
Merging or Computing Saturated Cost Partitionings?
A Merge Strategy for the Merge-and-Shrink Framework

Silvan Sievers, Thomas Keller, Gabriele Röger

ICAPS 2024



Background New Merge Strategy Results

Merge-and-Shrink Abstractions: Idea

Start from atomic factors (projections to single state variables)



Background New Merge Strategy Results

Merge-and-Shrink Abstractions: Idea

Merge: replace two factors with their product

T

M

B

L R

TL TR

ML MR

BL BR



Background New Merge Strategy Results

Merge-and-Shrink Abstractions: Idea

Shrink: replace a factor by an abstraction of it



Background New Merge Strategy Results

Merge-and-Shrink Algorithm
Dräger et al. STTT 2006, Helmert et al. JACM 2014, Sievers & Helmert JAIR 2021

Input: FTS F
Output: Heuristic for F
1: function M&S(F )
2: F ′ ← F
3: while not Terminate(F ′) do
4: i , j ←MergeStrategy(F ′)
5: LabelReductionStrategy(F ′)
6: ShrinkStrategy(F ′, i , j)
7: k ←Merge(F ′, i , j)
8: PruneStrategy(F ′, k)

9: return ComputeHeuristic(F ′)

Factor heuristic: abstraction
heuristic from single factor
(= abstract transition system)

Run until there is only a single
factor and use its factor heuristic, or

terminate early and use the
maximum of the factor heuristics.



Background New Merge Strategy Results

Merge-and-Shrink with Saturated Cost Partitioning
Sievers et al. IJCAI 2020

Saturated Cost Partitioning
(Seipp et al. JAIR 2020)

Admissible combination of heuristics.

Typically better than maximum.

Depends on the order in which the
heuristics are considered.

Input: FTS F
Output: Heuristic for F
1: function M&SwithSCP(F )
2: F ′ ← F , H ← ∅
3: while not Terminate(F ′) do
4: i , j ←MergeStrategy(F ′)
5: LabelReductionStrategy(F ′)
6: ω ← SCPOrderStrategy(F ′)
7: H ← H ∪ {hSCPω }
8: ShrinkStrategy(F ′, i , j)
9: k ←Merge(F ′, i , j)

10: PruneStrategy(F ′, k)

11: return ComputeMaxHeuristic(H)



Background New Merge Strategy Results

Merge-and-Shrink with Saturated Cost Partitioning
Sievers et al. IJCAI 2020

Saturated Cost Partitioning
(Seipp et al. JAIR 2020)

Admissible combination of heuristics.

Typically better than maximum.

Depends on the order in which the
heuristics are considered.

Input: FTS F
Output: Heuristic for F
1: function M&SwithSCP(F )
2: F ′ ← F , H ← ∅
3: while not Terminate(F ′) do
4: i , j ←MergeStrategy(F ′)
5: LabelReductionStrategy(F ′)
6: ω ← SCPOrderStrategy(F ′)
7: H ← H ∪ {hSCPω }
8: ShrinkStrategy(F ′, i , j)
9: k ←Merge(F ′, i , j)

10: PruneStrategy(F ′, k)

11: return ComputeMaxHeuristic(H)



Background New Merge Strategy Results

We want to devise a merge strategy that works well in M&S with cost partitioning.



Background New Merge Strategy Results

Evaluating Merge Candidates

For evaluating a pair of factors, we locally assess the value of merging them and of
using them as individual heuristics:

hinitprod = hT
⊗

F (s0)

hinitmFactor = max(hT
i

F (s0), h
T j

F (s0))

hinitmSCP = max(hSCP⟨T i
F ,T

j
F ⟩
(s0), h

SCP
⟨T j

F ,T
i
F ⟩
(s0))

havgprod = avg(hT
⊗

F )

havgmFactor = max(avg(hT
j

F ),avg(hT
i

F ))

havgmSCP = max(avg(hSCP⟨T i
F ,T

j
F ⟩
),avg(hSCP⟨T j

F ,T
i
F ⟩
))



Background New Merge Strategy Results

Evaluating Merge Candidates

For evaluating a pair of factors, we locally assess the value of merging them and of
using them as individual heuristics:

hinitprod = hT
⊗

F (s0)

hinitmFactor = max(hT
i

F (s0), h
T j

F (s0))

hinitmSCP = max(hSCP⟨T i
F ,T

j
F ⟩
(s0), h

SCP
⟨T j

F ,T
i
F ⟩
(s0))

havgprod = avg(hT
⊗

F )

havgmFactor = max(avg(hT
j

F ),avg(hT
i

F ))

havgmSCP = max(avg(hSCP⟨T i
F ,T

j
F ⟩
),avg(hSCP⟨T j

F ,T
i
F ⟩
))



Background New Merge Strategy Results

Two New Merge Strategies

maximum factor scoring function (mFactor) prefers candidates whose product
heuristic improves most compared to the maximum over the two factor heuristics:

Maximize hprod − hmFactor

Rationale: greedy decision for the best immediate improvement without looking
ahead to the future transformations by M&S.

maximum SCP scoring function (mSCP) adapts the same concept to the
integration of cost partitioning into M&S.

Maximize hprod − hmSCP



Background New Merge Strategy Results

Two New Merge Strategies

maximum factor scoring function (mFactor) prefers candidates whose product
heuristic improves most compared to the maximum over the two factor heuristics:

Maximize hprod − hmFactor

Rationale: greedy decision for the best immediate improvement without looking
ahead to the future transformations by M&S.

maximum SCP scoring function (mSCP) adapts the same concept to the
integration of cost partitioning into M&S.

Maximize hprod − hmSCP



Background New Merge Strategy Results

Comparison

mFactor mSCP

init avg init avg

hM&S 889 860 902 875
hM&S
SCP 916 902 990 909

Additional experiments:

Stopping the M&S algorithm when there is no good merge candidate leads to
worse coverage, because continuing merging factors can lead to better factor
heuristics in later iterations.

Adding SCP heuristics for each pair of remaining factors does not pay off.



Background New Merge Strategy Results

Comparison

mFactor mSCP

init avg init avg

hM&S 889 860 902 875
hM&S
SCP 916 902 990 909

Additional experiments:

Stopping the M&S algorithm when there is no good merge candidate leads to
worse coverage, because continuing merging factors can lead to better factor
heuristics in later iterations.

Adding SCP heuristics for each pair of remaining factors does not pay off.



Background New Merge Strategy Results

State-of-the-art Strategies

SCC mSCP

DFP sbM DFP sbM SCC

hM&S 882 920 922 913 902 926
hM&S
SCP 915 965 950 956 990 1006

DFP Dräger et al. SPIN 2006, Sievers et al. AAAI 2014

sbM sbMIASM; Fan et al. SoCS 2014, Sievers et al. ICAPS 2016

SCC Sievers et al. ICAPS 2016



Background New Merge Strategy Results

Summary

New merge strategy for M&S with saturated cost partitioning.

Improves the state of the art of M&S.

Even better if integrated with the SCC merge strategy.


	Background
	New Merge Strategy
	Results

