Additive Pattern Databases for Decoupled Search

Silvan Sievers ${ }^{1}$ Daniel Gnad ${ }^{2}$ Álvaro Torralba ${ }^{3}$
${ }^{1}$ University of Basel, Switzerland
${ }^{2}$ Linköping University, Sweden
${ }^{3}$ Aalborg University, Denmark

SoCS, 22nd July 2022

Setting \& Motivation

- optimal classical planning as heuristic search
- state of the art: abstraction heuristics
- successful alternative to explicit search: decoupled search

Setting \& Motivation

- optimal classical planning as heuristic search
- state of the art: abstraction heuristics
- successful alternative to explicit search: decoupled search
- goal: abstraction heuristics for decoupled search

Background

- planning tasks: finite-domain state variables for representing states

Background

- planning tasks: finite-domain state variables for representing states
- pattern database (PDB) heuristics:
- project variables to a subset
- store perfect heuristic values of abstraction

Decoupled Search in a Nutshell

- partition state variables to decompose the task: center factor and leaf factors
- branch over center states and actions, handle leaves separately

Decoupled Search in a Nutshell

- partition state variables to decompose the task: center factor and leaf factors
- branch over center states and actions, handle leaves separately
- decoupled state $s^{\mathcal{F}}$:
- center state
- pricing function: cost of reachable leaf states

Decoupled Search in a Nutshell

- partition state variables to decompose the task: center factor and leaf factors
- branch over center states and actions, handle leaves separately
- decoupled state $s^{\mathcal{F}}$:
- center state
- pricing function: cost of reachable leaf states
- \rightarrow represents exponentially many (explicit) member states

Heuristics for Decoupled Search So Far

- given: explicit heuristic h
- given: decoupled state $s^{\mathcal{F}}$
- question: how to use h ?

Heuristics for Decoupled Search So Far

- given: explicit heuristic h
- given: decoupled state $s^{\mathcal{F}}$
- question: how to use h ?
buy-leaves compilation
- compile prices of $s^{\mathcal{F}}$ into new task
- evaluate h on compiled task

Heuristics for Decoupled Search So Far

- given: explicit heuristic h
- given: decoupled state $s^{\mathcal{F}}$
- question: how to use h ?
buy-leaves compilation
- compile prices of $s^{\mathcal{F}}$ into new task
- evaluate h on compiled task
- problems:
- impractical for abstraction-based heuristics
- pattern selection based on original task

Alternative Definition for Computing Decoupled Heuristics

contribution: explicit decoupled heuristic

$$
h_{\mathcal{F}, \mathrm{ex}}\left(s^{\mathcal{F}}\right)=\min _{s \in\left[s^{\mathcal{F}}\right]} \operatorname{price}\left(s^{\mathcal{F}}, s\right)+h(s)
$$

Alternative Definition for Computing Decoupled Heuristics

contribution: explicit decoupled heuristic

$$
h_{\mathcal{F}, \mathrm{ex}}\left(s^{\mathcal{F}}\right)=\min _{s \in\left[s^{\mathcal{F}}\right]} \operatorname{price}\left(s^{\mathcal{F}}, s\right)+h(s)
$$

- "best" use of given explicit heuristic
- problem: exponentially many member states

Single PDBs for Decoupled Search

reminder: explicit decoupled heuristic

$$
h_{\mathcal{F}, \mathrm{ex}}\left(s^{\mathcal{F}}\right)=\min _{s \in\left[s^{\mathcal{F}}\right]} \operatorname{price}\left(s^{\mathcal{F}}, s\right)+h(s)
$$

Single PDBs for Decoupled Search

reminder: explicit decoupled heuristic

$$
h_{\mathcal{F}, \mathrm{ex}}\left(s^{\mathcal{F}}\right)=\min _{s \in\left[s^{\mathcal{F}}\right]} \operatorname{price}\left(s^{\mathcal{F}}, s\right)+h(s)
$$

contribution: decoupled PDB

$$
\operatorname{dPDB}\left(h^{P}, s^{\mathcal{F}}\right)=\min _{s^{P} \in S^{P}} \operatorname{price}\left(s^{\mathcal{F}}, s^{P}\right)+h^{P}\left(s^{P}\right)
$$

Combining Multiple PDBs

explicit search

- given: $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ with H_{i} additive set of (PDB) heuristics (e.g., disjoint PDBs, cost-partitioned PDBs, etc.)
- canonical combination:

$$
h^{\mathcal{H}}(s)=\max _{H \in \mathcal{H}} \sum_{h \in H} h(s)
$$

Combining Multiple PDBs

explicit search

- given: $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ with H_{i} additive set of (PDB) heuristics (e.g., disjoint PDBs, cost-partitioned PDBs, etc.)
- canonical combination:

$$
h^{\mathcal{H}}(s)=\max _{H \in \mathcal{H}} \sum_{h \in H} h(s)
$$

- how to transfer to decoupled search?

Naïve Combination

reminder: canonical heuristic

$$
h^{\mathcal{H}}(s)=\max _{H \in \mathcal{H}} \sum_{h \in H} h(s)
$$

Naïve Combination

reminder: canonical heuristic

$$
h^{\mathcal{H}}(s)=\max _{H \in \mathcal{H}} \sum_{h \in H} h(s)
$$

- evaluate PDBs individually (use dPDB to compute $h_{\mathcal{F}, \text { ex }}\left(s^{\mathcal{F}}\right)$):

$$
h_{\mathcal{F}, \text { naïve }}^{\mathcal{H}}\left(s^{\mathcal{F}}\right)=\max _{H \in \mathcal{H}} \sum_{h \in H} h_{\mathcal{F}, \mathrm{ex}}\left(s^{\mathcal{F}}\right)
$$

Naïve Combination

reminder: canonical heuristic

$$
h^{\mathcal{H}}(s)=\max _{H \in \mathcal{H}} \sum_{h \in H} h(s)
$$

- evaluate PDBs individually (use dPDB to compute $h_{\mathcal{F}, \text { ex }}\left(s^{\mathcal{F}}\right)$):

$$
h_{\mathcal{F}, \text { naïve }}^{\mathcal{H}}\left(s^{\mathcal{F}}\right)=\max _{H \in \mathcal{H}} \sum_{h \in H} h_{\mathcal{F}, \operatorname{ex}}\left(s^{\mathcal{F}}\right)
$$

properties

- information-lossy: use different minimizing member state for each PDB
- inadmissible: may count prices of leaves multiple times in different heuristics

Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

$$
h_{\mathcal{F}, \mathrm{ex}}\left(s^{\mathcal{F}}\right)=\min _{s \in\left[s^{\mathcal{F}}\right]} \operatorname{price}\left(s^{\mathcal{F}}, s\right)+h(s)
$$

Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

$$
h_{\mathcal{F}, \mathrm{ex}}\left(s^{\mathcal{F}}\right)=\min _{s \in\left[s^{\mathcal{F}}\right]} \operatorname{price}\left(s^{\mathcal{F}}, s\right)+h(s)
$$

- now: $h(s)=h^{\mathcal{H}}(s)=\max _{H \in \mathcal{H}} \sum_{h \in H} h(s)$

Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

$$
h_{\mathcal{F}, \operatorname{ex}}\left(s^{\mathcal{F}}\right)=\min _{s \in\left[s^{\mathcal{F}}\right]} \operatorname{price}\left(s^{\mathcal{F}}, s\right)+h(s)
$$

- now: $h(s)=h^{\mathcal{H}}(s)=\max _{H \in \mathcal{H}} \sum_{h \in H} h(s)$
contribution: explicit decoupled canonical heuristic

$$
h_{\mathcal{F}, \text { ex }}^{\mathcal{H}}\left(s^{\mathcal{F}}\right)=\min _{s \in\left[s^{\mathcal{F}}\right]} \operatorname{price}\left(s^{\mathcal{F}}, s\right)+\max _{H \in \mathcal{H}} \sum_{h \in H} h(s)
$$

Explicit Decoupled Canonical Heuristic (2)

```
complexity
computing \mp@subsup{h}{\mathcal{F},\textrm{ex}}{\mathcal{Y}}\mathrm{ is NP-complete}
```


Explicit Decoupled Canonical Heuristic (2)

complexity
 computing $h_{\mathcal{F}, \text { ex }}^{\mathcal{H}}$ is NP-complete

- practical implementation via branch-and-bound
- incremental computation of member states allows pruning
- worst case: enumeration of all exponentially many member states

Polynomial-time Approximations (1)

reminder: explicit decoupled canonical heuristic

$$
h_{\mathcal{F}, \text { ex }}^{\mathcal{H}}\left(s^{\mathcal{F}}\right)=\min _{s \in\left[s^{\mathcal{F}}\right]} \operatorname{price}\left(s^{\mathcal{F}}, s\right)+\max _{H \in \mathcal{H}} \sum_{h \in H} h(s)
$$

Polynomial-time Approximations (1)

reminder: explicit decoupled canonical heuristic

$$
h_{\mathcal{F}, \mathrm{ex}}^{\mathcal{H}}\left(s^{\mathcal{F}}\right)=\min _{s \in\left[s^{\mathcal{F}}\right]} \operatorname{price}\left(s^{\mathcal{F}}, s\right)+\max _{H \in \mathcal{H}} \sum_{h \in H} h(s)
$$

- alternative: consider each $H \in \mathcal{H}$ independently, i.e., move max outward:

$$
\max _{H \in \mathcal{H}} \min _{s \in\left[s^{\mathcal{F}}\right]} \operatorname{price}\left(s^{\mathcal{F}}, s\right)+\sum_{h \in H} h(s)
$$

Polynomial-time Approximations (1)

reminder: explicit decoupled canonical heuristic

$$
h_{\mathcal{F}, \mathrm{ex}}^{\mathcal{H}}\left(s^{\mathcal{F}}\right)=\min _{s \in\left[s^{\mathcal{F}}\right]} \operatorname{price}\left(s^{\mathcal{F}}, s\right)+\max _{H \in \mathcal{H}} \sum_{h \in H} h(s)
$$

- alternative: consider each $H \in \mathcal{H}$ independently, i.e., move max outward:

$$
\max _{H \in \mathcal{H}} \min _{s \in\left[s^{\mathcal{F}}\right]} \operatorname{price}\left(s^{\mathcal{F}}, s\right)+\sum_{h \in H} h(s)
$$

- admissible, but lossy approximation

Polynomial-time Approximations (2)

leaf-disjoint (LD) PDBs

additive sets: pairwise leaf-disjoint PDBs

Polynomial-time Approximations (2)

leaf-disjoint (LD) PDBs

additive sets: pairwise leaf-disjoint PDBs
single-leaf (SL) PDBs
each PDB affects at most one leaf

Polynomial-time Approximations (2)

leaf-disjoint (LD) PDBs

additive sets: pairwise leaf-disjoint PDBs

single-leaf (SL) PDBs

each PDB affects at most one leaf

- minimize sum of prices and heuristic separately for each set of affected leaves
- heuristic value equals $h_{\mathcal{F}, \mathrm{ex}}^{\mathcal{H}}$

Experiments

- PDBs computed with hill climbing and CEGAR
- additivity obtained through saturated cost partitioning

Experiments

- PDBs computed with hill climbing and CEGAR
- additivity obtained through saturated cost partitioning
- coverage:

```
F
MM
```


Experiments

- PDBs computed with hill climbing and CEGAR
- additivity obtained through saturated cost partitioning
- coverage:

	explicit search		
		LD	SL
F	284	206	293
MM	749	662	743

Experiments

- PDBs computed with hill climbing and CEGAR
- additivity obtained through saturated cost partitioning
- coverage:

	explicit search			decoupled search	
		LD	SL		expl. dec. heur.
F	284	206	293		212
MM	749	662	743		628

Experiments

- PDBs computed with hill climbing and CEGAR
- additivity obtained through saturated cost partitioning
- coverage:

	explicit search			decoupled search		
		LD	SL		expl. dec. heur.	LD
F	284	206	293		212	210
MM	749	662	743		628	607

Experiments

- PDBs computed with hill climbing and CEGAR
- additivity obtained through saturated cost partitioning
- coverage:

	explicit search				decoupled search			
		LD	SL		expl. dec. heur.	LD	SL	
F	284	206	293		212	210	304	
MM	749	662	743		628	607	707	

Conclusions

- summary:
- alternative way of computing explicit heuristics for decoupled search
- efficient computation of PDBs for decoupled search
- admissible combination of sets of additive PDBs NP-complete
- practical implementation and polynomial-time approximations

Conclusions

- summary:
- alternative way of computing explicit heuristics for decoupled search
- efficient computation of PDBs for decoupled search
- admissible combination of sets of additive PDBs NP-complete
- practical implementation and polynomial-time approximations
- future work:
- many results independent of type of heuristic: use different abstractions
- integrate cost partitioning into decoupled search: leaf price partitioning

