
An Empirical Case Study on Symmetry Handling in
Cost-Optimal Planning as Heuristic Search

Silvan Sievers1, Martin Wehrle1, Malte Helmert1, and Michael Katz2

1 University of Basel, Switzerland
{silvan.sievers,martin.wehrle,malte.helmert}@unibas.ch

2 IBM Haifa Research Lab, Israel
katzm@il.ibm.com

Abstract. Symmetries provide the basis for well-established approaches to tackle
the state explosion problem in state space search and in AI planning. However,
although by now there are various symmetry-based techniques available, these
techniques have not yet been empirically evaluated and compared to each other in
a common setting. In particular, it is unclear which of them should be preferably
applied, and whether there are techniques with stronger performance than others.
In this paper, we shed light on this issue by providing an empirical case study. We
combine and evaluate several symmetry-based techniques for cost-optimal plan-
ning as heuristic search. For our evaluation, we use state-of-the-art abstraction
heuristics on a large set of benchmarks from the international planning competi-
tions.

1 Introduction

Common tasks in heuristic search and classical planning face the state explosion prob-
lem, meaning that the task’s state space grows exponentially in the size of a compact
description. As a consequence, the ability to effectively tackle the state explosion prob-
lem is crucial in order to scale to large problem sizes. A well-established approach for
this purpose is based on the detection and exploitation of problem symmetries. Origi-
nating in the area of computer aided verification [13], symmetries have also been suc-
cessfully applied in the heuristic search and planning communities [8, 9, 18, 7, 24, 17, 3,
4, 23, 20]. Search techniques based on symmetries traditionally take into account that
“symmetrical” states can be treated in an analogous way as the “original” state, thereby
attempting to reduce the size of the task’s reachable search space. For example, for a
robot that has to carry a blue and a red ball to a destination location, it does not matter
in which hand it actually carries the blue and the red ball, rendering the corresponding
states symmetrical.

Symmetries have been studied in several variations. Symmetrical lookups, intro-
duced in the context of pattern database heuristics for the sliding tile puzzle [2], maxi-
mize heuristic values over symmetrical states. Similarly, dual lookups can be considered
as an instantiation of symmetry exploitation for permutation problems. In a nutshell,
dual lookups compute two heuristic values per state, one for the actual state and one for
the “dual” state which is known to have the same goal distance. Hence, maximizing the
estimations over these states preserves admissibility [7, 24]. For classical planning as

heuristic search, symmetries have been applied to prune symmetrical states explicitly
[17, 3]. In addition, Sievers et al. [23] recently studied symmetries on a factored level
for computing abstraction heuristics based on the merge-and-shrink framework [12].
Apparently, each of these techniques has shown to be useful in a particular context, but
from a more global point of view, it is unclear which technique should be applied in
which setting, if there are techniques that perform stronger than others, and if they can
be combined to increase performance even further.

In this paper, we provide an empirical evaluation of these symmetry techniques. As
the planning community offers a large and diverse benchmark set from the international
planning competitions, we perform our study in the context of domain-independent
planning. Our evaluation includes symmetries for cutting the search space as well as
for computing merge-and-shrink heuristics. Furthermore, we adapt the concept of sym-
metrical and dual lookups to planning. While Shleyfman et al. [20] have shown that
several planning heuristics are invariant under symmetries, this is presumably not the
case for abstraction heuristics like merge-and-shrink, which are subject to our study.

2 Background

A SAS+ planning task [1], augmented with operator costs, is defined as a tuple Π =
〈V,O, s0, s?, cost〉 consisting of a finite set V of finite-domain state variables, a finite
set of operators O, an initial state s0, a goal s?, and an operator cost function cost .
States are defined by mappings from the variables in V to corresponding values in their
domains. The goal description is specified as a conjunction of variable/value pairs (also
called facts). An operator consists of a precondition and an effect which are both repre-
sented as conjunctions of facts. An operator o is applicable in a state s if o’s precondition
complies with s, and applying o in s yields the successor state s(o) by setting o’s effect
variables in s accordingly. A plan is a sequence of operators that is sequentially appli-
cable in s0 and leads to a state that complies with the goal s?. The cost of a plan π is
the sum of the costs of operators in the plan. A plan π is called optimal if its cost is
minimal among all plans. A planning task Π induces a state transition graph TΠ , where
TΠ ’s vertices are Π’s states, and there is an edge between states s and s′ if there is an
operator o that is applicable in s and s′ := s(o).

We will provide a short introduction to techniques that exploit symmetries for dif-
ferent purposes. We refer to the literature for details and more formal descriptions.

2.1 Structural Symmetries & Orbit Space Search

We base on the notion of structural symmetries (called symmetries for short in the fol-
lowing) which have recently been introduced by Shleyfman et al. [20]. Such symmetries
map facts to facts and operators to operators in a way that forces the induced mapping
on the state transition graph TΠ to be an automorphism of TΠ that maps goal nodes to
goal nodes. Symmetries induce equivalence relations on TΠ ’s nodes, i.e. on the set of
Π’s states. Two states s and s′ are in the same equivalence class if there is a symmetry
σ such that σ(s) = s′.

In general, finding the coarsest equivalence relation is NP-hard [15]. Hence, in prac-
tice, an equivalence between two states s and s′ is established via a procedural map-
ping C : S → S from states to states in their equivalence class which induces an
over-approximation of the coarsest equivalence relation. Two states s and s′ are said
to be equivalent if they are mapped to the same state by C. The equivalence classes
induced by C are called orbits. Pruning algorithms based on symmetry elimination only
consider the orbits instead of all states. In the following, we consider symmetry elimina-
tion based on orbit space search [5]. Orbit space search performs the search directly on
the space induced by the orbits of all states: For all encountered states s, a symmetrical
representative of the orbit of s is computed and used for the further search.

2.2 Factored Symmetries & Merge-And-Shrink

Symmetries have also been studied on a factored level [23] for computing merge-and-
shrink (M&S) heuristics [12]. Merge-and-shrink heuristics represent a popular class of
abstraction heuristics. Starting from the “atomic” abstractions that represent the pro-
jection on single variables, the merge-and-shrink computation iterativeley selects two
elements from the current set of abstractions, possibly unifies abstract states in one
or both abstractions so that the product of their sizes respects a given size limit (the
so-called shrink step), and then computes the synchronized product of the two abstrac-
tions (the so-called merge step). The resulting synchronized product replaces the two
abstractions, and the process repeats until one abstraction is left.

In this framework, for a given set of abstractions Θ during the computation of
merge-and-shrink, factored symmetries capture locally symmetrical aspects of (some
of) the abstractions in Θ. Such symmetries can be used for lossless shrinking and to
devise merging strategies for computing merge-and-shrink abstractions by preferably
merging those abstractions that are affected by common factored symmetries.

2.3 Symmetrical Lookups

The concept of symmetrical lookups has been successfully proposed in the area of
search, but has not been evaluated in the planning area so far. We have adapted sym-
metrical lookups for planning as follows: For a given heuristic h and state s, we define
the heuristic value h̄(s) for s as the maximum of {h(s), h(s1), . . . , h(sm)}, where si

for i ∈ {1, . . . ,m} are states located in the same orbit as s (i.e. states symmetrical
to state s). From a theoretical point of view, there is no further restriction on the set
S = {s1, . . . , sm} of symmetrical states. At the extreme ends of the spectrum, S could
be empty (i.e. no symmetrical lookups are performed), or could contain the whole set of
states from the orbit of s (which is presumably expensive to compute in practice). From
a practical point of view, several strategies to compute S are possible, and it remains
an experimental question to find the sweet-spot of the tradeoff to increase the heuristic
values as much as possible, while still being efficiently computable.

While the use of symmetrical lookups preserves the admissibility of a given heuris-
tic h, it generally renders h to be inconsistent, which means that the resulting heuristic
h̄ does no longer satisfy the equality h̄(s) ≤ h̄(s′) + cost(o), where s′ is the successor
state of s when operator o is applied. To alleviate this problem, bidirectional pathmax

(BPMX) has been proposed and successfully applied in the heuristic search community
[6]. Informally speaking, BPMX “repairs” inconsistent jumps in the heuristic values
for s and successor state s(o) (and vice versa) by adapting the values accordingly. Like
symmetrical lookups, BPMX has not been applied in the planning context. Because
symmetrical lookups as we adapted them to planning face the same problem of render-
ing heuristic values inconsistent, we also adapt BPMX to planning: whenever a node
is expanded, the heuristic values of its successors are recursively updated up to a given
recursion depth.

3 Experimental Study

We evaluate the previously discussed symmetry techniques for classical planning using
A∗ search or orbit space search in combination with several abstraction heuristics from
the planning literature. All techniques are implemented in the Fast Downward plan-
ner [11]. We use the optimal benchmarks from the International Planning Competition
(IPC) up to IPC2011 with language features supported by the investigated heuristics (44
domains with a total of 1396 tasks). All experiments are performed on computers with
Intel Xeon E5-2660 CPUs running at 2.2 GHz and with a time bound of 30 minutes and
a memory bound of 2 GB, as common in IPCs. We compute both structural symmetries
and factored symmetries with the graph automorphism tool Bliss [14].

3.1 Symmetries in Common Planning Benchmarks

In a first experiment, we investigate the occurrence of symmetries in the set of consid-
ered planning benchmarks. To the best of our knowledge, despite the success of symme-
try handling in planning, no previous work has quantitatively analyzed the occurrence
of symmetries in commonly used planning benchmarks so far. In the following, we
report the number of tasks of every domain in which we discovered at least one non-
trivial symmetry generator, the sum and the median of such generators aggregated over
all tasks of every domain, as well as the number of discovered symmetry generators of
different orders.3 Table 1 lists the data.

The first and general observation we make (columns 2 and 3) is that there are lots of
symmetries in this standard set of planning benchmarks, even more than one might have
expected. In particular, only 3 domains (Blocksworld and the two Parcprinter domains)
do not expose a symmetry in any task, and in 1103 tasks symmetries do occur. Fur-
thermore, in 38 out of 44 domains, more than half of the tasks contain symmetries, and
in most of these 38 domains, almost all the tasks are symmetrical. This huge number
of symmetries is remarkable as the domains stem from quite different areas, covering
both academic and real-world scenarios. It shows that symmetries are a quite general
concept that often occurs in practice. Obviously, the large number of symmetries par-
ticularly explains the recent success of the symmetry techniques evaluated in planning.

3 The order of a generator σ is defined as the smallest number of function compositions with
itself that yields the identity function, i.e. order(σ) = n if n is the smallest number with
σ ◦ . . . ◦ σ︸ ︷︷ ︸

n

= id .

Table 1. Properties of IPC domains: total number of tasks (total), number of tasks with at least
one symmetry (symm), and number of generators for every domain (sum and median over all
tasks), histogram of generators’ order.

tasks # generators # generators of order
total symm sum median 2 3 4 5

airport 50 42 205 4 205 - - -
barman-11 20 20 73 4 73 - - -
blocks 35 0 0 0 0 - - -
depot 22 22 118 4 118 - - -
driverlog 20 20 85 3 85 - - -
elevators-08 30 20 38 1 38 - - -
elevators-11 20 13 23 1 23 - - -
floortile-11 20 20 48 2 48 - - -
freecell 80 1 1 0 1 - - -
grid 5 5 27 5 27 - - -
gripper 20 20 460 23 460 - - -
logistics00 28 28 116 3.5 116 - - -
logistics98 35 35 2757 51 2756 1 - -
miconic 150 141 1893 13 1892 1 - -
mprime 35 35 649 15 649 - - -
mystery 30 28 471 10.5 471 - - -
nomystery-11 20 20 54 2.5 54 - - -
openstacks-08 30 30 221 7 221 - - -
openstacks-11 20 20 149 7 149 - - -
openstacks 30 11 20 0 19 - - 1
parcprinter-08 30 0 0 0 0 - - -
parcprinter-11 20 0 0 0 0 - - -
parking-11 20 20 150 7.5 150 - - -
pathways-noneg 30 29 210 7 210 - - -
pegsol-08 30 30 58 2 58 - - -
pegsol-11 20 20 40 2 40 - - -
pipesworld-notankage 50 50 470 8 470 - - -
pipesworld-tankage 50 50 1547 22.5 1547 - - -
psr-small 50 32 73 1 73 - - -
rovers 40 32 381 4 381 - - -
satellite 36 36 12115 92 12115 - - -
scanalyzer-08 30 26 201 6 200 1 - -
scanalyzer-11 20 18 142 6.5 142 - - -
sokoban-08 30 27 114 3 113 - 1 -
sokoban-11 20 19 66 3 65 - 1 -
tidybot-11 20 7 13 0 13 - - -
tpp 30 29 197 6 197 - - -
transport-08 30 30 76 2 76 - - -
transport-11 20 20 50 2 50 - - -
trucks 30 29 96 3 96 - - -
visitall-11 20 11 16 1 16 - - -
woodworking-08 30 22 244 5 244 - - -
woodworking-11 20 16 150 5 150 - - -
zenotravel 20 19 199 6 199 - - -

Total 1396 1103 24016 4 24010 3 2 1

In addition, it suggests that further improvements based on symmetry-exploiting tech-
niques are achievable—we will come back to this point below.

Furthermore, we observe that there is a remarkable difference in the number of gen-
erators found in the different domains, both with respect to the sum and with respect to
the median (columns 4 and 5), which shows that the domains are structured quite dif-
ferently in this respect. Interestingly, considering the generators’ order for every task,
we observe that the vast majority of generators has the simplest possible order of two.

In rare cases, however, there also exist more complex generators of higher order. We
should note that even having all generators being of order 2 does not ensure that all
elements of the group will be of that order. An example can be seen in Gripper domain,
where generators found by Bliss represent either (a) symmetries between two grippers,
or (b) symmetries between ball i and ball i + 1, for all 1 ≤ i < n. All generators
are of order 2, but there are elements of all orders up to n that can be composed out
of those generators. Note also that other tools for finding automorphisms of coloured
graphs might have found a different set of generators. Lastly, note that group or gen-
erator orders are only some of the features describing group structure and knowing a
group structure could result in better exploitation of the found symmetries. Apparently,
as we will see in the next sections, the existing methods already yield powerful sym-
metry elimination techniques for planning. It remains an open question why so many of
the generators discovered by Bliss have this particular order. We suspect that the gener-
ators’ order depends on the representation of the considered planning task. Currently,
we have used the SAS+ representation generated by the Fast Downward planner. It will
be interesting to investigate if there are more suitable SAS+ representations that are
more amenable to finding generators of higher order, and if the available symmetry-
techniques can profit from them.

3.2 Setup of the Study

Our evaluation focuses on abstraction heuristics because they represent a popular class
of planning heuristics used for cost-optimal planning that are presumably not invariant
under symmetries. In more detail, we evaluate heuristics based on merge-and-shrink
[12], iPDB [10] in the implementation by Sievers, Ortlieb and Helmert [21], and CE-
GAR [19].

To use symmetrical lookups and orbit space search in combination with merge-and-
shrink heuristics, we need to make sure that the heuristics yield admissible values for
all symmetrical states. While this might seem obvious at first glance, admissibility is
no longer guaranteed for regular merge-and-shrink heuristics within a straight-forward
combination: in Fast Downward, abstract states in intermediate abstractions are pruned
if they are unreachable from the initial state of the task. However, as the applied sym-
metries do not stabilize the initial state, admissibility can be violated because a non
dead-end state could have a symmetrical state which corresponds to such a pruned ab-
stract state. To address this issue, we simply disable this pruning within the computa-
tion of merge-and-shrink in all configurations that combine merge-and-shrink with orbit
search. (The alternative of only using symmetries that additionally stabilize the initial
state yields fewer symmetries and performs worse.) For the combinations of merge-
and-shrink with symmetrical lookups and without orbit space search, we address this
problem by ignoring symmetrical states with values of infinity if the original state is
not evaluated to infinity. (The alternatives of only using symmetries that also stabilize
the initial state again performs worse, and disabling the pruning of unreachable states
within merge-and-shank is slightly worse in this setting.)

In the following, we focus on merge-and-shrink heuristics because all symmetry
techniques (including factored symmetries) are applicable. Results for iPDB and CE-
GAR are discussed at the end of the section.

3.3 Symmetrical Lookups and BPMX

We investigate the following questions: First, how much can symmetrical lookups re-
duce the number of expansions and increase the coverage (i.e. the number of solved
problems)? Second, what is the influence of the number of considered symmetrical
states? Third, can these techniques improve the total runtime? Fourth, how important is
BPMX in this setting? We report results for the best available merge-and-shrink config-
uration in Fast Downward, which uses the merging strategy DFP [22] and the shrinking
strategy based on bisimulation [16] with size limit 50000.

We address the first three questions (i.e. no use of BPMX yet) in a first experiment,
reported in Table 2. We compare the baseline, i.e. A∗ with merge-and-shrink (base),
to merge-and-shrink with the inclusion of symmetrical lookups for 1 symmetrical state
found by a short random walk in the orbit (slone), and for 5, 10 or all symmetrical
states found by a breadth first search in the orbit (slsub5, slsub10, slall). We observe the
following trends. Symmetrical lookups generally help in increasing the coverage and
reducing the number of expansions,4 both with respect to the sum over all commonly
solved tasks as well as with respect to the median over all tasks solved by at least one
configuration (where unsolved tasks are counted as infinity). While the extreme ends of
the spectrum (considering one vs all symmetrical states) does not hit the sweet spot of
the tradeoff to be as informative and efficient as possible, considering some symmetrical
states can considerably decrease the number of expansions while still being efficiently
computable. In the following, when referring to symmetrical lookups, we always mean
the best configuration where the h value is maximized over 10 additional symmetrical
states (and call it “sl” from here on).

Table 2. M&S (base) vs. M&S with symmetrical lookups: one symmetrical state computed via a
short random walk (slone), a subset of symmetrical states of size 5/10 (slsub5/10), all symmetrical
states (slall).

base slone slsub5 slsub10 slall

Coverage 652 656 658 658 658
Expansions sum 607602428 501671723 493848579 471769190 493848579
Expansions median 1263 1059 811 811 811

Next, we compare the baseline against the best configuration with symmetrical
lookups in more details on a per-task base. Figure 1 shows results as scatterplots of
expansions and total time for this comparison. The plot for expansions (left) shows that
using symmetrical lookups improves the heuristic quality in quite a lot of problems
(reduced number of expansions). Considering the runtime (right plot), we see that com-
puting symmetrical states as expected incurs a computational overhead that results in
a general increase of runtime. Still, the coverage increases as previously shown in Ta-

4 Note that we generally report the number of expansions excluding the last f layer to avoid the
(arbitrary) tie-breaking effects in the last f layer.

ble 2, and hence the heuristic quality improvement in this comparison outweighs the
increase in runtime.

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

unsolved

unsolved

base

sl

100 101 102 103
100

101

102

103

unsolved

unsolved

base

sl

Fig. 1. M&S (base) vs. M&S with symmetrical lookups (sl): expansions (left) and total time
(right)

Finally, we investigate to which extent BPMX can help in combination with sym-
metrical lookups, which generally render heuristics to be inconsistent. We evaluate three
variants: the most simple variant that only updates h values of successor states (bp1), a
variant that updates the h values recursively up to a depth of 2 (i.e. for successor states
of successor states, including the parents if there exist invertible operators, which cor-
responds to BPMX in the sense of Felner et al. [6]) (bp2), and a variant that performs
up to 10 recursive updates of h values of previously visited states (bp10). Table 3 shows
the results.

Table 3. M&S (base) vs. M&S with symmetrical lookups (sl) with and without BPMX of varying
depth X (-bpX).

base sl sl-bp1 sl-bp2 sl-bp10

Coverage 652 658 658 658 658
Expansions sum 607602428 471769190 471769292 471769236 471769236
Expansions median 1260 751 751 751 751

We observe that, in contrast to results reported in the heuristic search community,
BPMX does not help when applied for planning problems. The reduction in expan-
sions compared to using symmetrical lookups without BPMX is very small, in a range
not visible when comparing the median over tasks, and there is no coverage gain. As
one would expect based on these numbers, a comparison of symmetrical lookups with
BPMX (with recursive updates up to depth 10) against the baseline yields scatterplots

that look the same as the plots in Fig. 1. Also a direct comparison of using symmet-
rical lookups with and without BPMX shows that the number of expansions remains
the same for nearly all tasks, and the runtime slightly increases for some tasks. A more
detailed analysis reveals that heuristic value corrections due to BPMX only occur in 13
domains, in approximately 2% of all tasks for which the merge-and-shrink abstraction
was successfully computed, which shows that in most cases, merge-and-shrink with
symmetrical lookups still remains a consistent heuristic.

We conclude that symmetrical lookups with not too much overhead, i.e. for a lim-
ited number of additional symmetrical states evaluations in every state, can yield per-
formance improvements for planning. Using BPMX may improve the heuristic quality
in very few cases, but the computational overhead never pays off (but it also does not
hurt in terms of coverage in the tested configurations). In the following, we hence stick
to using symmetrical lookups without BPMX.

3.4 Results for Merge-and-Shrink Heuristic

In our final experiments for merge-and-shrink, we compare all techniques. We again
use A∗ with merge-and-shrink as baseline (base), and combine merge-and-shrink with
symmetrical lookups (sl) as before, with orbit space search (oss), and with factored
symmetries in the configuration “symm” reported by Sievers et al. [23] (fs). Table 4
shows domain-wise coverage and the number of expansions as the sum over commonly
solved tasks and as the median over all tasks solved by at least one configuration.

Comparing the individual techniques to the baseline (columns 2–5), we observe
that all symmetry techniques help, both in terms of coverage and expansions. For the
domains with no symmetries (Blocksworld and both Parcprinter domains), there is a
slight reduction in coverage for some configurations due to the overhead of search-
ing for symmetries without finding any. For all other domains, orbit space search and
symmetrical lookups only reduce coverage in a very few cases, whereas factored sym-
metries perform worse in a few more cases. Generally, orbit space search yields by far
the strongest performance improvement (both in terms of coverage and expansions),
compared to symmetrical lookups and factored symmetries that increase the coverage
rather modestly, but also reduce expansions.

When combining the individual techniques (columns 6–9), we again observe that
orbit space search increases the coverage for all configurations, i.e. it is always bene-
ficial to include it with either of the other two techniques, compared to only using one
of the other techniques (with one exception in the domain nomystery). The combina-
tion of factored symmetries with orbit space search is particularly beneficial, achieving
the overall highest coverage, improving over both using only factored symmetries or
only using orbit space search. The opposite holds for the combination of symmetrical
lookups with orbit space search: coverage decreases compared to only using orbit space
search. We generally observe that adding symmetrical lookups to a configuration de-
creases the number of expansions as expected, but does not increase performance in
terms of coverage, due to the computational overhead.

Table 4. Domain-wise coverage and aggregated expansions (sum and median) for M&S with
all symmetry combinations. Abbreviations: base: A∗, oss: orbit space search, sl: symmetrical
lookups, fs: factored symmetries; X-Y: combination of X and Y; all: combination of oss, sl and
fs.

base oss sl fs oss-sl oss-fs sl-fs all

airport (50) 18 18 18 18 18 18 18 18
barman-11 (20) 4 8 4 4 7 8 4 7
blocks (35) 27 27 27 26 27 27 26 26
depot (22) 6 8 7 7 8 9 7 9
driverlog (20) 12 13 12 12 13 13 12 13
elevators-08 (30) 16 19 17 16 19 18 17 18
elevators-11 (20) 13 16 14 13 16 15 14 15
floortile-11 (20) 5 5 5 2 5 3 2 3
freecell (80) 20 20 20 20 20 20 20 20
grid (5) 2 2 2 2 2 2 2 2
gripper (20) 19 20 19 18 20 20 18 20
logistics00 (28) 20 20 20 20 20 20 20 20
logistics98 (35) 5 5 5 4 5 5 4 5
miconic (150) 72 76 73 77 75 78 76 78
mprime (35) 23 22 23 23 22 23 23 23
mystery (30) 16 16 16 16 15 17 16 16
nomystery-11 (20) 18 18 20 16 20 18 16 18
openstacks-08 (30) 20 24 19 20 23 24 19 23
openstacks-11 (20) 15 19 14 15 18 19 14 18
openstacks (30) 7 7 7 7 7 7 7 7
parcprinter-08 (30) 14 13 14 14 13 13 14 13
parcprinter-11 (20) 10 9 10 10 9 9 10 9
parking-11 (20) 2 2 2 7 2 7 7 7
pathways-noneg (30) 4 4 4 4 4 4 4 4
pegsol-08 (30) 29 29 29 27 29 28 27 28
pegsol-11 (20) 19 19 19 17 19 18 17 18
pipesworld-nt (50) 16 18 15 16 16 18 16 16
pipesworld-t (50) 14 17 14 15 17 17 15 17
psr-small (50) 50 50 50 50 50 50 50 50
rovers (40) 8 8 8 8 8 8 8 8
satellite (36) 6 7 6 6 6 7 6 7
scanalyzer-08 (30) 13 18 13 12 18 17 12 17
scanalyzer-11 (20) 10 14 10 9 14 13 9 13
sokoban-08 (30) 26 29 27 30 29 30 30 30
sokoban-11 (20) 20 20 20 20 20 20 20 20
tidybot-11 (20) 1 1 1 1 1 1 1 1
tpp (30) 6 7 7 6 8 7 6 7
transport-08 (30) 11 11 11 11 11 11 11 11
transport-11 (20) 6 7 7 6 7 7 7 7
trucks (30) 7 8 7 8 8 9 8 9
visitall-11 (20) 9 9 9 10 9 10 10 10
woodworking-08 (30) 13 13 13 13 13 12 13 12
woodworking-11 (20) 8 8 8 8 8 7 8 7
zenotravel (20) 12 12 12 10 12 11 11 12

Coverage sum (1396) 652 696 658 654 691 698 655 692

Expansions sum 5.16e+8 2.68e+8 4.01e+8 3.65e+8 2.54e+8 2.39e+8 3.44e+8 2.32e+8
Expansions median 5077 4292 4481 7432 2814 5499 6216 4593

3.5 Results for iPDB and CEGAR Heuristics

We investigate orbit space search and symmetrical lookups with iPDB and with the CE-
GAR heuristic in its best configuration using the landmarks and goals decomposition
[19]. Again, we report results for computing 10 symmetrical states when using symmet-

rical lookups, and leave out BPMX as its benefit is negligible also in this context. Table
5 shows a domain-wise overview of coverage and summarized expansions (summed
over commonly solved tasks and the median over all tasks solved by at least one con-
figuration of the heuristic) for A∗ with the corresponding heuristic (base), and for the
corresponding heuristic combined with orbit space search (oss), symmetrical lookups
(sl), and the combination thereof (oss-sl).

Table 5. CEGAR and iPDB with A∗ (base), with orbit space search (oss), with A∗ and symmet-
rical lookups (sl), and with a combination of oss and sl (oss-sl).

CEGAR iPDB
base oss sl oss-sl base oss sl oss-sl

airport (50) 32 24 30 28 23 23 23 23
barman-11 (20) 4 8 4 6 4 8 4 7
blocks (35) 18 18 18 18 28 28 28 28
depot (22) 6 7 6 7 8 10 7 11
driverlog (20) 10 11 10 12 13 13 13 13
elevators-08 (30) 18 19 19 19 20 21 20 21
elevators-11 (20) 15 16 16 16 16 17 16 17
floortile-11 (20) 2 2 2 2 2 3 2 3
freecell (80) 52 53 53 52 20 20 20
grid (5) 2 2 2 2 3 3 3 3
gripper (20) 7 20 7 20 7 20 7 20
logistics00 (28) 20 15 20 16 21 20 21 20
logistics98 (35) 9 5 8 6 5 5 5 5
miconic (150) 71 75 66 73 55 60 55 58
mprime (35) 26 24 27 23 23 23 23 23
mystery (30) 17 16 17 15 16 17 16 17
nomystery-11 (20) 14 13 14 14 18 20 19 20
openstacks-08 (30) 20 24 19 23 20 24 19 23
openstacks-11 (20) 15 19 14 18 15 19 14 18
openstacks (30) 7 7 7 7 7 7 7 7
parcprinter-08 (30) 22 22 22 22 13 13 13 13
parcprinter-11 (20) 17 17 17 17 9 9 9 9
parking-11 (20) 0 0 0 0 7 7 7 7
pathways-noneg (30) 4 4 4 4 4 4 4 4
pegsol-08 (30) 28 28 28 28 28 29 27 28
pegsol-11 (20) 18 18 18 18 19 20 18 19
pipesworld-notankage (50) 17 20 17 18 21 24 20 22
pipesworld-tankage (50) 13 18 13 17 16 20 16 19
psr-small (50) 49 50 49 50 49 50 49 50
rovers (40) 7 7 7 7 8 8 8 8
satellite (36) 6 7 6 6 6 6 6 6
scanalyzer-08 (30) 12 16 12 15 13 18 13 18
scanalyzer-11 (20) 9 12 9 11 10 14 10 14
sokoban-08 (30) 22 27 20 26 29 30 29 30
sokoban-11 (20) 19 20 17 20 20 20 20 20
tidybot-11 (20) 14 10 14 14 14 14 14 14
tpp (30) 7 8 7 8 6 7 6 7
transport-08 (30) 11 11 11 11 11 11 11 11
transport-11 (20) 6 6 6 6 6 7 6 7
trucks (30) 12 12 12 12 8 10 9 10
visitall-11 (20) 9 9 9 9 16 16 16 16
woodworking-08 (30) 12 12 12 12 9 9 9 9
woodworking-11 (20) 7 7 7 7 4 4 4 4
zenotravel (20) 12 12 13 13 11 12 11 11

Sum (1396) 698 731 689 728 661 723 657 713
Expansions sum 50.8e+8 29.2e+8 44.5e+8 19.1e+8 33.2e+8 15.0e+8 31.4e+8 13.3e+8
Expansions median 5118 7285 5799 2906 6931 2440 6339 1952

For CEGAR, we observe that orbit space search is again, as for merge-and-shrink,
the most improving symmetry-based technique. However, the are also several domains
in which coverage decreases and the median of expansions is even higher than with
the baseline. Presumably, due to the way they are constructed, CEGAR abstractions are
especially well-informed along a path from the initial state to the goal, but not neces-
sarily on a symmetrical path (because our symmetries do not stabilize the initial stated).
Furthermore, due to the CEGAR computation starting the refinement near goal states,
CEGAR abstractions yield well-informed heuristics close to the goal, which often re-
sults in fewer expansions on the last f layer than with other heuristics. Indeed, comput-
ing the median of expansions including the last f layer, the number for CEGAR with
orbit space search is smaller than for the baseline. The second observation for CEGAR
is that adding symmetrical lookups reduces the summed number of expansions as for
merge-and-shrink, but also decreases coverage due to the computational overhead both
compared to the baseline and orbit space search.

Considering iPDB, we observe a behavior more similar to merge-and-shrink than
CEGAR: orbit space search is the best performer in terms of coverage in 42 out of
44 domains, and expansions are greatly decreased. However, including symmetrical
lookups is again only beneficial in terms of expansions, but not for coverage.

4 Discussion

Our case study shows that symmetries frequently occur in various planning tasks, and
confirms that currently available symmetry-techniques can significantly help for plan-
ning with state-of-the-art abstraction heuristics. Most notably, this is the case for orbit
space search, where the number of solved problems usually increases considerably for
all of the considered heuristics. For the other techniques, i.e. symmetrical lookups and
factored symmetries, the improvement in coverage is often rather modest (and in some
cases, coverage can even decrease). We furthermore observe that BPMX does not per-
form equally strong for planning as for search.

Despite the improvement obtained with existing symmetry-techniques, one can ar-
gue that there is even room for further improvement because there are several do-
mains (e.g., Airport or Rovers) where symmetries do occur, but the number of solved
tasks could not be increased nevertheless. Even in the domain with the highest num-
ber of discovered symmetries (Satellite), the coverage increase is rather modest (one
more solved task with merge-and-shrink and the CEGAR heuristic, no improvement for
iPDB). Exploiting these symmetries more accurately can potentially yield even stronger
symmetry-techniques. Additionally, it will be interesting to investigate the impact of the
SAS+ representation on the occurrence of symmetries.

Acknowledgments

This work was supported by the Swiss National Science Foundation (SNSF) as part of
the project “Automated Reformulation and Pruning in Factored State Spaces (ARAP)”.

References

1. Bäckström, C., Nebel, B.: Complexity results for SAS+ planning. Computational Intelli-
gence 11(4), 625–655 (1995)

2. Culberson, J.C., Schaeffer, J.: Pattern databases. Computational Intelligence 14(3), 318–334
(1998)

3. Domshlak, C., Katz, M., Shleyfman, A.: Enhanced symmetry breaking in cost-optimal plan-
ning as forward search. In: McCluskey, L., Williams, B., Silva, J.R., Bonet, B. (eds.) Proceed-
ings of the Twenty-Second International Conference on Automated Planning and Scheduling
(ICAPS 2012). AAAI Press (2012)

4. Domshlak, C., Katz, M., Shleyfman, A.: Symmetry breaking: Satisficing planning and land-
mark heuristics. In: Borrajo, D., Kambhampati, S., Oddi, A., Fratini, S. (eds.) Proceedings of
the Twenty-Third International Conference on Automated Planning and Scheduling (ICAPS
2013). pp. 298–302. AAAI Press (2013)

5. Domshlak, C., Katz, M., Shleyfman, A.: Symmetry breaking in deterministic planning as
forward search: Orbit space search algorithm. Tech. Rep. IS/IE-2015-03, Technion, Haifa
(2015)

6. Felner, A., Zahavi, U., Holte, R., Schaeffer, J., Sturtevant, N., Zhang, Z.: Inconsistent heuris-
tics in theory and practice. Artificial Intelligence 175, 1570–1603 (2011)

7. Felner, A., Zahavi, U., Schaeffer, J., Holte, R.C.: Dual lookups in pattern databases. In:
Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI 2005). pp. 103–108. Professional Book Center (2005)

8. Fox, M., Long, D.: The detection and exploitation of symmetry in planning problems. In:
Dean, T. (ed.) Proceedings of the Sixteenth International Joint Conference on Artificial In-
telligence (IJCAI 1999). pp. 956–961. Morgan Kaufmann (1999)

9. Fox, M., Long, D.: Extending the exploitation of symmetries in planning. In: Ghallab, M.,
Hertzberg, J., Traverso, P. (eds.) Proceedings of the Sixth International Conference on Arti-
ficial Intelligence Planning and Scheduling (AIPS 2002). pp. 83–91. AAAI Press (2002)

10. Haslum, P., Botea, A., Helmert, M., Bonet, B., Koenig, S.: Domain-independent construc-
tion of pattern database heuristics for cost-optimal planning. In: Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence (AAAI 2007). pp. 1007–1012. AAAI
Press (2007)

11. Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence Re-
search 26, 191–246 (2006)

12. Helmert, M., Haslum, P., Hoffmann, J., Nissim, R.: Merge-and-shrink abstraction: A method
for generating lower bounds in factored state spaces. Journal of the ACM 61(3), 16:1–63
(2014)

13. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in System Design
9(1–2), 41–75 (1996)

14. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse
graphs. In: Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments
(ALENEX 2007). pp. 135–149. SIAM (2007)

15. Luks, E.M.: Permutation groups and polynomial-time computation. In: Groups and Compu-
tation, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 11,
pp. 139–175 (1993)

16. Nissim, R., Hoffmann, J., Helmert, M.: Computing perfect heuristics in polynomial time: On
bisimulation and merge-and-shrink abstraction in optimal planning. In: Walsh, T. (ed.) Pro-
ceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011).
pp. 1983–1990 (2011)

17. Pochter, N., Zohar, A., Rosenschein, J.S.: Exploiting problem symmetries in state-based
planners. In: Burgard, W., Roth, D. (eds.) Proceedings of the Twenty-Fifth AAAI Confer-
ence on Artificial Intelligence (AAAI 2011). pp. 1004–1009. AAAI Press (2011)

18. Rintanen, J.: Symmetry reduction for SAT representations of transition systems. In:
Giunchiglia, E., Muscettola, N., Nau, D. (eds.) Proceedings of the Thirteenth International
Conference on Automated Planning and Scheduling (ICAPS 2003). pp. 32–40. AAAI Press
(2003)

19. Seipp, J., Helmert, M.: Diverse and additive Cartesian abstraction heuristics. In: Proceed-
ings of the Twenty-Fourth International Conference on Automated Planning and Scheduling
(ICAPS 2014). pp. 289–297. AAAI Press (2014)

20. Shleyfman, A., Katz, M., Helmert, M., Sievers, S., Wehrle, M.: Heuristics and symmetries
in classical planning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI 2015). pp. 3371–3377. AAAI Press (2015)

21. Sievers, S., Ortlieb, M., Helmert, M.: Efficient implementation of pattern database heuristics
for classical planning. In: Borrajo, D., Felner, A., Korf, R., Likhachev, M., Linares López,
C., Ruml, W., Sturtevant, N. (eds.) Proceedings of the Fifth Annual Symposium on Combi-
natorial Search (SoCS 2012). pp. 105–111. AAAI Press (2012)

22. Sievers, S., Wehrle, M., Helmert, M.: Generalized label reduction for merge-and-shrink
heuristics. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence
(AAAI 2014). pp. 2358–2366. AAAI Press (2014)

23. Sievers, S., Wehrle, M., Helmert, M., Shleyfman, A., Katz, M.: Factored symmetries for
merge-and-shrink abstractions. In: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence (AAAI 2015). pp. 3378–3385. AAAI Press (2015)

24. Zahavi, U., Felner, A., Holte, R.C., Schaeffer, J.: Duality in permutation state spaces and the
dual search algorithm. Artificial Intelligence 172(4–5), 514–540 (2008)

