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Background Experiments

Motivation

Successful usage of symmetries:

Planning: duplicate pruning in A?, improved merge-and-shrink
heuristics
Heuristic search: symmetrical/dual lookups

Contribution of this work:

Quantitative analysis of symmetries in planning benchmarks
Empirical comparison of different symmetry-based techniques
(adapted to planning)
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Background Experiments

Classical Planning

SAS+ planning task Π:

Finite-domain state
variables
Initial state: complete
variable assignment
Goal description: partial
variable assignment
Operators: preconditions,
effects, cost

State transition graph TΠ:
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Structural Symmetries (Shleyfman et al. 2015)

Structural symmetry of a planning task Π:

Maps facts (variable/value pairs) to facts and operators to
operators
Induced symmetry σ on the state transition graph TΠ = (V ,E )
is a goal-stable automorphism:

(s, o, s ′) ∈ E iff (σ(s), σ(o), σ(s ′) ∈ E
s goal state iff σ(s) goal state

Example symmetry:
σ(oa) = ob
σ(ob) = oa
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Orbit Space Search (Domshlak et al. 2015)

Orbit: equivalence class of
symmetrical states

Before search: find (some) generators
of the automorphism group
During search:

Run A? as usual
When expanding state s, replace
successors by orbit representatives,
but save regular operators
→ symmetrical duplicate pruning

Non-standard plan extraction:

Compute the “real” state sequence
Find operators connecting the
sequence

s0

s∗

s0

X X

XX

X

s∗

Credits to A. Shleyfman
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Symmetrical Lookups for Planning

(For heuristic search: Felner et al. 2005, Zahavi et al. 2008)
Before search: find (some) generators of the automorphism
group
During search, for a given state s and heuristic h:

Compute (a subset of) the orbit containing s:
S := {s, s1, . . . sm}
Compute heuristic as h̄(s) := max{h(s ′) | s ′ ∈ S}

Properties:

S can be chosen arbitrarily
h̄(s) is still admissible (if h is)
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Bidirectional Pathmax for Planning

(For heuristic search: Felner et al. 2011)
Symmetrical lookups usually render heuristics inconsistent
Consistency: h(s) ≤ cost(o) + h(s ′) for a transition from s to
s ′ with operator o
Bidirectional pathmax (BPMX) rule:
h(s ′) = max(h(s ′), h(s)− cost(o))
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Merge-and-Shrink Heuristic (Helmert et al. 2014)

Represent state space as set T of small finite transition
systems, with a shared label set L
State space corresponds to product of transition systems
Transform transition systems to obtain distance heuristic for
state space
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Factored Symmetries (Sievers et al. 2015)

Work on a set T of transition systems as encountered during
the merge-and-shrink computation
Locally map abstract states to abstract states within elemets
of T and globally map transition labels to transition labels in L
Goal states must be preserved

Example:

σ(o1) = o1
σ(o2) = o2
σ(o3) = o3 a0

a1

b0
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c1 c2 d0
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Usage: improve merging strategies
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Quantitative Analysis

Benchmark set: 44 domains with 1396 tasks
Amount of symmetries:

Only 3 domains with no symmetries
1103 tasks contain symmetries
In 38 domains, more than 50% of tasks contain symmetries
In most of the 38 domains, almost all tasks contain symmetries

Influence of the representation and the symmetry tool?
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Symmetrical Lookups

Merge-and-Shrink base 1 state 5 states 10 states orbit

Coverage 652 656 658 658 658
Expansions sum 607602428 501671723 493848579 471769190 493848579

Expansions:
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Bidirectional Pathmax

Merge-and-Shrink base sl sl-bpmx

Coverage 652 658 658
Expansions sum 607602428 471769190 471769236

Marginal reduction in expansions, no increase in coverage
Explanation: pathmax corrections only in 2% of the tasks for
which the merge-and-shrink heuristic was constructed
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Combinations of Techniques

Merge-and-Shrink base oss sl fs

Coverage 652 696 658 654
Expansions sum 5.16e+8 2.68e+8 4.01e+8 3.65e+8

All techniques improve performance

Merge-and-Shrink oss-sl oss-fs sl-fs all

Coverage 691 698 655 692
Expansions sum 2.54e+8 2.39e+8 3.44e+8 2.32e+8

Including orbit space search always helpful
Including symmetrical lookups not very helpful (for coverage)
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More Results . . .

. . . on the poster!



Background Experiments

Conclusions

Planning benchmarks contain lots of symmetries
Symmetry-based techniques improve state-of-the-art planning
techniques
Orbit space search achieves best performance
BMPX does not help as much as in heuristic search problems
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