the regular four suits clubs (♣), spades (♠), hearts (♥) and diamonds (♦), each
consisting of two aces (A), two tens (10), two kings (K), two queens (Q), two jacks (J)
and two nines (9). The card point values are the same as in skat, i.e. an ace is worth 11
points, a ten 10, a king 4, a queen 3, a jack 2, and a nine 0 points, which sums up to
a total of 240 card points in a doppelkopf deck. In every game, the re party competes
against the kontra party, (usually) aiming at collecting at least 121 card points.

A game starts by dealing every player 12 cards, the so-called hand, which must
be hidden from and not communicated to the other players. Before the actual card
play phase can start, players need to settle the type of the current game in the game
type determination phase. While there are various solo game types where one player
forms the re party and plays against the three other players of the kontra party, the most
common and default game type is the so-called normal game, where two players play
against the two others. The chosen game type also dictates how the cards are divided
into suits and what rank each card has in its suit. For the remainder of this section, we
will focus on normal games and again refer to the literature for more details about other
game types [22, 1].

In a normal game, there is a trump suit, consisting of the following cards in descend-
ing order:♥10,♣Q,♠Q,♥Q,♦Q,♣J,♠J,♥J,♦J,♦A,♦10,♦K,♦9. The remaining
suits (♣,♠,♥) each form a separate non-trump suit, sorted as follows: A, 10, K, 9 (with
the exception of♥, where the tens are part of the trump suit). The parties are as follows:
the players holding a♣Q form the re party, opposing the other players forming the kon-
tra party, and hence the parties are not known to the players at the beginning of a game.
If a player p has both ♣Q, p has the option to play a solo or to play a marriage, where
one of the other three players, according to specific rules, joins the marriage player p to
form the re party. As soon as the parties are settled in the case of a marriage, the game
continues like a normal game.



The card play rules are independent of the chosen game type and exactly the same
as in skat. In short, one player starts by playing any card, thereby settling the suit to be
played in this trick, which everybody has to follow if possible. The player who played
the highest card of that suit (or of the trump suit) wins the trick, adding its summed
card point value to their account, and starts the next trick by playing any card. After
completing twelve tricks, the game ends, the winning party and the game value are
determined (see below), and the next game can start.

In the card play phase (during the first few tricks), independently of the game type,
players can make announcements to increase the game value. The “basic” announce-
ments (in German: “Ansagen”, literally “to announce”) are re and kontra, depending
on the announcing player’s party. They do not increase the threshold for winning the
game, but reveal the announcing player’s party to the others. Further announcements (in
German: “Absagen”, literally “to reject”) are no 90 (no 60, no 30), which claims that
the other party will not manage to win 90 (60, 30) card points, and schwarz (literally
“black”), which claims that the other party will not win a single trick. If the other party
reaches the “rejected goal” nevertheless, the announcing party loses the game. The of-
ficial rules precisely specify the latest time point in terms of number of cards a player
is still holding up to which the player is allowed to make (further) announcements.

2.2 Game Evaluation

The game value is determined in terms of score points (not to be confused with card
points): +1 for winning the game; +2 if re (kontra) was announced; +1 if the losing
party has less than 90 (60, 30) card points or won no trick; +1 if no 90 (no 60, no 30,
schwarz) was announced; +1 if the winning party achieved at least 120 (90, 60, 30) card
points against an announcement of no 90 (no 60, no 30, schwarz) of the other party. The
players of the winning party are rewarded with the positive game value, the others with
the negative game value (zero-sum notation). In case of solo games, the game value is
multiplied by 3 for the soloist.

In normal games, there are additional extra score points rewarded as follows: +1
for winning against the elders, i.e. the kontra party wins; +1 for the party catching a
fox, i.e. winning a trick where an opponent played an ♦A; +1 for the party making a
doppelkopf, i.e. winning a trick worth at least 40 card points; +1 for the party winning
the last trick if the highest card played in this trick is a charlie, i.e. a ♣J.

2.3 Discussion
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≈ 2.4 ·1013. Multiplying

the two numbers gives 5.6 · 1039, which is only a rough upper bound on the size of the
card state space, because game states can be consistent with many different card deals.
However, this does not consider the various game types, the moves players make in
the game determination phase of the game, or the announcement moves. We think that
the large state space of doppelkopf, its uncertainty of knowledge about parties and its
strategic depth make doppelkopf an interesting benchmark problem for AI research.



3 The UCT Algorithm

In this section, we present the UCT algorithm [15], a state-of-the-art algorithm for many
problems of acting under uncertainty, adapted to doppelkopf. We start with a high-level
description of the algorithm. While we ideally would like to determine the move which
maximizes the expected outcome of the game for the moving player in a given game
state, computing all possible card deals consistent with the game history and computing
all possible outcomes of a game under a given card assignment is usually infeasible. The
UCT algorithm avoids this problem by relying on sampling. More precisely, UCT is a
Monte Carlo tree search algorithm which repeatedly simulates the game starting in the
current state until a terminal game state is reached, also called performing a rollout. To
perform such a rollout of the game, the UCT algorithm needs to assume a fixed card
deal, i.e. a fixed card assignment of the remaining cards to all other players. We discuss
how to compute such a card assignment in more detail in the next section and assume a
fixed card assignment for the moment. At the end of a rollout, the outcome of the game
is used to compute UCT rewards for all players. This information is stored in a tree
of game states which is incrementally built over the course of performing rollouts and
which serves to bias future computations of rollouts. At any time, the algorithm can be
terminated and the move leading to the successor state with the highest average UCT
reward can be returned.

3.1 UCT for Doppelkopf

We now describe the computation of one UCT rollout under a fixed card assignment.
Let s0 denote the current game state for which UCT is queried, let V k(si) denote the
number of rollouts among the first k rollouts of the UCT algorithm in which state si
was reached, and let Rk

j (si) denote the average UCT reward (defined below) obtained
by player j in the first k rollouts when completing a rollout from state si. Both V k(si)
and Rk

j (si) are stored in the UCT tree. Each rollout, given the fixed card assignment,
starts in state s0 and iteratively chooses a successor state until a terminal game state
is reached. Let si be the current state reached in the (k + 1)st rollout, with n possible
successor states s′1, . . . , s

′
n, and let p be the player to move in si. UCT favors selecting

successors that have led to high UCT rewards for p in previous rollouts (where Rk
p(s
′
j) is

high) and that have been rarely tried in previous rollouts (where V k(s′j) is low). Balanc-
ing those two criteria is commonly called the exploration-exploitation dilemma, which
UCT attempts to solve by treating the decision corresponding to successor selection at
state si as a multi-armed bandit problem and applying the UCT formula, which is based
on the UCB1 formula introduced by Auer et al. [2] in the context of such multi-armed
bandit problems. UCT chooses the successor s′j which maximizes the UCT formula

Rk(s′j) + C

√
log(V k(si))

V k(s′j)
,

where C is a bias parameter to guide the amount of exploration. If V k(s′j) = 0,
the value of the exploration term (the second term) is considered to be ∞, leading to
every successor s′j being chosen at least once, if si is reached at least n times. In our



experiments, we use a random successor state from the set of unvisited ones, leading
to a variant of UCT which is sometimes called blind UCT. After the completion of a
rollout, the V and R values of states visited during the rollout are updated.

When reaching a terminal game state, the algorithm has to compute the UCT reward
for all players, based on their achieved game score points. This is done by multiplying
the game score points with 500 and adding to it, as a bias towards achieving more card
points, the card points achieved by the party.1 We choose 500 to ensure that the card
points bias serves a pure tie breaker only, because the maximum of 240 card points can
never exceed 500, which is obtained if assuming the smallest possible game value of 1.

UCT comes with theoretical guarantees about convergence and regret bounds: Koc-
sis and Szepesvári [15] prove that every state is visited infinitely many times, given
enough rollouts, and that states which have been unpromising previously are chosen
less and less frequently over time, proving that the algorithm eventually converges to a
stable policy. Furthermore, they prove that the average UCT reward of every state lies
in the interval of its expectation plus minus the exploration term, which grows logarith-
mically in the number of visits of the state, i.e. the regret of the policy UCT converges
to is bounded from the optimal policy logarithmically in the number of rollouts.

3.2 Variants

Recent work in the area of General Game Playing discusses modeling the belief state
space of incomplete information games and using classical complete information al-
gorithms such as Minimax or UCT on the actual states corresponding to a belief state
[20, 7, 21]. While we stick to the approach of instantiating belief states into full game
states and then using UCT on the complete information state space — which proved to
be very successful in various applications [8, 13, 4, 23, 19]— we propose two versions
of the UCT algorithm to vary the number of card assignments used. The first version,
called ensemble-UCT, performs several regular UCT computations, each with a differ-
ent card assignment, fixed over all rollouts of that computation. Hence, it constructs a
different tree for every such UCT computation and in the end chooses the action which
leads to the state maximizing the average UCT reward, averaged over all UCT compu-
tations. The second version, called single-UCT, computes a new card assignment for
every rollout. As a consequence, the constructed tree can contain states which are not
consistent across different rollouts. In a given rollout, only successors consistent with
the current card assignment are considered for selection. This leads to fewer parts of
the tree being reusable over different rollouts, but avoids the potential problem of com-
puting only a few different card assignments as in the ensemble-UCT version.

Furthermore, we consider two variants of constructing the tree over the course of
performing rollouts that differ in how previously unseen states are handled. The first
variant adds a node for every new state encountered during a rollout to the tree. The
second variant only adds the first new state encountered and continues the remainder of
the rollout as a so-called Monte Carlo simulation, which consists of random successor
selection until a terminal game state is reached. Note that this behavior does not differ

1 We also experimented using the card points achieved only by the player and obtained results
with no significant difference.



from the first variant, which also chooses random successors when encountering a state
with previously unseen successors. The difference only lies in the amount of statistics
recorded for states encountered during rollouts. With the first variant, the constructed
tree grows quickly, including many nodes in the tree that will potentially not be vis-
ited again, especially if they led to “bad” results in the rollout they were encountered.
Still, the more information available, the more quickly the UCT algorithm converges.
With the second variant, the tree grows more slowly, only including information about
states that have a high probability of being revisited in future rollouts. We suspect that
not performing a Monte Carlo simulation should be beneficial particularly with the
ensemble-UCT version, because it uses the same card assignment over many rollouts
and is hence expected to obtain similar results in different rollouts for the same state.
With the single-UCT version, different rollouts may lead to very different outcomes
even for the same state.

4 The Card Assignment Problem

We now consider the card assignment problem (CAP): in a game state s with player p
to move, assign all remaining cards to all other players such that the card assignment
is consistent with the game history. A card assignment is consistent if it respects all
information about the other players’ hands available to p. Our goal when solving the
CAP is to compute a solution uniformly at random to avoid generating any bias towards
specific card assignments in the computation of the UCT algorithm.

In state s, the following information about other players’ hands is available to p: if
a player p′ is playing a marriage2 and did not play one or both of their ♣Q yet, p′ still
needs to have both or one; re players not having played their ♣Q yet must still hold
it and kontra players cannot hold a ♣Q, where in both cases many scenarios can lead
to knowing a player’s party; all players who could not follow suit at some point in the
game cannot have any card of that suit.

To assign cards uniformly at random, we have to be able to compute the exact
number of possible consistent card assignments for arbitrary states. Then, taking into
account the number of consistent card assignments before and after hypothetically as-
signing a card to player, we can compute the exact probability for this specific assign-
ment. However, computing the number of solutions for the CAP, i.e. computing the
number of consistent card assignments, is #P-hard:3 the CAP can be formulated as a
matching problem in graph theory (see e.g. [6]), where solving the CAP corresponds to
finding a perfect bipartite matching, or more generally as a CSP (see e.g. [18]). Com-
puting the number of perfect matchings in a bipartite graph (#PBM) is #P-complete,
because it is closely connected to the #P-complete problem of computing the permanent
of 0-1-matrices [24], and counting the solutions of a CSP (#CSP) is a straightforward
generalization of #PBM. For #PBM, there exists a fully polynomial time randomized
approximation scheme [3]. However, using this approximation seems to demand an in-
feasible amount of computation, considering that we would need to solve the CAP up

2 In specific situations in the game type determination phase, it is also possible to infer that a
player wanted to play a marriage.

3 Informally, #P is the class of counting problems associated with decision problems in NP.



to four times for every remaining card to be assigned, and that we would need to com-
pute a new assignment of all remaining cards for every rollout if using the single-UCT
version. We hence propose our own algorithm to approximate a uniformly random card
assignment in the following.

The algorithm first computes the set of cards that every player can potentially have
without violating consistency. It then performs the following steps, every time starting
over again after successfully assigning one or more cards to a player: if there is a card
that can only be assigned to one player, assign it to that player; if there is a player that
needs exactly as many cards assigned as there are possible cards it can have, assign all
those cards to that player; if there is a player that needs one ♣Q, assign one to that
player; otherwise assign an arbitrary of the remaining cards to an arbitrary player that
can have it.

It is easy to see that the algorithm can only generate consistent card assignments,
because it never assigns a card to player that is not allowed to have it in a consistent
card assignment. We further argue that there exists a possible card-to-player assignment
of all remaining cards in every iteration of the algorithm: if a card cannot be assigned to
any player, then there must have been an earlier iteration in which that card could only
have been assigned to one player and the algorithm would have chosen that assignment.
Because the algorithm assigns at least one card in every iteration, it terminates after at
most as many iterations as there are cards left to be assigned initially.

Our algorithm does not generate consistent card assignments uniformly at random
for several reasons: first, the algorithm does not consider the number of possible card
assignments when randomly choosing a card and a player to assign to. Second, it does
not consider the number of card slots of the player, hence treating assigning a card to
a player with one open slot as likely as assigning it to a player with many open slots.
Third, prioritizing the assignment of a ♣Q to a player does not consider the probability
of that player getting a ♣Q without enforcing it.

5 Experiments

In this section, we report results for several variants of the UCT algorithm for dop-
pelkopf. While there are many commercial doppelkopf programs and the open source
program FreeDoko4 which comes with various types of configurable computer players
(e.g. using simulations, search trees, or heuristics), it is a technically challenging task
to evaluate these different programs together with our algorithm due to the lack of a
common framework. We hence evaluate the UCT players in competition against each
other and fill up empty player spots with random players. Random players do not take
part in the game determination phase, do not make announcements and play random
cards in every trick. They can be seen as “dummy players” which do not influence the
game.

Our general experimental setup is as follows: we compare two different UCT play-
ers by letting them play together with two identical random players, playing 1000 games
with random card deals. We repeat those 1000 games in every possible permutation of

4 http://free-doko.sourceforge.net/en/FreeDoko.html



player positions, so that every player plays every hand on every position once. The
UCT algorithm generally computes 10000 rollouts every time it is queried for a game
state, independent of the UCT version used. We evaluate a player’s performance as the
average score points per game in the 95% confidence interval. We report the results
achieved by each UCT player and, in parenthesis, by both random players. The best re-
sult of every comparison is highlighted in bold. Note that with overlapping confidence
intervals, the results are not always statistically significant. More precise results could
be obtained by increasing the number of games played.5

5.1 Exploration in the UCT Algorithm

In a first series of experiments, we investigate the influence of exploration in both the
ensemble-UCT and the single-UCT versions. Simultaneously, we test different combi-
nations of the number of performed UCT computations X and the number of rollouts Y
performed in each such computation for the ensemble-UCT version (denoted X/Y in the
following). We disable performing Monte Carlo simulations and discuss their influence
below.

Table 1. Comparison of different values for the exploration bias C for different configurations of
the ensemble-UCT version.

ensemble-UCT (5/2000)

C = 6000 vs. C = 8000 1.48± 0.07 vs. 1.90± 0.08 (vs. −1.69± 0.05)
C = 8000 vs. C = 12000 1.42± 0.08 vs. 2.07± 0.10 (vs. −1.74± 0.05)
C = 12000 vs. C = 16000 1.65± 0.10 vs. 1.83± 0.12 (vs. −1.74± 0.05)
C = 16000 vs. C = 24000 1.63± 0.12 vs. 1.41± 0.13 (vs. −1.52± 0.06)
C = 24000 vs. C = 32000 1.35± 0.13 vs. 1.20± 0.13 (vs. −1.27± 0.06)

ensemble-UCT (10/1000)

C = 6000 vs. C = 8000 1.49± 0.06 vs. 1.94± 0.07 (vs. −1.72± 0.05)
C = 8000 vs. C = 12000 1.49± 0.07 vs. 2.16± 0.09 (vs. −1.83± 0.05)
C = 12000 vs. C = 16000 1.82± 0.10 vs. 2.01± 0.11 (vs. −1.92± 0.05)
C = 16000 vs. C = 24000 1.92± 0.11 vs. 1.79± 0.12 (vs. −1.86± 0.05)
C = 24000 vs. C = 32000 1.86± 0.12 vs. 1.66± 0.12 (vs. −1.76± 0.06)

ensemble-UCT (20/500)

C = 6000 vs. C = 8000 1.52± 0.06 vs. 1.95± 0.07 (vs. −1.73± 0.05)
C = 8000 vs. C = 12000 1.65± 0.07 vs. 2.08± 0.09 (vs. −1.86± 0.05)
C = 12000 vs. C = 16000 1.88± 0.09 vs. 1.91± 0.10 (vs. −1.90± 0.05)
C = 16000 vs. C = 24000 1.93± 0.10 vs. 1.75± 0.10 (vs. −1.84± 0.05)
C = 24000 vs. C = 32000 1.93± 0.10 vs. 1.59± 0.10 (vs. −1.76± 0.05)

Table 1 shows the results of the ensemble-UCT version. On a pairwise basis, we
compare using different values for the exploration bias C, each for the three combina-
tions 5/2000 (first block), 10/1000 (second block), and 20/500 (third block). The first
observation is that the results are consistent across all configurations: With increasing

5 Computing a set of 1000 games with two UCT players using the ensemble-UCT version takes
roughly 19.5h in average to complete. With the single-UCT version, the average is roughly
46h, due to the high number of card assignments which need to be computed.



C, performance first increases up to a sweet-spot approximately around C = 16000 and
then decreases. Considering that the UCT reward can theoretically range from −16740
to +16740 (assuming a solo game with the highest possible value of 11, not including
irrational counter-announcements), and most often will range from −2000 to +2000
(assuming an average game value of 4), a value of C = 16000, multiplied with the
square root term of the UCT formula (ranging between 0 and 1), seems to be appropri-
ate to strongly favor exploration at the beginning, reducing exploration more and more
as the number of rollouts increases.

Next, we compare the three combinations with a fixed C against each other. Table
2 shows that the combination 10/1000 achieves the best performance. Apparently, there
is a trade-off between the number of different card assignments considered and the
number of rollouts performed with a fixed card assignment. Both using too few different
card assignments and performing too few rollouts with each card assignment hurts the
quality of the UCT computation.

Table 2. Comparison of different combinations of the number of UCT computations and rollouts
for the ensemble-UCT version.

ensemble-UCT (C=16000)

5/2000 vs. 10/1000 1.67± 0.12 vs. 1.83± 0.11 (vs. −1.75± 0.05)
10/1000 vs. 20/500 2.10± 0.11 vs. 1.70± 0.10 (vs. −1.90± 0.05)

We now turn our attention to results of the single-UCT version displayed in Table
3. We observe a similar trend for changing values of approximately C, however the
best performance is achieved with a lower value of C = 8000. Furthermore, the per-
formance of the players using the single-UCT version compared to the baseline players
is weaker than with the ensemble-UCT version. This lower absolute performance also
explains why choosing a lower value for C is better with the single-UCT version. We
will compare the two UCT versions directly against each other below.

Table 3. Comparison of different values for the exploration bias C for the single-UCT version.

single-UCT

C = 2000 vs. C = 4000 0.26± 0.06 vs. 1.18± 0.08 (vs. −0.72± 0.05)
C = 4000 vs. C = 6000 0.37± 0.07 vs. 1.32± 0.09 (vs. −0.85± 0.05)
C = 6000 vs. C = 8000 0.53± 0.07 vs. 0.85± 0.09 (vs. −0.69± 0.05)
C = 8000 vs. C = 10000 0.52± 0.08 vs. 0.47± 0.09 (vs. −0.50± 0.05)
C = 10000 vs. C = 12000 0.33± 0.08 vs. 0.33± 0.09 (vs. −0.33± 0.04)
C = 12000 vs. C = 14000 0.30± 0.09 vs. 0.05± 0.09 (vs. −0.18± 0.05)

For the remainder of this section, we choose the combination 10/1000 and C =
16000 for the ensemble-UCT version and C = 8000 for the single-UCT version.



5.2 Influence of Announcements and Monte Carlo Simulations

In the following, we discuss the influence of two other parameters. We start by inves-
tigating the influence of making announcements by comparing a UCT player who is
allowed to make announcements against one who is not. Table 4 shows the comparison
for both UCT versions. We observe that for both UCT versions, UCT players clearly
profit from being allowed to make announcements. This means that on average, they
win more games than they lose if they make an announcement. Finding the right amount
of announcement making is a very important way of increasing the score points gained
on average. Also on a human level of playing, this is crucial for top performance.

Table 4. Comparison of allowed and forbidden announcing for both UCT versions.

ensemble-UCT (10/1000, C=16000)

Announcing vs. no announcing 1.70± 0.07 vs. 0.79± 0.05 (vs. −1.25± 0.04)

single-UCT (C=8000)

Announcing vs. no announcing 0.48± 0.06 vs. 0.19± 0.05 (vs. −0.33± 0.04)

Second, we investigate the influence of performing a Monte Carlo simulation when
reaching a new state, adding only one new state rather than all states encountered during
rollouts to the tree. Table 5 shows the comparison for both UCT versions. We observe
that for the ensemble-UCT version, not performing a Monte Carlo simulation achieves a
significantly better result than performing a simulation, while the opposite is true for the
single-UCT version. This confirms our assumption that the ensemble-UCT version, due
to the fixed card assignment for every single UCT computation, particularly profits from
not performing a simulation but recording all information gained during rollouts. Using
the single-UCT version, information gained in previous rollouts may be misleading in
rollouts with different card assignments, hence storing and reusing all information can
be harmful.

Table 5. Comparison of using and not using a Monte Carlo simulation for both UCT versions.

ensemble-UCT (10/1000, C=16000)

No MC simulation vs. MC simulation 2.15± 0.11 vs. 1.73± 0.09 (vs. −1.94± 0.05)

single-UCT (C=8000)

No MC simulation vs. MC simulation 0.34± 0.08 vs. 0.85± 0.08 (vs. −0.59± 0.05)

5.3 Ensemble-UCT versus Single-UCT

Our next experiment compares the two UCT versions in their best configuration (en-
semble-UCT: 10/1000, C = 16000, no Monte Carlo simulation; single-UCT: C =



8000, Monte Carlo simulation) directly against each other. The ensemble-UCT version
achieves a score points average of 4.52±0.11, the single-UCT version−1.25±0.08, and
the random players−1.63±0.05. Hence our previous observation is not only confirmed,
but the performance of the single-UCT version drops even below 0, and remains only
slightly above the baseline players’ performance. We conclude that using a new card
assignment for every rollout leads to less informed UCT trees, probably caused by the
fact that rollouts may be incompatible to each other, frequently preventing reusing all
information across rollouts.

5.4 Game Analysis Against a Human

Finally, we evaluate the ensemble-UCT version in a setup with a human and two ran-
dom players, playing two tournaments consisting of 24 games each. Note that we cannot
repeat these games in all permutations because a human cannot easily forget previously
played hands. Furthermore, playing 24 games is a very low amount to draw conclusions
from. Hence the results are not significant, but the games still serve as a basis for inves-
tigating the playing behavior of the UCT player in the following. The results of the first
(second) tournament are as follows: the human player achieves 43 (15) score points, the
UCT player −9 (7), and the random players −15 (−35) and −19 (13), respectively.

We observe several trends in the playing behavior of the UCT player p: first, p plays
many solo games: 7 (9) in the first (second) tournament, winning only 4 (5) of them.
While the absolute value of score points achieved in those games is positive (+3 and
+15), it is a lower average per game than what p (probably) could have achieved by
playing a normal game. Analyzing the hands p decided to play a solo with for their use
in a game with four humans, we think that 4 (4) hands have no chances of being won
in the first (second) tournament, 2 (3) have borderline chances (e.g. depend on p being
the starting player and on a “good” card distribution to other players), and 1 (2) have a
good chance of being won or are clear solo hands. In nearly all of the cases, the hands
are excellent for a normal game, and especially with such hands, playing a solo only
makes sense if there is a very high chance of winning.

Second, in normal games, p never makes an announcement unless the opposing
party already made an announcement. All of the games with such a “counter-announce-
ment” are lost for p, leading to a loss of 10 score points in each of the tournaments.
However, p always announces re when playing a solo, which is reasonable.

Third, we observe that p plays the stronger the earlier it knows the parties (e.g. in all
marriage games) – which should not be surprising, as this usually reduces the amount
of reasonable card moves drastically. Also generally, p’s playing strength increases over
the course of a game, with fewer remaining options to play. For example, it won the last
trick with a charlie several times, scoring an extra score point. This increasing playing
strength also (partly) explains the less informed decisions about solo playing and the
(missing) announcement making, both taking place at the beginning of a game.

5.5 Discussion

Our experiments show that using an ensemble of UCT computations has clear benefits
over only performing a single UCT computation which uses different instantiations of



the current belief state in every rollout. While a player based on the ensemble-UCT
version shows good card play performance, the ability to correctly evaluate a hand for
solo play and to decide whether to make an announcement or not is less developed. A
possibility of enhancing the performance of such players with respect to hand evalua-
tion would be to use a separate algorithm for this purpose, as it has e.g. been done in
skat [14]. An algorithm for hand evaluation could profit from analyzing all cards simul-
taneously, in the context of a given game type, rather than ranking every possible move
by estimating the outcome of the game when making this particular move next.

More generally, there are other possibilities of improving our current UCT players.
First, analyzing the bias of the card assignment algorithm could help in improving the
algorithm to come closer to uniformly at random generating card assignments, which in
turn could have a positive impact on the performance of UCT. Second, and this seems
to be very important, domain specific knowledge could help in the simulation phase of
a rollout: rather than randomly choosing a successor, using a heuristic approach such as
a rule based successor selection could greatly improve the quality of rollouts, especially
of the first few hundred rollouts of a UCT computation, where little or no information
from previous rollouts is available. In particular, this would accelerate the convergence
of the UCT algorithm. Third, the computation of UCT rollouts currently underlies the
assumption that the other players act similar to the UCT player itself, i.e. the decision
making for other players is the same. This assumption could be dropped and decision
making for other players could be replaced by heuristic based or even random successor
selection. Fourth, a UCT player could keep relevant parts of the tree(s) constructed in
previous UCT computations for the next move it will be queried for, thus starting the
new UCT computation with an already initialized tree. This would potentially accelerate
the convergence of the UCT computation.

6 Conclusion

We introduced doppelkopf as a benchmark problem for AI research. Although the game
play is similar as in skat, a well-established game in the AI community, doppelkopf has
a much larger state space and more strategical playing depth. As a baseline for future
research, we adapted the UCT algorithm, a state-of-the-art approach for many other
scenarios of acting under uncertainty. We discussed the problem of uniformly at random
generating consistent card assignments, which are required to compute UCT rollouts
under full information. Because this computation is inherently hard, we presented our
own algorithm to approximate the uniformly-at-random computation. We experimented
with several variants of the UCT algorithm and obtained good results against baseline
players. While hand evaluation, required for solo play decisions and announcement
making, tends to be overly optimistic, UCT based players showed good card play skills.

We presented several ideas for improving our current UCT players in future work.
Apart from those improvements, we would like to compare our UCT players against
computer players of other types. A first step towards this end could be to replace the
random players by rule based or other heuristic players. Second, more importantly,
our implementation of UCT players could be integrated with other existing doppelkopf
systems such as the open source FreeDoko program.
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3. Bezáková, I., Štefankovič, D., Vazirani, V.V., Vigoda, E.: Accelerating Simulated Annealing
for the Permanent and Combinatorial Counting Problems. In: Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 900–907. SODA ’06, ACM
(2006)

4. Bjarnason, R., Fern, A., Tadepalli, P.: Lower bounding Klondike solitaire with Monte-Carlo
planning. In: Gerevini, A., Howe, A., Cesta, A., Refanidis, I. (eds.) Proceedings of the Nine-
teenth International Conference on Automated Planning and Scheduling (ICAPS 2009). pp.
26–33. AAAI Press (2009)

5. Buro, M., Long, J.R., Furtak, T., Sturtevant, N.: Improving state evaluation, inference, and
search in trick-based card games. In: Boutilier, C. (ed.) Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI 2009). pp. 1407–1413 (2009)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press
(1990)

7. Edelkamp, S., Federholzner, T., Kissmann, P.: Searching with partial belief states in general
games with incomplete information. In: Glimm, B., Krüger, A. (eds.) Proceedings of the 35th
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