Strengthening Canonical Pattern Databases with Structural Symmetries

Silvan Sievers¹

Martin Wehrle¹ Malte Helmert¹ Michael Katz²

¹University of Basel, Switzerland ²IBM Watson Health, Haifa, Israel

June 16, 2017

Motivation

- Structural symmetries in recent work:
 - Symmetry-based pruning in forward search
 - Symmetric lookups
 - Enhancing merge-and-shrink heuristics

Motivation

- Structural symmetries in recent work:
 - Symmetry-based pruning in forward search
 - Symmetric lookups
 - Enhancing merge-and-shrink heuristics
- In this work:
 - Symmetric pattern databases
 - Canonical PDB heuristic invariant under symmetry

3 Experiments

Classical Planning

- Deterministic, fully observable, single-agent problems
- Initial state, many goal states
- Operators to transform states
- Find optimal plans
- Formalization: finite-domain state variables

Example

TRANSPORT-OPT11, #5

• v^{p_i} : variable for package p_i , v^{t_i} : variable for truck t_i

Pattern Databases

• Pattern:

- Subset *P* of the state variables \mathcal{V} of planning task Π
- Induces abstract planning task Π^P
- Pattern Database h^P : perfect heuristic values for Π^P

Pattern Databases

• Pattern:

- Subset *P* of the state variables \mathcal{V} of planning task Π
- Induces abstract planning task Π^P
- Pattern Database h^P : perfect heuristic values for Π^P
- Admissible combination of PDBs:
 - Maximum: always possible
 - Sum: disjoint-additive PDBs

Canonical PDB Heuristic

- Maximal-disjoint-additive subsets A of pattern collection C
- Sum PDB values whenever possible, maximize otherwise

$$h^{\mathcal{C}_{\mathcal{C}}}(s) = \max_{B \in \mathcal{A}} \sum_{P \in B} h^{P}(s)$$

Experiments

Canonical PDB Heuristic

- Maximal-disjoint-additive subsets A of pattern collection C
- Sum PDB values whenever possible, maximize otherwise

$$h^{{\mathcal C}_{\mathcal C}}(s) = \max_{B\in {\mathcal A}} \sum_{{\mathcal P}\in {\mathcal B}} h^{{\mathcal P}}(s)$$

• Example:

$$C = \{v^{p_2}\} \{v^{p_3}\} \{v^{p_4}\} \{v^{p_5}\} \{v^{t_1}, v^{t_2}, v^{p_1}\}$$

Experiments

Canonical PDB Heuristic

- Maximal-disjoint-additive subsets A of pattern collection C
- Sum PDB values whenever possible, maximize otherwise

$$h^{{\mathcal C}_{\mathcal C}}(s) = \max_{B\in {\mathcal A}} \sum_{{\mathcal P}\in {\mathcal B}} h^{{\mathcal P}}(s)$$

• Example:

$$C \quad \left\{ \left\{ v^{p_2} \right\} \left\{ v^{p_3} \right\} \left\{ v^{p_4} \right\} \left\{ v^{p_5} \right\} \left\{ v^{t_1}, v^{t_2}, v^{p_1} \right\} \right\}$$

Experiments

Canonical PDB Heuristic

- Maximal-disjoint-additive subsets A of pattern collection C
- Sum PDB values whenever possible, maximize otherwise

$$h^{{\mathcal C}_{\mathcal C}}(s) = \max_{B\in {\mathcal A}} \sum_{{\mathcal P}\in {\mathcal B}} h^{{\mathcal P}}(s)$$

• Example:

$$C \quad \left\{ \{v^{p_2}\} \{v^{p_3}\} \{v^{p_4}\} \{v^{p_5}\} \{v^{t_1}, v^{t_2}, v^{p_1}\} \right\}$$

$$egin{aligned} h^{\mathcal{C}_{\mathcal{C}}}(s) &= \max\{h^{\{v^{
ho_2}\}}(s) + h^{\{v^{
ho_3}\}}(s) + h^{\{v^{
ho_4}\}}(s) + \ h^{\{v^{
ho_5}\}}(s) + h^{\{v^{t_1},v^{t_2},v^{
ho_1}\}}(s)\} \end{aligned}$$

Structural Symmetries

- Permutation of variables, operators, and facts
- Goal-stable automorphisms: preserve structure

3 Experiments

Background

Structural Symmetries and (Canonical) PDBs

Experiments 000

Symmetric Patterns

Definition

For pattern $P = \{v_1, ..., v_n\}$ and symmetry σ of planning task Π , the symmetric pattern is $\sigma(P) = \{\sigma(v_1), ..., \sigma(v_n)\}$.

Symmetric Patterns

Definition

For pattern $P = \{v_1, ..., v_n\}$ and symmetry σ of planning task Π , the symmetric pattern is $\sigma(P) = \{\sigma(v_1), ..., \sigma(v_n)\}$.

Theorem

For all states s of Π : $h^{P}(s) = h^{\sigma(P)}(\sigma(s))$.

Implicit PDBs

- Patterns P, Q with $\sigma(Q) = P$
- Alternative to computing both PDBs:
 - Compute h^P
 - Keep $\langle \mathbf{h}^{\mathbf{P}}, \sigma \rangle$ as implicit representation
 - Computation of implicit PDB: $h^Q(s) = h^P(\sigma(s))$

Symmetric and Disjoint-additive Pattern Collections

Definition

Pattern collection *C* is closed under symmetry group Γ if for all $\sigma \in \Gamma$ and for all $P \in C$, $\sigma(P) \in C$.

• \overline{C} symmetric closure of C if $P, \sigma(P) \in \overline{C}$ for all $P \in C$

Symmetric and Disjoint-additive Pattern Collections

Definition

Pattern collection *C* is closed under symmetry group Γ if for all $\sigma \in \Gamma$ and for all $P \in C$, $\sigma(P) \in C$.

• \overline{C} symmetric closure of C if $P, \sigma(P) \in \overline{C}$ for all $P \in C$

Theorem

If pattern collection C is disjoint-additive, then also \overline{C} is disjoint-additive.

Invariance and Dominance of the CPDB Heuristic

Theorem

If pattern collection *C* is closed under symmetry group Γ , then for all states *s* of Π : $h^{\mathcal{C}_{\mathcal{C}}}(s) = h^{\mathcal{C}_{\mathcal{C}}}(\sigma(s))$.

Invariance and Dominance of the CPDB Heuristic

Theorem

If pattern collection *C* is closed under symmetry group Γ , then for all states *s* of Π : $h^{C_c}(s) = h^{C_c}(\sigma(s))$.

Theorem

For pattern collection C and symmetry group Γ , for all states s of Π : $h_{SL}^{C_c}(s) \leq h^{C_{\overline{c}}}(s)$.

Structural Symmetries and (Canonical) PDBs $_{\circ\circ\circ\circ\bullet}$

Experiments 000

Algorithm – Example

$$C \quad \left\{ \{v^{p_2}\} \{v^{p_3}\} \{v^{p_4}\} \{v^{p_5}\} \{v^{t_1}, v^{t_2}, v^{p_1}\} \right\}$$

Structural Symmetries and (Canonical) PDBs $_{\circ\circ\circ\circ\bullet}$

Experiments 000

Algorithm – Example

$$C \quad \left\{ \{v^{p_2}\} \{v^{p_3}\} \{v^{p_4}\} \{v^{p_5}\} \{v^{t_1}, v^{t_2}, v^{p_1}\} \right\}$$

$$\{ v^{t_1}, v^{t_2}, v^{p_1} \}$$

$$\overline{C} \{ v^{p_3} \} \{ v^{p_4} \} \{ v^{p_5} \} \{ v^{p_2} \}$$

$$\{ v^{t_1}, v^{t_2}, v^{p_2} \} \{ v^{p_1} \} \{ v^{t_1}, v^{t_2}, v^{p_3} \}$$

Experiments 000

Algorithm – Example

$$C \quad \left\{ \{ v^{p_2} \} \{ v^{p_3} \} \{ v^{p_4} \} \{ v^{p_5} \} \{ v^{t_1}, v^{t_2}, v^{p_1} \} \right\}$$

Structural Symmetries and (Canonical) PDBs $_{\text{OOOO}}\bullet$

Experiments 000

Algorithm – Example

• Example computations for the initial state:

Structural Symmetries and (Canonical) PDBs $_{\texttt{OOOO}}\bullet$

Experiments 000

Algorithm – Example

$$C \quad \left\{ v^{p_2} \right\} \left\{ v^{p_3} \right\} \left\{ v^{p_4} \right\} \left\{ v^{p_5} \right\} \left\{ v^{t_1}, v^{t_2}, v^{p_1} \right\}$$

• Example computations for the initial state:

$$h^{{\mathcal C}_{\mathcal C}}(s_0)=2+2+2+2+180=188$$

Structural Symmetries and (Canonical) PDBs $_{\texttt{OOOO}}\bullet$

Experiments 000

Algorithm – Example

$$C \quad \left\{ \{ v^{p_2} \} \{ v^{p_3} \} \{ v^{p_4} \} \{ v^{p_5} \} \{ v^{t_1}, v^{t_2}, v^{p_1} \} \right\}$$

• Example computations for the initial state:

$$h^{\mathcal{C}_{\mathcal{C}}}(s_0) = 2 + 2 + 2 + 2 + 180 = 188$$
$$h^{\mathcal{C}_{\overline{\mathcal{C}}}}(s_0) = \max\{180 + 2 + 2 + 2 + 2, \\ 476 + 2 + 2 + 2 + 2, \\ 180 + 2 + 2 + 2 + 2\} = 484$$

Results for A^{*}

	HC-CPDB		
	orig	symm	symm-impl
Coverage (# solved tasks)	814	813	813
Search out of memory	774	736	730
Search out of time	70	109	115

Not shown: dominance over symmetric lookups

Expansions

(dominance in 194 task across 33 domains)

Results for Symmetry-based Pruning

	HC-CPDB with DKS			
	orig	symm	symm-impl	
Coverage (# solved tasks)	887	893	891	
Expansions 95th percentile	3510224	2584593	2584593	

Conclusions

- Implicit PDBs: trade-off between memory and runtime
- CPDB heuristic invariant under symmetry if using symmetric closure of pattern collection
- Fruitful combination with symmetry-based pruning methods