Additive Pattern Databases for Decoupled Search

Silvan Sievers¹ Daniel Gnad² Álvaro Torralba³

¹University of Basel, Switzerland

²Linköping University, Sweden

³Aalborg University, Denmark

SoCS, 22nd July 2022

- optimal classical planning as heuristic search
- state of the art: abstraction heuristics
- successful alternative to explicit search: decoupled search

- optimal classical planning as heuristic search
- state of the art: abstraction heuristics
- successful alternative to explicit search: decoupled search
- goal: abstraction heuristics for decoupled search

planning tasks: finite-domain state variables for representing states

- planning tasks: finite-domain state variables for representing states
- pattern database (PDB) heuristics:
 - project variables to a subset
 - store perfect heuristic values of abstraction

- partition state variables to decompose the task: center factor and leaf factors
- branch over center states and actions, handle leaves separately

- partition state variables to decompose the task: center factor and leaf factors
- branch over center states and actions, handle leaves separately
- decoupled state $s^{\mathcal{F}}$:
 - center state
 - pricing function: cost of reachable leaf states

- partition state variables to decompose the task: center factor and leaf factors
- branch over center states and actions, handle leaves separately
- decoupled state $s^{\mathcal{F}}$:
 - center state
 - pricing function: cost of reachable leaf states
 - \blacktriangleright \rightarrow represents exponentially many (explicit) member states

Heuristics for Decoupled Search So Far

- ▶ given: explicit heuristic *h*
- given: decoupled state $s^{\mathcal{F}}$
- question: how to use h?

Heuristics for Decoupled Search So Far

- ▶ given: explicit heuristic *h*
- given: decoupled state $s^{\mathcal{F}}$
- question: how to use h?

buy-leaves compilation

- compile prices of $s^{\mathcal{F}}$ into new task
- evaluate h on compiled task

Heuristics for Decoupled Search So Far

- ▶ given: explicit heuristic *h*
- given: decoupled state $s^{\mathcal{F}}$
- question: how to use h?

buy-leaves compilation

- compile prices of $s^{\mathcal{F}}$ into new task
- evaluate h on compiled task

problems:

- impractical for abstraction-based heuristics
- pattern selection based on original task

Alternative Definition for Computing Decoupled Heuristics

contribution: explicit decoupled heuristic

$$h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \operatorname{price}(s^{\mathcal{F}},s) + h(s)$$

Alternative Definition for Computing Decoupled Heuristics

contribution: explicit decoupled heuristic

$$h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + h(s)$$

- "best" use of given explicit heuristic
- problem: exponentially many member states

reminder: explicit decoupled heuristic

$$h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + h(s)$$

reminder: explicit decoupled heuristic

$$h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + h(s)$$

contribution: decoupled PDB

$$\mathsf{dPDB}(h^{\mathcal{P}}, s^{\mathcal{F}}) = \min_{s^{\mathcal{P}} \in S^{\mathcal{P}}} \mathsf{price}(s^{\mathcal{F}}, s^{\mathcal{P}}) + h^{\mathcal{P}}(s^{\mathcal{P}})$$

explicit search

- ▶ given: *H* = {*H*₁,..., *H_n*} with *H_i* additive set of (PDB) heuristics (e.g., disjoint PDBs, cost-partitioned PDBs, etc.)
- canonical combination:

$$h^{\mathcal{H}}(oldsymbol{s}) = \max_{H \in \mathcal{H}} \sum_{h \in H} h(oldsymbol{s})$$

explicit search

- given: H = {H₁,..., H_n} with H_i additive set of (PDB) heuristics (e.g., disjoint PDBs, cost-partitioned PDBs, etc.)
- canonical combination:

$$h^{\mathcal{H}}(oldsymbol{s}) = \max_{H \in \mathcal{H}} \sum_{h \in H} h(oldsymbol{s})$$

how to transfer to decoupled search?

Naïve Combination

reminder: canonical heuristic

$$h^{\mathcal{H}}(oldsymbol{s}) = \max_{H \in \mathcal{H}} \sum_{oldsymbol{h} \in H} h(oldsymbol{s})$$

Naïve Combination

reminder: canonical heuristic

$$h^{\mathcal{H}}(\boldsymbol{s}) = \max_{H \in \mathcal{H}} \sum_{h \in H} h(\boldsymbol{s})$$

• evaluate PDBs individually (use dPDB to compute $h_{\mathcal{F},ex}(s^{\mathcal{F}})$):

$$h_{\mathcal{F},\mathsf{na\"ive}}^{\mathcal{H}}(\boldsymbol{s}^{\mathcal{F}}) = \max_{H \in \mathcal{H}} \sum_{h \in H} h_{\mathcal{F},\mathsf{ex}}(\boldsymbol{s}^{\mathcal{F}})$$

Naïve Combination

reminder: canonical heuristic

$$h^{\mathcal{H}}(\boldsymbol{s}) = \max_{H \in \mathcal{H}} \sum_{h \in H} h(\boldsymbol{s})$$

• evaluate PDBs individually (use dPDB to compute $h_{\mathcal{F},ex}(s^{\mathcal{F}})$):

$$h_{\mathcal{F},\mathsf{na\"ive}}^{\mathcal{H}}(\boldsymbol{s}^{\mathcal{F}}) = \max_{H\in\mathcal{H}}\sum_{h\in H} h_{\mathcal{F},\mathsf{ex}}(\boldsymbol{s}^{\mathcal{F}})$$

properties

information-lossy: use different minimizing member state for each PDB

▶ inadmissible: may count prices of leaves multiple times in different heuristics

Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

$$h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + h(s)$$

Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

$$h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}}, s) + h(s)$$

• now:
$$h(s) = h^{\mathcal{H}}(s) = \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

$$h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + h(s)$$

• now:
$$h(s) = h^{\mathcal{H}}(s) = \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

contribution: explicit decoupled canonical heuristic

$$h_{\mathcal{F},\mathsf{ex}}^{\mathcal{H}}(\boldsymbol{s}^{\mathcal{F}}) = \min_{\boldsymbol{s} \in [\boldsymbol{s}^{\mathcal{F}}]} \mathsf{price}(\boldsymbol{s}^{\mathcal{F}}, \boldsymbol{s}) + \max_{\boldsymbol{H} \in \mathcal{H}} \sum_{\boldsymbol{h} \in \boldsymbol{H}} h(\boldsymbol{s})$$

Explicit Decoupled Canonical Heuristic (2)

complexity computing $h_{\mathcal{F},ex}^{\mathcal{H}}$ is **NP**-complete

complexity computing $h_{\mathcal{F},ex}^{\mathcal{H}}$ is **NP**-complete

- practical implementation via branch-and-bound
- incremental computation of member states allows pruning
- worst case: enumeration of all exponentially many member states

Polynomial-time Approximations (1)

reminder: explicit decoupled canonical heuristic

$$h_{\mathcal{F},\mathsf{ex}}^{\mathcal{H}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

Polynomial-time Approximations (1)

reminder: explicit decoupled canonical heuristic

$$h_{\mathcal{F},\mathsf{ex}}^{\mathcal{H}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

▶ alternative: consider each $H \in H$ independently, i.e., move max outward:

$$\max_{H \in \mathcal{H}} \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}}, s) + \sum_{h \in H} h(s)$$

reminder: explicit decoupled canonical heuristic

$$h_{\mathcal{F},\mathsf{ex}}^{\mathcal{H}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

▶ alternative: consider each $H \in H$ independently, i.e., move max outward:

$$\max_{H \in \mathcal{H}} \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}}, s) + \sum_{h \in H} h(s)$$

admissible, but lossy approximation

Polynomial-time Approximations (2)

leaf-disjoint (LD) PDBs additive sets: pairwise leaf-disjoint PDBs

Polynomial-time Approximations (2)

leaf-disjoint (LD) PDBs additive sets: pairwise leaf-disjoint PDBs

single-leaf (SL) PDBs each PDB affects at most one leaf leaf-disjoint (LD) PDBs additive sets: pairwise leaf-disjoint PDBs

single-leaf (SL) PDBs

each PDB affects at most one leaf

minimize sum of prices and heuristic separately for each set of affected leaves

• heuristic value equals $h_{\mathcal{F},ex}^{\mathcal{H}}$

- PDBs computed with hill climbing and CEGAR
- additivity obtained through saturated cost partitioning

- PDBs computed with hill climbing and CEGAR
- additivity obtained through saturated cost partitioning
- coverage:

F MM

- PDBs computed with hill climbing and CEGAR
- additivity obtained through saturated cost partitioning

	explicit search		
		LD	SL
F	284	206	293
MM	749	662	743

- PDBs computed with hill climbing and CEGAR
- additivity obtained through saturated cost partitioning

	expl	licit sea	arch	decoupled search	
		LD	SL	expl. dec. heur.	_
F	284	206	293	212	
MM	749	662	743	628	

- PDBs computed with hill climbing and CEGAR
- additivity obtained through saturated cost partitioning

	expl	icit sea	arch	decoupled search		
		LD	SL	expl. dec. heur.	LD	
F	284	206	293	212	210	
MM	749	662	743	628	607	

- PDBs computed with hill climbing and CEGAR
- additivity obtained through saturated cost partitioning

	exp	licit sea	arch	decoupled search			
		LD	SL	expl. dec. heur.	LD	SL	
F	284	206	293	212	210	304	
MM	749	662	743	628	607	707	

summary:

- alternative way of computing explicit heuristics for decoupled search
- efficient computation of PDBs for decoupled search
- admissible combination of sets of additive PDBs NP-complete
- practical implementation and polynomial-time approximations

summary:

- alternative way of computing explicit heuristics for decoupled search
- efficient computation of PDBs for decoupled search
- admissible combination of sets of additive PDBs NP-complete
- practical implementation and polynomial-time approximations
- future work:
 - many results independent of type of heuristic: use different abstractions
 - integrate cost partitioning into decoupled search: leaf price partitioning