
Merging or Computing Saturated Cost Partitionings?
A Merge Strategy for the Merge-and-Shrink Framework

Silvan Sievers, Thomas Keller, Gabriele Röger
University of Basel, Switzerland

silvan.sievers@unibas.ch, tho.keller@unibas.ch, gabriele.roeger@unibas.ch

Abstract

The merge-and-shrink framework is a powerful tool for com-
puting abstraction heuristics for optimal classical planning.
Merging is one of its name-giving transformations. It entails
computing the product of two factors of a factored transition
system. To decide which two factors to merge, the framework
uses a merge strategy. While there exist many merge strate-
gies, it is generally unclear what constitutes a strong merge
strategy, and a previous analysis shows that there is still lots
of room for improvement with existing merge strategies. In
this paper, we devise a new scoring function for score-based
merge strategies based on answering the question whether
merging two factors has any benefits over computing satu-
rated cost partitioning heuristics over the factors instead. Our
experimental evaluation shows that our new merge strategy
achieves state-of-the-art performance on IPC benchmarks.

Introduction
Classical planning is the problem of finding a sequence of
deterministic actions that lead from a given initial state to a
state satisfying a desired goal condition (e.g., Ghallab, Nau,
and Traverso 2004). The dominant approach of recent years
to optimally solving classical planning problems is heuristic
search, in particular using the A∗ algorithm (Hart, Nilsson,
and Raphael 1968) in conjunction with admissible heuristics
(Pearl 1984). The state-of-the-art class of admissible heuris-
tics is based on abstractions, such as pattern databases (e.g.,
Rovner, Sievers, and Helmert 2019), domain abstractions
(Kreft et al. 2023), Cartesian abstractions (e.g., Seipp and
Helmert 2018), and merge-and-shrink (M&S) abstractions
(e.g., Sievers and Helmert 2021), the focus of this work.

The M&S framework first computes a factored represen-
tation of the given planning task, called factored transition
system (FTS), which consists of transition systems (called
factors) sharing the same set of labels. This FTS implicitly
represents the state space of the task through its product sys-
tem. The framework then repeatedly applies transformations
to the current FTS. At any point, each factor of the FTS is
an abstraction of the initial FTS (and with this, of the task).

One of the name-giving transformations is merging,
which means to replace two factors by their product in
the FTS. To decide which pair of factors to merge, the

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

framework uses a merge strategy. Starting with the orig-
inal work adapting merge-and-shrink from model check-
ing (Dräger, Finkbeiner, and Podelski 2009) to planning
(Helmert, Haslum, and Hoffmann 2007; Helmert et al.
2014), there has been considerable work exploring merge
strategies (Sievers, Wehrle, and Helmert 2014; Fan, Müller,
and Holte 2014; Sievers et al. 2015; Sievers, Wehrle, and
Helmert 2016). The current state of the art is constituted
by the two score-based merge strategies DFP and sbMI-
ASM, which choose the best pair of factors by computing
scores for them, and by the SCC merge strategy, which first
computes the strongly connected components (SCC) of the
causal graph (Knoblock 1994) of the task to partition the
state variables and then uses any score-based merge strat-
egy for first computing a (product) transition system for each
block before possibly further merging the resulting products.

In general, merging cannot decrease the heuristic quality
of the abstraction represented by the current FTS. However,
we observe that it may also not improve it compared to the
information available when not merging the factors. In par-
ticular, when computing saturated cost partitionings (SCPs)
(Seipp, Keller, and Helmert 2020) over the two factors in
question leads to an equally-informed heuristic compared to
merging, we can decide to avoid increasing the size of the
FTS by merging them and potentially even stop the M&S
computation early in favor of computing SCPs over the re-
maining factors. We devise a new score-based merge strat-
egy based on this observation and experimentally show that
it establishes a new state of the art on IPC benchmarks.

Background
The M&S framework works on any transition system as long
as it allows for a factored representation. Planning tasks in
the SAS+ formalism (Bäckström and Nebel 1995), which
are defined over finite-domain state variables V , induce such
transition systems T = ⟨S,L, T, s0, S∗⟩, where S is the set
of states (defined over V), L is the set of labels ℓ with cost
cost(ℓ) ∈ R+

0 , S × L× S ⊆ T is the transition relation, s0
is the initial state, and S∗ ⊆ S is the set of goal states. An
s-plan for T is a path π = ⟨ℓ1, . . . , ℓn⟩ from state s to some
goal state from S∗. Its cost is cost(π) =

∑n
i=1 cost(ℓi). It

is optimal if there is no s-plan with lower cost. A plan for
T is an s0-plan for T . Optimal planning is the problem of
finding an optimal plan or showing that no plan exists.

Algorithm 1: M&S algorithm extended to compute SCP
heuristics and to stop early according to the merge strategy.
Input: FTS F
Output: Heuristic for F

1: function M&SWITHSCP(F)
2: F ′ ← F , H ← ∅
3: while not TERMINATE(F ′) do
4: i, j ← MERGESTRATEGY(F ′)
5: if not i, j then break
6: LABELREDUCTIONSTRATEGY(F ′)
7: ω ← SCPORDERSTRATEGY(F ′)
8: H ← H ∪ hSCP

ω
9: SHRINKSTRATEGY(F ′, i, j)

10: k ← MERGE(F ′, i, j)
11: PRUNESTRATEGY(F ′, k)

12: return COMPUTEHEURISTIC(F ′, H)

A heuristic hT : S 7→ R+
0 for T maps a state s ∈ S to an

estimate of the cost of an s-plan for T . By h∗
T we denote the

perfect heuristic for T which maps a state s to the cost of an
optimal s-plan for T . hT is admissible iff hT (s) ≤ h∗

T (s)
for all s ∈ S. We drop T if it is clear from context.

An abstraction for T is a function α : S → S′. It induces
the abstract transition system T α = ⟨S′, L, {⟨α(s), ℓ, α(t)⟩
| ⟨s, ℓ, t⟩ ∈ T}, α(s0), {α(s) | s ∈ S∗}⟩. The abstraction
heuristic for T induced by α is defined as hα

T = h∗
T α , i.e.,

as the perfect heuristic for the abstract transition system.
Given multiple admissible heuristics H = ⟨h1, . . . , hn⟩

for T , the cost functions C = ⟨cost1, . . . , costn⟩ form a cost
partition if

∑n
i=1 cost i ≤ cost . We write h(s, cost ′) for the

evaluation of h on s using an alternative cost function cost ′

instead of cost . The cost-partitioned heuristic hH,C(s) =∑n
i=1 hi(s, cost i) is admissible (Katz and Domshlak 2010).

Saturated cost partitioning (SCP) computes cost functions
C as follows, assuming any fixed order ω for the heuris-
tics from H . It maintains a remaining cost function rc which
is initialized to rc0 = cost . In each iteration i over the
heuristics according to ω, it computes cost i as the min-
imal cost function satisfying hi(s, rci−1) = hi(s, cost i)
for all s ∈ S, called saturated cost function, which for
abstraction heuristics is uniquely defined as cost i(ℓ) =
max⟨s,ℓ,t⟩∈T (hi(s, rci−1) − hi(t, rci−1)) for all ℓ ∈ L,
and sets the remaining costs for the next iteration to rci =
rci−1−cost i. We write hSCP

ω for the resulting SCP heuristic.
A factored transition system (FTS) F = ⟨T 1, . . . , T n⟩

consists of transition systems, called factors, sharing the
same set of labels. Let T i = ⟨Si, L, T i, si0, S

i
∗⟩ for 1 ≤ i ≤

n. F compactly represents the (synchronized) product de-
fined as

⊗
F = ⟨S⊗, L, T⊗, s⊗0 , S

⊗
∗ ⟩, where S⊗, s⊗0 , S⊗

∗ is
the Cartesian product over the components of all factors T i

and T⊗ = {⟨s1, . . . , sn⟩, ℓ, ⟨t1, . . . , tn⟩ | ⟨si, ℓ, ti⟩ ∈ T i}.
Algorithm 1 shows the M&S framework as implemented

in the Fast Downward planning system (Helmert 2006), ex-
tended with the facility to optionally compute SCP heuristics
(Sievers et al. 2020). Ignore lines 5, 7 and 8 for the moment.
For a given F , the algorithm runs its main loop until the
maintained FTS F ′ only contains a single factor or function

Algorithm 2: Score-based merge strategy.
Input: FTS F , merge candidates M , scoring functions S
Output: Merge candidate from M

1: function SCOREBASEDMERGESTRATEGY(F , M , S)
2: for SCORINGFUNCTION in S do
3: scores← SCORINGFUNCTION(F,M)
4: M ← argminm∈M scores(m)
5: if |M | = 1 then
6: return single element from M

TERMINATE stops the loop (line 3). In each iteration, it se-
lects the pair of factors to merge next (line 4, referring to the
factors by their index in F ′), possibly applies label reduction
(line 6), which means abstracting the set of labels, possi-
bly shrinks the two factors (line 9), which means abstracting
them, and merges the two factors (line 10). MERGE(F ′, i, j)
removes T i and T j from F ′ and adds their synchronized
product, returning the index of the added factor. Afterwards,
M&S prunes the added product (line 11), which means re-
moving dead states and their transitions. All of these trans-
formations apply abstractions to F ′, and at any point, each
factor T of F ′ is an abstraction of the original FTS F and as
such induces the factor heuristic for F , written hT

F = h∗
T .

At the end (line 12), the algorithm either returns the standard
M&S heuristic hM&S = maxT ∈F ′ hT

F , defined as the max-
imum heuristic over the factor heuristics induced by F ′, or
the M&S-SCP heuristic hM&S

SCP = maxh∈H h, defined as the
maximum heuristic over all SCP heuristics hSCP

ω ∈ H pre-
viously computed (line 8) using some order ω over the fac-
tor heuristics induced by intermediate FTS F ′ (line 7). The
choice of the order is orthogonal to our contribution and we
will always use a random order in this paper.

A merge strategy needs to decide which pair of factors to
merge given the FTS. We consider score-based merge strate-
gies (Sievers, Wehrle, and Helmert 2016) that use scoring
functions for evaluating merge candidates (i.e., pairs of fac-
tors) of an FTS. As shown in Algorithm 2, given an FTS F , a
set of merge candidates M over F , and a sequence of scoring
functions S, the strategy iteratively (line 2) computes scores
for all merge candidates using a scoring function (line 3),
removes all but the best candidates (line 4), and repeats until
only a single candidate is left which it returns (line 6). To en-
sure that a single merge candidate remains, at least one scor-
ing function must define unique scores for distinct merge
candidates. We also use the SCC merge strategy which ini-
tially partitions the variables of the task and during execution
of the M&S algorithm uses score-based merge strategies to
decide which factors within each block to merge next, before
possibly also merging the resulting products afterwards.

Merging or Computing Cost Partitions
Due to the large space of possible merge strategies, it is
hard to find general criteria defining strong merge strategies,
and the analysis by Sievers, Wehrle, and Helmert (2016)
shows that state-of-the-art merge strategies still leave am-
ple room for improvement. When using the M&S frame-
work extended to compute the M&S-SCP heuristic, a natural

question that arises is how merging two factors compares to
leaving them for exploitation in the SCP(s) computed dur-
ing M&S. To address this question, we devise the maximum
SCP scoring function (mSCP-sf) that prefers merge candi-
dates whose product heuristic yields the largest improve-
ment compared to the maximum over the two SCP heuristics
over the two factors. Analogously, the maximum factor scor-
ing function (mFactor-sf) prefers candidates whose product
heuristic improves most compared to the maximum over the
two factor heuristics, thus mimicking the computation of
the standard M&S heuristic. To evaluate the improvement
of heuristics, we compare the heuristic values of the initial
state or the average values over the finite heuristic values,
denoted by function AVG.

Formally, let F = ⟨T 1, . . . , T n⟩ be an FTS with T i =
⟨Si, L, T i, si0, S

i
∗⟩ for 1 ≤ i ≤ n. Let i, j ∈ {1, . . . , n}

with i ̸= j, let T ⊗ = T i ⊗ T j , and let s0 = ⟨s10, . . . , sn0 ⟩
be the initial state of F . Recall that hT i

F , hT j

F , and hT ⊗

F are
the factor heuristics for F induced by T i, T j , and T ⊗. We
have the following variants for evaluating the merge candi-
date ⟨T i, T j⟩ and the product T ⊗:

hinit
prod = hT ⊗

F (s0)

hinit
mFactor = max(hT i

F (s0), h
T j

F (s0))

hinit
mSCP = max(hSCP

⟨T i
F ,T j

F ⟩(s0), h
SCP
⟨T j

F ,T i
F ⟩(s0))

havg
prod = AVG(hT ⊗

F)

havg
mFactor = max(AVG(hT j

F), AVG(hT i

F))

havg
mSCP = max(AVG(hSCP

⟨T i
F ,T j

F ⟩), AVG(hSCP
⟨T j

F ,T i
F ⟩))

We want to prefer candidates with the largest improvement
of the product compared to the individual factors and we
need to minimize scores, so we define mFactor-sf to com-
pute the score hinit

mFactor − hinit
prod or havg

mFactor − havg
prod depending

on using initial or average heuristic values. The rationale be-
hind mFactor-sf can be seen as a greedy decision for the best
immediate improvement without looking ahead to the future
transformations by M&S. Analogously, mSCP-sf is defined
as hinit

mSCP − hinit
prod or havg

mSCP − havg
prod, adaptating the same con-

cept to the integration of cost partitioning into M&S.
In general, the value of both scoring functions cannot be

positive because merging is an information-preserving trans-
formation and dominates any other combination of the factor
heuristics. However, in our implementation, we compute the
product of the two shrunk factors to mimic what the M&S
algorithm would do (cf. lines 9 and 10). Thus, the difference
computed by mSCP-sf can be positive, in which case merg-
ing is deemed worse than computing the SCP heuristics.

To accommodate situations in which for no pair of factors
merging is deemed the better choice, we suggest a filter-
based merge strategy (Algorithm 3). It iterates over an in-
put sequence of filtering functions to make the given set
of merge candidates smaller (line 3), returning none if all
candidates have been filtered (line 4), or the single remain-
ing candidate otherwise. Analogously to score-based merge
strategies, the result depends on the order of the filtering
functions, and we require that at least one of them uniquely

Algorithm 3: Filter-based merge strategy.
Input: FTS F , merge candidates M , filtering functions S
Output: Merge candidate from M or None

1: function FILTERBASEDMERGESTRATEGY(F , M , S)
2: for FILTERINGFUNCTION in S do
3: M ← FILTERINGFUNCTION(F,M)
4: if M = ∅ then return none
5: return single element from M

determines a single candidate or discards all of them. We
adapt the M&S algorithm to stop its computation when the
merge strategy filtered all candidates (Algorithm 1, line 5).

Every score-based merge strategy can also be cast as a
filter-based merge strategy by turning scoring functions into
filtering functions that return the set of candidates with mini-
mal score. Our maximum factor/SCP scoring functions, cast
as filtering functions, additionally discard all merge candi-
dates with a non-negative score. Furthermore, we extend the
SCC merge strategy to allow using filter-based merge strate-
gies instead of score-based ones and to return no merge can-
didate when the filtering functions discarded all candidates.

Finally, note that mSCP-ff discards a candidate based on
comparing the product heuristic to SCP heuristics for only
two factors. The final hM&S

SCP is based on SCP heuristics for
a snapshot of all current factors (Algorithm 1, line 8), dis-
tributing the costs among a larger set of abstractions. If the
M&S computation stops early because mSCP-ff discarded
all candidates, hM&S

SCP is thus not guaranteed to be at least as
good as the heuristic we would obtain after continuing merg-
ing more factors. In the experiments, we will therefore also
consider adding the SCP heuristics computed over all pairs
of remaining factors to the set H before computing hM&S

SCP .

Experiments
We implemented all strategies in the M&S framework in
Fast Downward 23.06.1 We precompute the heuristics for
at most 900s using bisimulation-based shrinking with a size
limit of 50000 states, exact label reduction and full prun-
ing of dead states. We evaluate the resulting heuristics in an
A∗ search (Hart, Nilsson, and Raphael 1968), using Down-
ward Lab (Seipp et al. 2017) to limit each planner run to 30
minutes and 3.5 GiB on IPC benchmarks from all sequen-
tial optimal tracks, a set consisting of 66 domains with 1847
tasks in total. Following Sievers et al. (2020), we compute an
SCP heuristic in each iteration of the M&S algorithm using
a random order over the factor heuristics.

We first evaluate mFactor and mSCP using initial (init)
or average (avg) h-values, used as scoring (sf) or filtering
(ff) functions in a score-based or filter-based merge strat-
egy. Table 1 shows coverage, i.e., number of solved tasks.
We observe that stopping the M&S algorithm when there is
no good merge candidate (ff) leads to worse coverage, be-
cause continuing merging factors can lead to better factor
heuristics in later iterations. We further observe that mSCP

1All code and experiment data (including domain-wise results)
are publicly available (Sievers, Keller, and Röger 2024).

sf ff

mSCP mFactor mSCP mFactor

init avg init avg init avg init avg

hM&S 902 875 889 860 793 857 871 836
hM&S

SCP 990 909 916 902 953 907 907 917

Table 1: Coverage of the mFactor and mSCP scoring (sf) and
filtering (ff) functions, using the initial (init) or the average
(avg) heuristic value.

mSCP-sf mSCP-ff

none alw none stop alw

hM&S
SCP 990 981 953 948 948

Table 2: Coverage of the mSCP scoring (sf) and filtering (ff)
functions using init, without (none) and with the addition of
SCP heuristics computed over all pairs of remaining factors,
either always (alw) or only if stopping M&S early (stop)
because all candidates were discarded during filtering.

mostly dominates mFactor, likely because the evaluation of
improvement is more nuanced with mSCP, except when ter-
minating early and using hM&S, which seems reasonable
given that hM&S does not compute SCP heuristics. Finally,
for evaluating merge candidates, the initial heuristic value is
a better criterion than the average one except for two cases
of ff. In the remainder, we only consider the mSCP scoring
and filtering functions using initial heuristic values.

In Table 2 we evaluate the addition of SCP heuristics com-
puted for each pair of remaining factors (one for each order)
to H before computing hM&S

SCP . Including the additional SCP
heuristics slightly decreases coverage. Our detailed analy-
sis (Sievers, Keller, and Röger 2024) shows that they do not
have a significant positive effect on heuristic quality and that
they negatively impact heuristic evaluation time.

Finally, Table 3 shows coverage of the state-of-the art
strategies DFP and sbMIASM (sbM), our best strategies
with the maximum SCP scoring and filtering functions us-
ing initial heuristic values, and their integration with the
SCC strategy. We observe again that the filter-based strat-
egy cannot compete with the other strategies. While mSCP-
sf solves fewer tasks than the state-of-the-art strategies when
computing hM&S (which seems reasonable given that hM&S

does not compute SCP heuristics), integrated with the SCC
strategy, it outperforms them. For hM&S

SCP , both mSCP-sf and
SCC-mSCP-sf significantly outperform the state of the art.

SCC mSCP-sf mSCP-ff

DFP sbM DFP sbM SCC SCC

hM&S 882 920 922 913 902 926 793 779
hM&S

SCP 915 965 950 956 990 1006 953 943

Table 3: Coverage of state-of-the-art merge strategies and
mSCP-sf/ff using init, including integration with SCC.

SCC mSCP-sf mSCP-ff

DFP sbM DFP sbM SCC SCC

DFP – 6 2 5 2 2 14 18
sbM 19 – 15 3 9 7 16 18
SCC-DFP 7 10 – 7 7 2 16 19
SCC-sbM 19 3 14 – 10 7 16 20
mSCP-sf 27 16 24 18 – 6 20 20
+SCC 28 20 22 18 8 – 20 23
mSCP-ff 26 17 22 18 5 7 – 4
+SCC 22 14 19 15 8 5 3 –

Table 4: Per-domain coverage of the same strategies as in
Table 3, for hM&S

SCP only. An entry in row x and column y
denotes the number of domains in which x solves more tasks
than y. It is bold if (x, y) ≥ (y, x).

100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

un
s.

uns.

sbM (lower for 250 tasks)

SC
C

-m
SC

P-
sf

(l
ow

er
fo

r2
90

ta
sk

s)

Figure 1: Expansions of sbM vs. SCC-mSCP-sf.

The strong coverage results do not stem only from a few
domains: Table 4 compares the number of domains in which
each planner in a row solves more tasks than the planners in
the columns. Both mSCP-sf and its integration with SCC
strictly dominate all other strategies also under this mea-
sure. To assess where the strength of the new strategies stem
from, Figure 1 compares the number of expansions of the
A∗ search (excluding the last f -layer) using the previous
best M&S-SCP heuristic computed with the sbM strategy
to using our new best strategy. While the heuristics display
orthogonal strengths, there is a larger number of cases where
our strategy results in a stronger heuristic than vice versa.

Conclusions
We presented a scoring function for the M&S framework
that prefers merge candidates whose product results in the
largest heuristic improvement compared to using the fac-
tors in SCP heuristics instead. We also investigated filtering
functions that stop the M&S algorithm if no merge candidate
is deemed useful for merging. The new score-based merge
strategy as well as its integration with the SCC merge strat-
egy significantly outperform previous merge strategies. In
future work, we want to investigate merge strategies which
consider merging factors beyond a single iteration.

Acknowledgments
We have received funding for this work from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment no. 817639).

Miruna-Alesia Muntean (Muntean 2023) performed a
preliminary study on a related topic, greedily using merge
(and shrink) transformations to optimize a set of factors for
a saturated cost partitioning (outside the M&S framework).

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed
model checking with distance-preserving abstractions. In-
ternational Journal on Software Tools for Technology Trans-
fer, 11(1): 27–37.
Fan, G.; Müller, M.; and Holte, R. 2014. Non-Linear Merg-
ing Strategies for Merge-and-Shrink Based on Variable In-
teractions. In Edelkamp, S.; and Barták, R., eds., Proceed-
ings of the Seventh Annual Symposium on Combinatorial
Search (SoCS 2014), 53–61. AAAI Press.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
Abstraction Heuristics for Optimal Sequential Planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), 176–183. AAAI
Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. Journal of the
ACM, 61(3): 16:1–63.
Katz, M.; and Domshlak, C. 2010. Optimal admissible com-
position of abstraction heuristics. Artificial Intelligence,
174(12–13): 767–798.
Knoblock, C. A. 1994. Automatically Generating Abstrac-
tions for Planning. Artificial Intelligence, 68(2): 243–302.
Kreft, R.; Büchner, C.; Sievers, S.; and Helmert, M. 2023.
Computing Domain Abstractions for Optimal Classical
Planning with Counterexample-Guided Abstraction Refine-
ment. In Koenig, S.; Stern, R.; and Vallati, M., eds., Pro-
ceedings of the Thirty-Third International Conference on
Automated Planning and Scheduling (ICAPS 2023), 221–
226. AAAI Press.
Muntean, M.-A. 2023. To Merge or to Cost Partition? Mas-
ter’s thesis, University of Basel.

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Rovner, A.; Sievers, S.; and Helmert, M. 2019.
Counterexample-Guided Abstraction Refinement for
Pattern Selection in Optimal Classical Planning. In Lipovet-
zky, N.; Onaindia, E.; and Smith, D. E., eds., Proceedings
of the Twenty-Ninth International Conference on Automated
Planning and Scheduling (ICAPS 2019), 362–367. AAAI
Press.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research, 62: 535–577.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. Journal of Ar-
tificial Intelligence Research, 67: 129–167.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A
Compositional Theory of Transformations of Factored Tran-
sition Systems. Journal of Artificial Intelligence Research,
71: 781–883.
Sievers, S.; Keller, T.; and Röger, G. 2024. Code, bench-
marks and experiment data for the ICAPS 2024 paper
“Merging or Computing Saturated Cost Partitionings? A
Merge Strategy for the Merge-and-Shrink Framework”.
https://doi.org/10.5281/zenodo.108644625.
Sievers, S.; Pommerening, F.; Keller, T.; and Helmert, M.
2020. Cost-Partitioned Merge-and-Shrink Heuristics for Op-
timal Classical Planning. In Proceedings of the 29th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2020), 4152–4160. IJCAI.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
Label Reduction for Merge-and-Shrink Heuristics. In Brod-
ley, C. E.; and Stone, P., eds., Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence (AAAI
2014), 2358–2366. AAAI Press.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An Analy-
sis of Merge Strategies for Merge-and-Shrink Heuristics. In
Coles, A.; Coles, A.; Edelkamp, S.; Magazzeni, D.; and San-
ner, S., eds., Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling (ICAPS
2016), 294–298. AAAI Press.
Sievers, S.; Wehrle, M.; Helmert, M.; Shleyfman, A.; and
Katz, M. 2015. Factored Symmetries for Merge-and-Shrink
Abstractions. In Bonet, B.; and Koenig, S., eds., Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial In-
telligence (AAAI 2015), 3378–3385. AAAI Press.

