Merge-and-Shrink: A Compositional Theory of Transformations of Factored Transition Systems

Silvan Sievers Malte Helmert

University of Basel, Switzerland

ICAPS, June 2022

- general class of abstractions
- framework for computing transformations of factored transition systems
- most common use: abstraction heuristics for optimal classical planning
- beyond: proving unsolvability, symbolic search, alternative task representation

previous attempt of a comprehensive theory (journal of the ACM):

- complex dependencies between transformations
- elaborate restrictions on allowed combinations of transformations
- cannot understand properties of merge-and-shrink through properties of its transformations

A New Theoretical Development of Merge-and-Shrink

compositional theory of transformations of factored transition systems:

- define desirable properties of transformations such as conservativeness, inducedness, and refinability
- complete characterization of the conditions under which transformations have these properties
- composed transformations inherit common properties of component transformations

A New Theoretical Development of Merge-and-Shrink

compositional theory of transformations of factored transition systems:

- define desirable properties of transformations such as conservativeness, inducedness, and refinability
- complete characterization of the conditions under which transformations have these properties
- composed transformations inherit common properties of component transformations
- first theory on pruning
- first full formal account of factored mappings

- almost entirely new theory
- inspired by a line of research by Bäckström & Jonsson

almost entirely new theory

- inspired by a line of research by Bäckström & Jonsson
- learn about a different view of the merge-and-shrink framework
- understand merge-and-shrink transformations and their properties in isolation

Why You Should Read This Paper

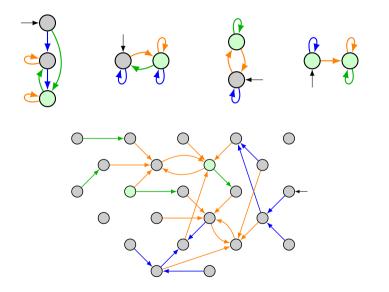
almost entirely new theory

- inspired by a line of research by Bäckström & Jonsson
- learn about a different view of the merge-and-shrink framework
- understand merge-and-shrink transformations and their properties in isolation
- framework applicable beyond computing abstractions
- framework easy to extend with new transformations or new properties

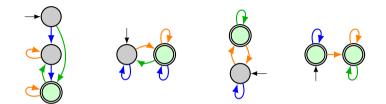
Factored Transition Systems (FTS)



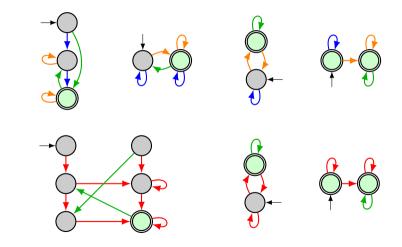
Factored Transition Systems (FTS)



Factored Transformations



Factored Transformations



CONS₈ τ is state-conservative if $dom(\sigma) = S$, i.e., σ is a total function.

- **CONS**_L τ is label-conservative if $dom(\lambda) = L$, i.e., λ is a total function.
- **CONS**_C τ is cost-conservative if $\forall \ell \in L: \ell \in dom(\lambda) \rightarrow c'(\lambda(\ell)) \leq c(\ell)$.
- $\begin{array}{l} \textbf{CONS_T} \ \ \tau \ is \ \text{transition-conservative} \ if \\ \forall s \ \stackrel{\ell}{\leftarrow} t \in T : s \in dom(\sigma) \land t \in dom(\sigma) \land \ell \in dom(\lambda) \to \sigma(s) \ \stackrel{\underline{\lambda(\ell)}}{\longrightarrow} \sigma(t) \in T'. \end{array}$
- **CONS**_I τ is initial-state-conservative if $\forall s \in S_{I}: s \in dom(\sigma) \rightarrow \sigma(s) \in S'_{I}$.
- **CONS**_G τ is goal-state-conservative if $\forall s \in S_G: s \in dom(\sigma) \rightarrow \sigma(s) \in S'_G$.
 - **IND**_S τ is state-induced if σ is surjective, i.e., if $\forall s' \in S' \exists s \in S : s \in \sigma^{-1}(s')$.
 - **IND**_L τ is label-induced if λ is surjective, i.e., if $\forall \ell' \in L' \exists \ell \in L: \ell \in \lambda^{-1}(\ell')$.
 - **IND**_C τ is cost-induced if $\forall \ell' \in L' \exists \ell \in L: \ell \in \lambda^{-1}(\ell') \land c(\ell) = c'(\ell')$
 - $\begin{array}{l} \mathbf{IND_T} \quad \tau \text{ is transition-induced } if \\ \forall s' \stackrel{\ell'}{\longrightarrow} t' \in T' \; \exists s \stackrel{\ell}{\longrightarrow} t \in T \text{: } s \in \sigma^{-1}(s') \wedge t \in \sigma^{-1}(t') \wedge \ell \in \lambda^{-1}(\ell'). \end{array}$
 - **IND**_I τ is initial-state-induced if $\forall s' \in S'_{I} \exists s \in S_{I}$: $s \in \sigma^{-1}(s')$.
 - **IND**_G τ is goal-state-induced if $\forall s' \in S'_G \exists s \in S_G$: $s \in \sigma^{-1}(s')$.
 - **REF**_C τ is cost-refinable if $\forall \ell' \in L' \ \forall \ell \in \lambda^{-1}(\ell'): c(\ell) = c'(\ell').$
 - $$\begin{split} \mathbf{REF_T} & \tau \text{ is transition-refinable } if \\ & \forall s' \xrightarrow{\ell'} t' \in T' \ \forall s \in \sigma^{-1}(s') \ \exists s \xrightarrow{\ell} t \in T \text{ : } t \in \sigma^{-1}(t') \land \ell \in \lambda^{-1}(\ell'). \end{split}$$
- **REF**_G τ is goal-state-refinable if $\forall s' \in S'_G \forall s \in \sigma^{-1}(s')$: $s \in S_G$.

conservative transformations: preserve behavior of original FTS

- conservative transformations: preserve behavior of original FTS
- induced transformations: behavior in transformed FTS induced by original FTS

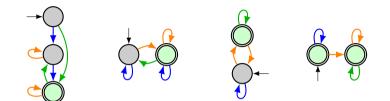
- conservative transformations: preserve behavior of original FTS
- induced transformations: behavior in transformed FTS induced by original FTS
- refinable transformations: every behavior possible in the transformed FTS must be possible in the original one

- conservative transformations: preserve behavior of original FTS
- induced transformations: behavior in transformed FTS induced by original FTS
- refinable transformations: every behavior possible in the transformed FTS must be possible in the original one

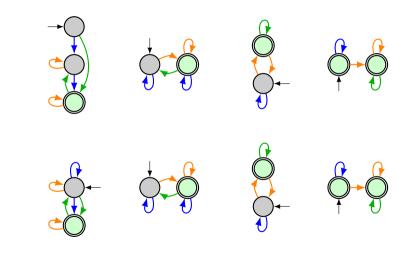
effect on heurisic

- conservative: admissible and consistent heuristics
- conservative + induced: best heuristics among admissible/consistent ones
- exact (= conservative + induced + refinable): perfect heuristics

Shrinking



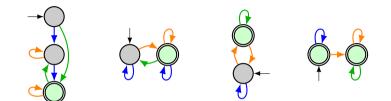
Shrinking



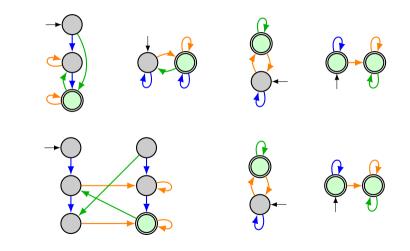
abstraction (conservative + induced)

abstraction (conservative + induced)

contribution exact (abstraction + refinable) iff based on bisimulation Merging

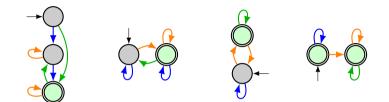


Merging

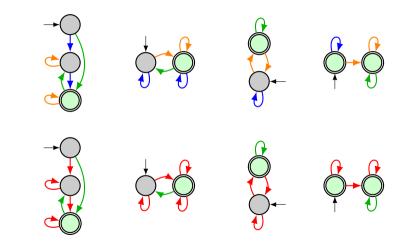


Merging: Properties

Label Reduction



Label Reduction



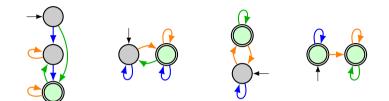
contribution

- conservative but not induced or refinable in general
- exact iff induced/refinable
- coNP-complete to determine if label reduction is induced/refinable

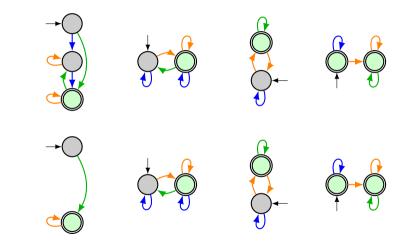
contribution

- conservative but not induced or refinable in general
- exact iff induced/refinable
- coNP-complete to determine if label reduction is induced/refinable
- ▶ atomic label reduction exact iff based on ⊖-combinability

Pruning



Pruning



contribution

- leads to inadmissible heuristics in general
- exact if keeping exactly the backward-reachable states
- forward-admissible/forward-perfect heuristics if keeping exactly the forward-reachable or alive states

- new theory on merge-and-shrink
- fine-granular properties of transformations
- compositional transformations allow understanding properties of transformations in isolation
- complete characterization of merge-and-shrink transformations