
Efficient Implementation of Pattern Database
Heuristics for Classical Planning

Silvan Sievers1, Manuela Ortlieb1 and Malte Helmert2
1Albert-Ludwigs-Universität Freiburg 2Universität Basel

Classical Planning

A deterministic planning task is a 4-tuple
Π = 〈V , I,O, s?〉 where

IV is a finite set of state variables with an associated
finite domain Dv for each variable v ∈ V

I I is the initial state (a state is an valuation over V)
IO is a finite set of operators where each operator

o ∈ O (with associated cost cost(o) ∈ N0) possibly
changes the value of one or several variables

I s? is a goal description which is a partial variable
assignment

Objective for optimal planning: Find an optimal (i.e.
a cheapest) plan which leads from the initial state
to a goal state.

PDBs for Classical Planning

IPattern databases heuristics for a planning task are
abstraction heuristics defined by a subset of
variables P ⊆ V called the pattern:
I Only variables in P are perfectly represented in the abstract

planning task.
I All other variables are not represented at all.

IA PDB is a lookup table which stores h∗(s) for all
(abstract) states s, implemented as a
one-dimensional array of size N :=

∏k
i=1 |Di|.

IA perfect hash function maps states to table indices
in {0, . . . ,N − 1}, called ranks.

IComputing ranks from states is called ranking, the
inverse process is called unranking.

Basic PDB Construction Algorithm

N :=
∏k

i=1 |Di|
PDB := array of size N filled with∞
heap := make-heap()
graph := make-array-of-vectors()

/* phase 1: create graph of backward transitions and identify
goal states */

for r ∈ {0, . . . ,N − 1} do
s := unrank(r)
if s? ⊆ s then

PDB[r] := 0
heap.push(0, r)

for o ∈ O do
if o applicable in s then

s′ := successor of s
r ′ := rank(s′)
graph[r ′].append(〈r , cost(o)〉)

/* phase 2: perform Dijkstra search with graph and heap to
complete the entries in PDB */
. . . (Dijkstra pseudo-code omitted)

Inefficiencies of the Basic Algorithm

1. Creating the complete transition graph has a
significant space cost.

2. Testing each operator for applicability in each state
is expensive.

3. A complexity analysis shows that the computation of
many states and ranks of these states (lines 13 and
14) can form the bottleneck of the overall algorithm.

Efficient PDB Construction Algorithm

1. Required: efficient way to regress over states to
avoid constructing the transition graph
Solution: multiply out all non-injective operators so
that all operators can be also applied “backwards”.

2. Required: efficient way to determine all applicable
operators for a given state to avoid checking all
operators individually
Solution: use a successor generator for an efficient
computation of the set of applicable operators for a
given state.

3. Required: avoid ranking and unranking of states
while running Dijkstra’s algorithm.
Solution:
I Successor generator works directly on ranked states.
I The effects of (backward) operators are expressed in a

change of rank, i.e., a simple addition is sufficient.

Experimental results
Domain basic algorithm efficient algorithm

100k 1m 10m 100m 100k 1m 10m 100m
Barman (20) 20 20 0 0 20 20 20 20
Elevators (20) 20 20 18 0 20 20 20 20
Floortile (20) 20 20 2 0 20 20 20 20
Nomystery (20) 20 20 18 10 20 20 20 20
Openstacks (20) 20 20 3 0 20 20 20 20
Parcprinter (20) 20 20 4 0 20 20 20 20
Parking (20) 20 20 10 0 20 20 20 20
Pegsol (20) 20 20 0 0 20 20 20 20
Scanalyzer (20) 17 12 3 3 20 20 19 18
Sokoban (20) 20 20 20 7 20 20 20 20
Tidybot (20) 13 0 0 0 20 20 20 4
Transport (20) 20 20 18 2 20 20 20 20
Visitall (20) 20 20 8 8 20 20 20 20
Woodworking (20) 20 20 2 0 20 20 20 20
Total (280) 270 252 106 30 280 280 279 262

Number of instances where a PDB could be constructed within 30 min and 2GB memory by
the basic and efficient construction algorithm for different PDB size limits.

Domain HSPf-iPDB FD-iPDB M&S-2011
Barman (20) 4 4 4
Elevators (20) 19 15 10
Floortile (20) 6 2 7
Nomystery (20) 18 16 18
Openstacks (20) 6 14 13
Parcprinter (20) 13 11 13
Parking (20) 5 5 5
Pegsol (20) 5 18 19
Scanalyzer (20) 7 10 9
Sokoban (20) 15 20 19
Tidybot (20) 14 14 7
Transport (20) 7 6 7
Visitall (20) 16 16 16
Woodworking (20) 6 5 9
Total (280) 141 156 156

Number of tasks solved by the original iPDB implementation in HSPf, our new
implementation of iPDB in Fast Downward and the IPC 2011 merge-and-shrink planner.

