Merging or Computing Saturated Cost Partitionings? A Merge Strategy for the Merge-and-Shrink Framework

Silvan Sievers, Thomas Keller, Gabriele Röger

ICAPS 2024

Merge-and-Shrink Abstractions: Idea

Start from atomic factors (projections to single state variables)

Results

Merge-and-Shrink Abstractions: Idea

Merge: replace two factors with their product

Merge-and-Shrink Abstractions: Idea

Shrink: replace a factor by an abstraction of it

Merge-and-Shrink Algorithm

Dräger et al. STTT 2006, Helmert et al. JACM 2014, Sievers & Helmert JAIR 2021

Input: FTS F

Output: Heuristic for *F*

- 1: function M&S(F)
- 2: $F' \leftarrow F$
- 3: while not TERMINATE(F') do
- 4: $i, j \leftarrow \text{MergeStrategy}(F')$
- 5: LABELREDUCTIONSTRATEGY(F')
- 6: SHRINKSTRATEGY(F', i, j)
- 7: $k \leftarrow \text{MERGE}(F', i, j)$
- 8: PRUNESTRATEGY(F', k)
- 9: **return** COMPUTEHEURISTIC(F')

- Factor heuristic: abstraction heuristic from single factor (= abstract transition system)
- Run until there is only a single factor and use its factor heuristic, or
- terminate early and use the maximum of the factor heuristics.

Merge-and-Shrink with Saturated Cost Partitioning Sievers et al. IJCAI 2020

Saturated Cost Partitioning

(Seipp et al. JAIR 2020) Admissible combination of heuristics.

- Typically better than maximum.
- Depends on the order in which the heuristics are considered.

Merge-and-Shrink with Saturated Cost Partitioning Sievers et al. IJCAI 2020

Saturated Cost Partitioning

(Seipp et al. JAIR 2020) Admissible combination of heuristics.

- Typically better than maximum.
- Depends on the order in which the heuristics are considered.

Input: FTS <i>F</i> Output: Heuristic for <i>F</i>			
1: function M&SWITHSCP(F)			
2:	$F' \leftarrow F, H \leftarrow \emptyset$		
3:	while not TERMINATE(F') do		
4:	$i, j \leftarrow \text{MergeStrategy}(F')$		
5:	LABELREDUCTIONSTRATEGY(F')		
6:	$\omega \leftarrow \text{SCPORDERSTRATEGY}(F')$		
7:	$H \leftarrow H \cup \{h_{\omega}^{SCP}\}$		
8:	SHRINKSTRATEGY(F', i, j)		
9:	$k \leftarrow \text{Merge}(F', i, j)$		
10:	PRUNESTRATEGY (F', k)		
11:	return ComputeMaxHeuristic(H)		

We want to devise a merge strategy that works well in M&S with cost partitioning.

Evaluating Merge Candidates

For evaluating a pair of factors, we locally assess the value of merging them and of using them as individual heuristics:

$$\begin{split} h_{prod}^{init} &= h_F^{\mathcal{T}^{\otimes}}(s_0) \\ h_{m\text{Factor}}^{init} &= \max(h_F^{\mathcal{T}^i}(s_0), h_F^{\mathcal{T}^j}(s_0)) \\ h_{m\text{SCP}}^{init} &= \max(h_{\langle \mathcal{T}_F^i, \mathcal{T}_F^j \rangle}^{\text{SCP}}(s_0), h_{\langle \mathcal{T}_F^j, \mathcal{T}_F^j \rangle}^{\text{SCP}}(s_0)) \end{split}$$

Evaluating Merge Candidates

For evaluating a pair of factors, we locally assess the value of merging them and of using them as individual heuristics:

$$\begin{split} h_{prod}^{init} &= h_F^{\mathcal{T}^{\otimes}}(s_0) \\ h_{m\text{Factor}}^{init} &= \max(h_F^{\mathcal{T}^i}(s_0), h_F^{\mathcal{T}^j}(s_0)) \\ h_{m\text{SCP}}^{init} &= \max(h_{\langle \mathcal{T}_F^i, \mathcal{T}_F^j \rangle}^{\text{SCP}}(s_0), h_{\langle \mathcal{T}_F^j, \mathcal{T}_F^i \rangle}^{\text{SCP}}(s_0)) \\ h_{prod}^{avg} &= \operatorname{AVG}(h_F^{\mathcal{T}^{\otimes}}) \\ h_{m\text{Factor}}^{avg} &= \max(\operatorname{AVG}(h_F^{\mathcal{T}^j}), \operatorname{AVG}(h_F^{\mathcal{T}^i})) \\ h_{m\text{SCP}}^{avg} &= \max(\operatorname{AVG}(h_{\langle \mathcal{T}_F^i, \mathcal{T}_F^j \rangle}^{\text{SCP}}), \operatorname{AVG}(h_{\langle \mathcal{T}_F^j, \mathcal{T}_F^i \rangle}^{\text{SCP}}) \end{split}$$

Two New Merge Strategies

maximum factor scoring function (mFactor) prefers candidates whose product heuristic improves most compared to the maximum over the two factor heuristics:

Maximize $h_{prod} - h_{mFactor}$

Rationale: greedy decision for the best immediate improvement without looking ahead to the future transformations by M&S.

Two New Merge Strategies

maximum factor scoring function (mFactor) prefers candidates whose product heuristic improves most compared to the maximum over the two factor heuristics:

Maximize $h_{prod} - h_{mFactor}$

Rationale: greedy decision for the best immediate improvement without looking ahead to the future transformations by M&S.

maximum SCP scoring function (mSCP) adapts the same concept to the integration of cost partitioning into M&S.

Maximize $h_{prod} - h_{mSCP}$

Comparison

	mFactor		mSCP		
	init	avg	init	avg	
h ^{M&S} h ^{M&S} h _{SCP}	889 916	860 902	902 990	875 909	

Comparison

	mFactor		mSCP		
	init	avg	init	avg	
h ^{M&S}	889	860	902	875	
hM&S	916	902	99 0	909	

Additional experiments:

- Stopping the M&S algorithm when there is no good merge candidate leads to worse coverage, because continuing merging factors can lead to better factor heuristics in later iterations.
- Adding SCP heuristics for each pair of remaining factors does not pay off.

State-of-the-art Strategies

			SCC		mS	SCP
	DFP	sbM	DFP	sbM		SCC
h ^{M&S}	882	920	922	913	902	926
h ^{M&S} SCP	915	965	950	956	990	1006

DFP Dräger et al. SPIN 2006, Sievers et al. AAAI 2014 sbM sbMIASM; Fan et al. SoCS 2014, Sievers et al. ICAPS 2016 SCC Sievers et al. ICAPS 2016

Summary

- New merge strategy for M&S with saturated cost partitioning.
- Improves the state of the art of M&S.
- Even better if integrated with the SCC merge strategy.