## A Doppelkopf Player Based on UCT

#### Silvan Sievers Malte Helmert

University of Basel Basel, Switzerland

September 25, 2015

### Introduction

- Doppelkopf: card game with similarities to skat, but larger state space
- Unique feature: parties usually only revealed during card play!
- UCT: state-of-the-art algorithm for many applications of acting under uncertainty

### Outline



- 2 The UCT Algorithm
- 3 The Card Assignment Problem



## Game Rules

- 4 players, 2 changing parties
- 48 cards: double deck from nines to aces
- Total of 240 card points
- Goal: collect 121 card points

### Game Rules

- 4 players, 2 changing parties
- 48 cards: double deck from nines to aces
- Total of 240 card points
- Goal: collect 121 card points
- Normal game:
  - Trump suit:  $\heartsuit$ 10, queens, jacks, remaining  $\diamondsuit$
  - Off suits: remaining ♣, ♠, ♡
  - Two parties: re and kontra (players with and without &Q)

















































### Game Rules

#### • Announcements:

- All reveal party of the announcing player
- All increase the game value
- Some increase card points required for winning

### Game Rules

#### • Announcements:

- All reveal party of the announcing player
- All increase the game value
- Some increase card points required for winning
- Game evaluation: score points
  - $\bullet$  +1 for winning
  - +2/+1 for different announcements
  - $\bullet \ +1$  for every 30 card points achieved above the threshold required for winning
  - $\bullet \ +1$  through winning special tricks

### Outline





3 The Card Assignment Problem

### 4 Experiments

# Why UCT?

- Goal: determine the "best" move
- Problem: computing all possibilites infeasible
- UCT (Kocsis and Szepesvári 2006):
  - Monte Carlo tree search algorithm based on sampling
  - State of the art for scenarios with uncertainty

## The UCT Algorithm

- Repeatedly perform rollouts of the game:
  - Assume a fixed card assignment
  - Traverse the game tree, choosing successors by balancing exploration and exploitation
  - From leaf nodes on: Monte Carlo simulation
  - End at terminal game states: compute rewards
  - Propagate back information

### Variations

- Varying the number of card assignment used:
  - Single-UCT: regular UCT, each rollout with a different card assignment
  - Ensemble-UCT: several UCT computations, each with a different fixed card assignment

### Outline



2 The UCT Algorithm



#### 4 Experiments

### **Problem Statement**

#### The Card Assignment Problem (CAP)

- Given a game state and a player to move:
  - Assign all remaining cards to all other players
  - Respect all available information from the game history

### **Problem Statement**

#### The Card Assignment Problem (CAP)

- Given a game state and a player to move:
  - Assign all remaining cards to all other players
  - Respect all available information from the game history
- Goal for an unbiased UCT player: compute solutions to the CAP uniformly at random
- Requirement: computing the number of solutions of the CAP, i.e. solving #CAP
- Complexity of #CAP: #P-complete

While there are cards left to be assigned:

While there are cards left to be assigned: If a card can be assigned to exactly one player: Assign that card to that player

While there are cards left to be assigned:
If a card can be assigned to exactly one player:
Assign that card to that player
If a player requires as many cards as he can have:
Assign those cards to that player

While there are cards left to be assigned: If a card can be assigned to exactly one player: Assign that card to that player If a player requires as many cards as he can have: Assign those cards to that player If a player requires a \$Q: Assign a \$Q to that player

While there are cards left to be assigned: If a card can be assigned to exactly one player: Assign that card to that player If a player requires as many cards as he can have: Assign those cards to that player If a player requires a \$Q: Assign a \$Q to that player Otherwise:

Otherwise:

Assign a random card to a random player

### Properties of the Algorithm

- Only generates consistent card assignments
- Terminates after at most as many iterations as cards need to be assigned to players
- Solutions not generated uniformly at random:
  - Number of card slots of players not considered
  - $\bullet\,$  Assignment of  $\clubsuit Q$  prioritized over other cards
  - Number of possible assignments not considered

### Outline



2 The UCT Algorithm





### Setup

- Two UCT players against two random players
- 1000 games with random card deals
- Repeat every game in every possible permutation
- Total of 10000 rollouts for every decision
- Results: averge score points per game with 95% confidence interval

Experiments

## Ensemble-UCT Configurations

### • X/Y: number of single UCT computations/rollouts

| ensemble-UCT <mark>(5/2000)</mark> | ensemble-UCT (10/1000) | random           |
|------------------------------------|------------------------|------------------|
| $1.67\pm0.12$                      | $1.83 \pm 0.11$        | $(-1.75\pm0.05)$ |
|                                    |                        |                  |
| ensemble-UCT (10/1000)             | ensemble-UCT (20/500)  | random           |
| $2.10 \pm 0.11$                    | $1.70\pm0.10$          | $(-1.90\pm0.05)$ |

## Ensemble-UCT Configurations

### • X/Y: number of single UCT computations/rollouts

| ensemble-UCT (5/2000)             | ensemble-UCT (10/1000) | random           |
|-----------------------------------|------------------------|------------------|
| $1.67\pm0.12$                     | $1.83 \pm 0.11$        | $(-1.75\pm0.05)$ |
|                                   |                        |                  |
| ensemble-UCT (10/1000)            | ensemble-UCT (20/500)  | random           |
| $\textbf{2.10} \pm \textbf{0.11}$ | $1.70\pm0.10$          | $(-1.90\pm0.05)$ |

 $\rightarrow$  trade-off between the number of different card assignments and the quality of the computation per card assignment

Experiments

### Influence of Announcement Making

| ensemble-UCT                      |                                   | random             |
|-----------------------------------|-----------------------------------|--------------------|
| announcing                        | no announcing                     | ·                  |
| $1.70\pm0.07$                     | $\textbf{0.79} \pm \textbf{0.05}$ | $(-1.25\pm0.04)$   |
|                                   |                                   |                    |
| sing                              | le-UCT                            | random             |
| announcing                        | no announcing                     |                    |
| $\textbf{0.48} \pm \textbf{0.06}$ | $0.19\pm0.05$                     | $(-0.33 \pm 0.04)$ |

Experiments

### Influence of Announcement Making

| ensemble-UCT                      |                                   | random             |
|-----------------------------------|-----------------------------------|--------------------|
| announcing                        | no announcing                     | -                  |
| $\overline{1.70\pm0.07}$          | $\textbf{0.79} \pm \textbf{0.05}$ | $(-1.25 \pm 0.04)$ |
|                                   |                                   |                    |
| sing                              | le-UCT                            | random             |
| announcing                        | no announcing                     |                    |
| $\textbf{0.48} \pm \textbf{0.06}$ | $0.19\pm0.05$                     | $(-0.33 \pm 0.04)$ |

 $\rightarrow$  making announcements crucial for performance

Doppelkopf

Experiments

### Ensemble-UCT versus Single-UCT

| ensemble-UCT                      | single-UCT     | random           |
|-----------------------------------|----------------|------------------|
| $\textbf{4.52} \pm \textbf{0.11}$ | $-1.25\pm0.08$ | $(-1.63\pm0.05)$ |

Experiments

### Ensemble-UCT versus Single-UCT

| ensemble-UCT                      | single-UCT     | random           |
|-----------------------------------|----------------|------------------|
| $\textbf{4.52} \pm \textbf{0.11}$ | $-1.25\pm0.08$ | $(-1.63\pm0.05)$ |

 $\rightarrow$  using few, but fixed card assignments better than using many card assignments

# Analysis of UCT Players

- Two sets of 24 games human vs. ensemble-UCT:
  - Too many solos (works well against random players)
  - Always makes announcements when playing solo, but rarely in normal games
  - The fewer options remaining, the stronger the game play

## Possible Improvements

- Separate hand evaluation algorithm
- Analyze and reduce bias of card assignment algorithm
- Domain specific knowledge for simulation phase of rollouts
- Drop assumption that opposing players behave like UCT players
- Reuse information from decisions at previous game states

### Conclusion

- Doppelkopf as a benchmark problem
- Baseline UCT players
- Card assignment algorithm
- Ensemble-UCT for more stable UCT computations



# Thank you!