
Our compositional theory of factored
transformations allows understanding

merge-and-shrink in terms of
the properties of its components.

I almost entirely new theory
I define desirable properties of transformations
I heuristic properties induced by transformation properties
I complete characterization of the conditions under which

transformations have properties
I first theory on pruning
I first full formal account of factored mappings
I complete characterization of merge-and-shrink transformations
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Example of Transformations
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(a) Original transition system.
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(b) Arbitrary transformation (not an
abstraction).
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(c) Abstraction (not induced).
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(d) Induced abstraction (not exact).
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(e) Exact transformation.

Shrinking: Properties
I abstraction (conservative + induced)
I local heuristics are preserved if h-preserving
I exact (abstraction + refinable) iff based on bisimulation

Merging: Properties
I exact

Label Reduction: Properties
I conservative but not induced or refinable in general
I exact iff induced/refinable
I coNP-complete to determine if label reduction is

induced/refinable
I atomic label reduction exact iff based on Θ-combinabilty

Pruning: Properties
I leads to inadmissible heuristics in general
I exact if keeping exactly the backward-reachable states
I forward-admissible/forward-perfect heuristics if keeping exactly

the forward-reachable or alive states


