
Additive Pattern Databases for Decoupled Search

Silvan Sievers,1 Daniel Gnad,2 Álvaro Torralba3

1 University of Basel, Switzerland
2 Linköping University, Sweden
3 Aalborg University, Denmark

silvan.sievers@unibas.ch, daniel.gnad@liu.se, alto@cs.aau.dk

Abstract

Abstraction heuristics are the state of the art in optimal clas-
sical planning as heuristic search. Despite their success for
explicit-state search, though, abstraction heuristics are not
available for decoupled state-space search, an orthogonal re-
duction technique that can lead to exponential savings by
decomposing planning tasks. In this paper, we show how
to compute pattern database (PDB) heuristics for decoupled
states. The main challenge lies in how to additively employ
multiple patterns, which is crucial for strong search guidance
of the heuristics. We show that in the general case, for arbi-
trary collections of PDBs, computing the heuristic for a de-
coupled state is exponential in the number of leaf components
of decoupled search. We derive several variants of decoupled
PDB heuristics that allow to additively combine PDBs avoid-
ing this blow-up and evaluate them empirically.

Introduction
Classical planning (Ghallab, Nau, and Traverso 2004) is
the problem of finding a sequence of deterministic actions
that lead from a given initial world state to a state satis-
fying a desired goal specification. A popular approach for
optimally solving classical planning tasks is heuristic state-
space search (Pearl 1984; Bonet and Geffner 2001), and
A∗ search in particular. The most commonly used type of
search space representation is explicit search, where each
state is represented individually. Another successful alter-
native is symbolic search (e.g. Torralba et al. 2017), where
search states are not represented individually, but as sets of
states, using symbolic data structures. More recently, Gnad
and Hoffmann (2018) introduced a third variant called de-
coupled search. It entails factoring the variables of a plan-
ning task into a center and several leaf factors, with the prop-
erty that leaf factors are conditionally independent. This al-
lows searching on the center only and keeping track of the
reached leaf states and their cost, for a center path.

State-of-the-art heuristics for optimal planning for ex-
plicit A∗ search are based on abstractions and combined
with cost partitioning (e.g. Seipp and Helmert 2018; Seipp,
Keller, and Helmert 2020; Sievers and Helmert 2021). For
decoupled search, heuristics in general have so far been
computed using a compilation introduced by Gnad and Hoff-
mann (2018). The compilation modifies the planning task
based on the decoupled state for which the heuristic is com-

puted. It is “perfect in the limit”, i.e., computing the per-
fect (explicit state) heuristic on the compiled task is equiv-
alent to computing the perfect heuristic for the decoupled
state. While this approach could in principle also be used
for abstraction heuristics, it is infeasible in practice because
abstraction heuristics are precomputed, which is impossible
given that the compilation depends on the decoupled state
the heuristic should be evaluated on.

In this work, we therefore define an alternative way of us-
ing an existing (explicit state) heuristic in decoupled search,
which does not rely on the compilation, by enumerating all
explicit states represented by a decoupled state. We show
that this way of using the heuristic is at least as good as
via the compilation. Since this new approach possibly is
prohibitively expensive, in the remainder of this work, we
focus on computing projections, which are the fundamen-
tal abstractions underlying pattern database (PDB) heuris-
tics (Culberson and Schaeffer 1998; Edelkamp 2001), for
decoupled search. We show how to avoid enumerating the
exponentially many explicit states represented by a decou-
pled state when computing the exact PDB heuristic values
for that state. Furthermore, we show how to admissibly sum
up heuristic values of PDBs which are additive in the sense
of the canonical PDB heuristic (Haslum et al. 2007) or which
have been cost-partitioned using saturated cost partitioning
(Seipp and Helmert 2018). We prove that exact admissible
combination is an NP-complete problem and present two
approximations where we impose restrictions on the pat-
terns used for the PDB heuristics. Our experimental study
shows that PDBs can yield strong performance in decoupled
search, surpassing the previous state-of-the art in optimal de-
coupled search, LM-cut (Helmert and Domshlak 2009), for
some variants. We conclude with a discussion of directions
for future work.

Background
Classical Planning
We consider the SAS+ planning formalism (Bäckström and
Nebel 1995), which is based on finite-domain state vari-
ables. Let V be a finite set of variables v, each with a finite
domain D(v). A partial state s is an assignment to a subset
of the variables, written vars(s) ⊂ V . We write s[v] for the
value of v in s. For a subset V ′ ⊆ V , s[V ′] denotes the re-

striction of s onto V ′, i.e., the assignment to V ′ ∩ vars(s) by
s. We also treat partial states s as sets of facts v 7→ d for all
v ∈ vars(s) and d ∈ D(v). If vars(s) = V , then s is called
a state.

A SAS+ planning task is defined as Π = 〈V,A, I,G〉. V
is a finite set of finite-domain state variables. A is a finite
set of actions a = 〈pre(a), eff(a), c(a)〉, where pre(a) and
eff(a) are partial states called precondition and effect of a,
and c(a) ∈ R0+ is the cost of a. I is the initial state and G
is a partial state called the goal.

Action a is applicable in partial state s if pre(a) ⊆ s. Ap-
plying it leads to the successor state sJaK, where sJaK[v] =
eff(a)[v] for all v ∈ vars(eff(a)) and sJaK[v] = s[v] for
all v 6∈ vars(eff(a)). An s-plan is a sequence π of actions
applicable in I such that the resulting state sJπK is a goal
state, i.e., G ⊆ sJπK. A plan for Π is an I-plan. The cost
of π, c(π), is the summed-up action cost. Optimally solving
a planning task means finding an optimal plan, i.e., one of
minimal cost, or showing that no plan exists. We write S(Π)
for the set of states defined over V of Π.

Pattern Database Heuristics
To solve planning tasks Π optimally, we use the A∗ algo-
rithm (Hart, Nilsson, and Raphael 1968) with an admissi-
ble heuristic. A heuristic h maps a state s of the task Π to
an estimate h(s) ∈ R0+ ∪ {∞} of the cost of reaching a
goal. It is admissible if it never overestimates the true cost
of reaching a goal from s, written h∗(s) (and also called the
perfect heuristic). A pattern database (PDB) heuristic hP is
induced by a subset P ⊆ V of the variables of Π, called
the pattern. hP (s) is defined as the perfect heuristic in the
projection Π|P of Π onto P , which can be computed by re-
moving all occurrences of variables from P in Π. PDBs are
precomputed once by computing the optimal solution costs,
hP (sP), of all abstract states sP ∈ SP in the abstract plan-
ning task Π|P . During search, concrete states s are mapped
to abstract states sP using a perfect hash function (Siev-
ers, Ortlieb, and Helmert 2012). This hash function is well-
defined for all partial states sQ with Q = vars(s) ⊇ P , and
we will abuse notation by writing hP (sQ) for the heuristic
computation of such states. PDBs grow exponentially in the
number of included variables and thus single PDB heuris-
tics alone typically do not provide enough guidance. Instead,
state-of-the-art planners use different techniques for admis-
sibly combining many PDB heuristics.

Let H = {h1, . . . ,hn} be a set of arbitrary admissible
heuristics hi. We say that the heuristics in H are additive if
h(s) =

∑n
i=1 hi(s) is admissible. For non-additive heuris-

tics, a trivial alternative for admissibly combining them is
replacing the sum by the maximum (e.g. Holte et al. 2006).

A more advanced combination technique for the case that
hi are PDB heuristics is due to Haslum et al. (2007) who
define the canonical PDB heuristic which is based on the
disjoint additivity of patterns underlying the PDBs. Two pat-
ternsP1 andP2 are disjoint-additive if there exist no v1 ∈ P1

and v2 ∈ P2 with v1, v2 ∈ vars(eff(a)) for any action a of
the task. For a set of patterns C, also called pattern collec-
tion, the canonical PDB heuristic hC is defined as the maxi-
mum over the sums of PDBs induced by patterns in maximal

disjoint-additive subsets, i.e., hC = maxA∈A(C)

∑
P∈A h

P

where A(C) is the set of maximal disjoint-additive subsets
of C. hC is admissible. There are other combination tech-
niques for PDBs not covered here (e.g. Felner, Korf, and
Hanan 2004; Pommerening, Röger, and Helmert 2013).

The most general general combination technique for a set
of arbitrary admissible but non-additive heuristics H is cost
partitioning (Katz and Domshlak 2010; Pommerening et al.
2015). Cost partitioning computes each heuristic hcii under a
cost function ci different from the original cost function c of
the task. Then,

∑n
i=1 h

ci
i is admissible if

∑n
i=1 ci(a) ≤ c(a)

for all actions a of the task. Since computing the optimal
cost partitioning is usually infeasible in practice, in our ex-
periments, we use the state-of-the-art saturated cost parti-
tioning (SCP) (Seipp and Helmert 2018). In a nutshell, it
considers the heuristics in H in an arbitrary but fixed order.
When computing hcii , it computes the saturated costs scfi,
which are the minimum costs needed by the heuristic com-
putation. They can be computed efficiently for abstraction
heuristics by looping over all abstract transitions of the ab-
stract state space. The costs not needed by hi, ci − scfi, are
the costs ci+1 available to the next heuristic hi+1 and so on.

Decoupled Search
Decoupled search decomposes a planning task by partition-
ing its variables into disjoint non-empty subsets, called a fac-
toring F ⊆ 2V . It imposes a structural requirement on the
interaction between the factors F ∈ F , a star topology, with
a single center factor C ∈ F and an arbitrary number of leaf
factors L := F \ {C}, such that the center can interact arbi-
trarily with the leaves, but leaves may only interact with each
other if the center is involved as well. Formally, a factoring
F is a star factoring, iff for all actions a ∈ A it holds that
either there exists an L ∈ L such that vars(pre(a)) ⊆ C∪L
and vars(eff(a)) ⊆ L, or vars(eff(a)) ∩ C 6= ∅. By im-
posing this structural requirement, decoupled search can ef-
ficiently handle cross-factor dependencies. Throughout this
work, we will assume star factorings, and omit the “star”.

Given a factoring F for a task Π, actions affecting C, i. e.,
with an effect on a variable in C, are called center actions,
denoted AC , and those affecting a leaf are called leaf ac-
tions, denoted AL; leaf actions of a particular leaf L ∈ L
are denoted AL. A sequence of center actions applicable in
I in the projection of Π onto C is a center path; a sequence
of AL-actions applicable in I in the projection onto L is a
leaf path. A complete assignment to C or to L ∈ L is called
a center state or leaf state, respectively. SL is the set of all
leaf states and that of a particular leaf L is denoted SL.

A decoupled state sF is a pair 〈sC(sF), prices(sF)〉
where sC(sF) is a center state, and prices(sF) : SL 7→
R0+ ∪ {∞} is a pricing function, mapping each leaf state
to a non-negative price. By πC(sF) we denote the center
path on which sF was reached during search. The pricing
function is maintained during decoupled search in a way so
that the price of a leaf state sL is the cost of a cheapest leaf
path that ends in sL and that is compliant with πC(sF), i. e.,
that can be embedded into πC(sF) such that the resulting ac-
tion sequence is applicable in I in the projection of Π onto
C ∪L. We denote the set of all decoupled states of Π and F

by SF (Π). Decoupled search branches over center actions
only, enumerating, for each leaf separately, the set of leaf
states that can be reached in form of the pricing function.
Every search algorithm can be employed on the decoupled
state space (Gnad and Hoffmann 2018).

A decoupled state sF represents a set of explicit states, its
member states, which takes the form of a hypercube whose
dimensions are the leaf factors L. Formally, a state s of Π is
a member state of a decoupled state sF , if s[C] = sC(sF)
and, for all leaves L ∈ L, prices(sF)[s[L]] < ∞. The price
of s in sF is price(sF , s) :=

∑
L∈L prices(sF)[s[L]]. The

hypercube of sF , denoted [sF], is the set of all member
states of sF . Hypercubes capture both the reachability and
the price of the member states. For every member state s we
can construct an action sequence that starts in I and ends in s
by augmenting πC(sF) with cheapest-compliant leaf paths,
i. e., the leaf paths that lead to the pricing function of sF .

A solution for a decoupled state sF is a decoupled plan,
i. e., a center path πC that starts in sF and ends in a decou-
pled goal state sFG that contains a goal member state s ∈ [sFG]
with G ⊆ s. The augmented cost of a decoupled plan is
c(πC) + mins∈[sFG]∧G⊆s price(sFG, s), which takes into ac-
count both the cost of the center actions from sF to sFG, as
well as the price of the cheapest goal member state of sFG.
A decoupled plan for sF is augmented-optimal if its aug-
mented cost is minimal among all decoupled plans for sF .

In Figure 1 we illustrate two decoupled states from a sim-
ple logistics domain. The planning task has a truck t that can
drive between two locations l, r, and two packages p1, p2,
that can be in the truck or at any of the two locations. Each
package can be loaded into the truck if both are are the
same position, or unloaded at the current truck position if
it is in the truck. Initially, the truck and p1 are at l and p2
is at r. We consider the factoring F where the truck is in
the center C = {t}, and each package forms a leaf factor
Li = {pi}. Decoupled search then branches over the drive
actions, while load and unload are leaf actions. The left of
Figure 1 depicts the initial decoupled state IF , with cen-
ter state {t = l} and where the pricing function assigns a
price of 0 to the initial states of both leaves, i. e., {p1 = l}
and {p2 = r}, a price of 1 to {p1 = t} because the pack-
age can be loaded into the truck by applying a leaf action
in the initial state (i. e., the leaf path 〈load(p1, l)〉 is com-
pliant with the empty center path of IF), and a price of
∞ for all remaining leaf states, which are not reachable.
Applying drive(r) in IF results in the state on the right,
with accordingly changed center state and where the pricing
function is updated as shown. The initial state IF contains
two member states, namely I = {t = l, p1 = l, p2 = r}
and s1 = {t = l, p1 = t, p2 = r}. The state sF con-
tains six member states, namely all combinations of leaf
states with finite price together with the center state, e. g.,
{t = r, p1 = 0, p2 = t} ∈ [sF].

Heuristics for decoupled search approximate the cost of
augmented-optimal decoupled plans. Formally, a decoupled
heuristic is a function hF : SF → R0+ ∪ {∞}. The perfect
decoupled heuristic h∗F returns the cost of an augmented-
optimal decoupled plan for every decoupled state sF , or∞

sC(IF) = {t = l}
{p1=l}→0

{p1=t}→1

{p1=r}→∞

{p2=l}→∞
{p2=t}→∞
{p2=r}→0

drive(r)

sC(sF) = {t = r}
{p1=l}→0

{p1=t}→1

{p1=r}→2

{p2=l}→∞
{p2=t}→1

{p2=r}→0

Figure 1: Initial decoupled state IF of the example and its
successor state sF via the drive(r) center action.

if no such plan exists. As usual, a decoupled heuristic hF is
admissible if hF ≤ h∗F .

Gnad and Hoffmann (2018) introduced a compilation that
allows to compute (in principle) arbitrary heuristics for de-
coupled states. They construct a compiled planning task ΠL$

in which the heuristic is forced to select and “buy” exactly
one member state composed of a leaf state for each leaf:

Definition 1. The buy-leaves compilation of a planning task
Π = 〈V,A, I,G〉 and decoupled state sF is the task ΠL$ =
〈VL$,AL$, sFL$,GL$〉 with cost function cL$:

1. The variables VL$ include a new Boolean variable
bought[L] for every leaf L, VL$:= V ∪ {bought[L] |
L ∈ L}. For all leaf variables v 6∈ C, we add the new
value none to D(v).

2. The initial state is sFL$:= sC(sF) ∪ {v = none | v 6∈
C} ∪ {bought[L] = ⊥ | L ∈ L}.

3. The goal is GL$:= G ∪ {bought[L] = > | L ∈ L}.
4. The actionsAL$ are the previous onesA, adding precon-

dition bought[L] = > to a whenever (vars(pre(a)) ∪
vars(eff(a))) ∩ L 6= ∅. We furthermore add, for ev-
ery leaf L, and for every leaf state sL ∈ SL where
prices(sF)[sL] <∞, a new “buy” action a[sL] with pre-
condition pre(a[sL]) := {bought[L] = ⊥} and effect
eff(a[sL]) := sL ∪ {bought[L] = >}.

5. The cost function cL$ extends the previous one by setting
cL$(a[sL]) := prices(sF)[sL] for each new action a[sL].

The leaf variables are assigned the value none initially to
indicate that they “do not have a state yet”. Before we can
do anything relying on a leaf factor L, we have to “buy” (ex-
actly) one of its states, at the price specified in the decoupled
state sF at hand. The price we pay in doing so accounts for
L’s compliant path before sF ; the classical plan obtained on
ΠL$ accounts for L’s compliant path behind sF .

Note that the goal in ΠL$ forces the plan to buy a leaf state
from every L, even if L has no goal and would otherwise not
be touched by any actions in the plan for ΠL$. This is neces-
sary because Lmay have had to move before sF : we need to
account for any costs incurred in L in order to comply with
the center path πC(sF) leading to sF in the first place.

Computing h∗ on the compilation results in h∗F (Gnad and
Hoffmann 2018), so the compilation is perfect in the limit.
All existing decoupled heuristics are computed on the com-
pilation. From now on, we write hF to denote a decoupled
heuristic based on the explicit heuristic h (which we gener-
ally write without subscript). Throughout the paper, we will
define several variants and ways of computing decoupled
heuristics hF , which we denote by using additional sub-

scripts. For the decoupled heuristic obtained by computing
the explicit heuristic h on the compilation, we write hF ,comp.

Decoupled Heuristics
The buy-leaves compilation can in principle be used to com-
pute any heuristic. For PDB heuristics and abstractions in
general, however, this does not make sense: one of the main
advantages of PDBs is that the distance from every abstract
state to the goal is precomputed, and the stored values are
simply looked up every time the heuristic is evaluated on a
state. The compilation, however, results in a different task
for each decoupled state, and thus the PDB would need to
be recomputed for each state evaluation. Moreover, the new
bought[L] variables should be considered during the pattern
selection process, thus affecting the choice of patterns, ef-
fectively resulting in the computation of a different PDB.
Simply ignoring these variables potentially enables abstract
paths where multiple leaf states of one leaf are bought, se-
lecting more than one member state, which leads to infor-
mation loss.

To address these difficulties, we consider an alterna-
tive way of computing heuristics that does not rely on the
compilation. We define the explicit decoupled heuristic as
hF ,ex(sF) = mins∈[sF] price(sF , s) + h(s). It evaluates an
arbitrary explicit heuristic h for a decoupled state sF by
minimizing the sum of price and heuristic over all member
states. In this section, we analyze the properties of heuristics
of this general form, where as the remainder of the paper
deals with decoupled PDB heuristics and their combination
in particular.

First, we show that computing the explicit decoupled per-
fect heuristic results in the perfect decoupled heuristic h∗F .

Proposition 1. Let sF be a decoupled state of a task Π and
factoring F . Then h∗F ,ex = h∗F .

Proof. Remember that for h∗, h∗F = h∗F ,comp (Gnad and
Hoffmann 2018), we hence show h∗F ,ex = hF ,comp instead
in the following. Let π be an optimal plan in the buy-leaves
compilation for sF , i. e., cL$(π) = h∗F (sF). Then, the sub-
sequence A[sL] of actions a[sL] in π corresponds to a mem-
ber state s ∈ sF that has been bought by h∗F . Note that the
actions in A[sL] can be moved to the front of π, since all ac-
tions preceding a[sL] ∈ A[sL] are neither preconditioned by
nor affectL∪{bought[L]}. Hence, the reordered plan π′ first
buys the member state s, then solves s. Converting the suffix
of π′ back to the original task by removing all bought[L]-
preconditions results in a plan for s[V] for Π. Since h∗F re-
turns the cost of an optimal plan for ΠL$, there is no member
state s′ ∈ [sF] where price(sF , s′) + h∗(s′) < h∗F (sF).

For the other direction, observe that we can transform any
solution for mins∈[sF] price(sF , s) + h∗(s) with underlying
optimal plan π for s into a plan for ΠL$ with the same cost.
Since the sum of the price of s and an optimal plan for s is
minimal, there does not exist a cheaper solution of ΠL$.

For any admissible heuristic h, since h lower bounds h∗,
computing hF ,ex is a lower bound for h∗F :

Corollary 1. Let h be an admissible heuristic. Then hF ,ex
is admissible.

While both hF ,ex and the buy-leaves compilation result
allow us to compute any admissible heuristic in decoupled
search, a relevant question is which of them is more informa-
tive. In fact, even though the buy-leaves compilation is per-
fect in the limit, for heuristics based on common relaxations
there can be an additional information loss inherent to the
compilation. For delete-relaxation heuristics, for example,
this is because an arbitrary set of leaf states can be bought
for each leaf L, because the “delete” effect bought[L] = ⊥
is ignored. hF ,ex overcomes this information loss by explic-
itly enumerating and computing the heuristic for all mem-
ber states of a decoupled state. An interesting observation is
that for any consistent heuristic h, hF ,ex strictly dominates
hF ,comp. To prove this, we need an additional requirement
on the employed heuristic:
Definition 2. Let Π be a planning task, F a factoring for Π,
and sF ∈ SF (Π) a decoupled state. Let further ΠL$ be the
buy-leaves compilation for sF , and h,hL$ be two heuristic
functions, where h is defined on Π and hL$ on ΠL$.

Then the pair of heuristics 〈h,hL$〉 is buy-leaves agnostic
iff for all s∈S(Π) : h(s)=hL$(s∪{bought[L]=>|L∈L}).

It is reasonable to assume that heuristics are buy-leaves
agnostic. After applying a buy action a[sL] for each leaf
in the compilation, the resulting states sL$ are exactly the
member states s ∈ [sF] extended by bought[L] = > facts
for all leaves. In every descendant of such a sL$ the addi-
tional precondition bought[L] = > of all original actions
a ∈ A that were adapted in the compilation is always ful-
filled, and none of the new actions a[sL] is ever applicable.
Therefore, the reachable state spaces behind s and sL$ are
isomorphic and the successor states are identical except for
the bought[L] = > facts. The hmax heuristic (Bonet and
Geffner 2001), for example, is buy-leaves agnostic.

Proposition 2. Let h,hL$ be two consistent and buy-leaves
agnostic heuristics. Then, for every decoupled state sF it
holds that hF ,ex(s

F) ≥ hF ,comp(sF). 1

Cases where the inequality is strict, i. e., where
hF ,ex(sF) > hF ,comp(sF), can be constructed, too. A PDB
heuristic that is defined on the same subset of variables for
both Π and ΠL$, i. e., that ignores the bought[L] variables,
is able to use multiple buy actions for a leaf L and thereby
combine cheap leaf facts of L, leading to lower overall cost.

Pattern Databases for Decoupled Search
For any explicit heuristic, we can compute its decoupled
counterpart hF ,ex by enumerating all member states. How-
ever, this is in general not a good idea, as there is an ex-
ponential number of member states in [sF] so this foregoes
the advantage of the compact decoupled state representation.
When computing PDB heuristics, however, we can take ad-
vantage of the fact that the heuristic value of a PDB only
depends on a subset of the variables/leaf factors.

1Full proofs are published online in the extra material (Sievers,
Gnad, and Torralba 2022a).

Let Π be a planning task with variables V , and let
P ⊆ V be a pattern. We write LhP to denote the set
of leaves affected by a PDB heuristic hP , i.e., LhP :=
{L ∈ L | L ∩ P 6= ∅}. We define the price
of an abstract state sP ∈ SP as price(sF , sP) :=∑

L∈LhP
minsL∈SL,sP [L]⊆sL prices(sF)[sL], i. e., for each

affected leaf we select the reached leaf state with mini-
mum price that is projected to the leaf part of sP and
sum-up those minimum prices. With this, we have a new
approach to compute a PDB heuristic for a decoupled
state, which we call decoupled PDB: dPDB(hP , sF) =
minsP∈SP price(sF , sP) + hP (sP)

Note that this can be computed in polynomial time
in the number of abstract states |SP |, without enumer-
ating all member states. In practice, the number of ab-
stract states can sometimes be larger than the num-
ber of member states (with finite price) in sF . There-
fore, instead of iterating over all abstract states, one can
iterate directly over those such that price(sF , sP) <
∞. To do so, we can, for each leaf separately, com-
pute the set of reached abstract leaf states, i. e., the set
{sL[P] | prices(sF)[sL] < ∞}, and their minimum price
minprice(sL[P]) = minsL∈SL,sL[P]⊆sL prices(sF)[sL]. In
a second step, we multiply out these sets across leaves,
which, augmented with the abstract center state sC(sF)[P],
results in full abstract states sP ∈ SP , and minimize the sum
of their price and heuristic value. The number of abstract
states generated thereby is upper-bounded by the number of
member states of sF and the number of abstract states of P ,
but is typically much smaller than both.

The following proposition shows that the heuristic values
computed by dPDB are equivalent to the explicit decoupled
PDB heuristic hPF ,ex, except for the missing inclusion of leaf
prices of leaves unaffected by P .

Proposition 3. Let Π be a planning task with factor-
ing F and hP a PDB heuristic. Then hPF ,ex(s

F) =

dPDB(hP , sF) +
∑

L∈L\LhP
minsL∈SL prices(sF)[sL].

Proof. Let s be the member state that minimizes
hPF ,ex(sF). Then: hPF ,ex(sF) = price(sF , s) +

hP (s) =
∑

L∈L prices(sF)[s[L]] + hP (s[P]) =∑
L∈LhP

prices(sF)[s[L]] + hP (s[P]) +∑
L∈L\LhP

prices(sF)[s[L]] = dPDB(hP , sF) +∑
L∈L\LhP

prices(sF)[s[L]]. The claim follows with
the observation that s minimizes hPF ,ex(sF). Since hP is
independent of the assignments to variables in V \ P , there
are no other leaf states of any L ∈ L \ LhP with a price
lower than prices(sF)[s[L]].

In the remainder of this section, we discuss the relation-
ship of hPF ,ex and PDB heuristics computed on the compi-
lation. Our first result shows that, given an arbitrary PDB
heuristic hP , we can construct a heuristic for the buy-leaves
compilation that is just as informative as hPF ,ex, by incorpo-
rating all bought[L] variables into the pattern.

Proposition 4. Let Π be a planning task with factoring
F , and hP a PDB heuristic for Π. There exists a heuris-
tic hP

′

F ,comp for the buy-leaves compilation ΠL$ such that for
all decoupled states sF : hP

′

F ,comp(sF) = hPF ,ex(s
F).

Note that the construction in the proof leads to an increase
in the size of the PDB’s abstract state space that is exponen-
tial in the number of leaves. Our second result shows that
not adapting the pattern to the compilation in general results
in an information loss.

Proposition 5. hPF ,comp(sF) ≤ hPF ,ex(s
F).

The previous two propositions, while not very relevant in
practice since we never compute PDB heuristics on the buy-
leaves compilation, indicate an issue that we will face when
considering additive PDB collections. Decoupled heuristics
take into account the pricing function of the given decoupled
state, and it is important to do so to incorporate all avail-
able information to get good estimates. Let P1,P2 be two
disjoint-additive patterns. Then, taking the perspective of the
buy-leaves compilation, we need to include the bought[L]
variables into both patterns to not lose information. But then
the patterns are no longer disjoint-additive, so we cannot
simply sum-up their estimates admissibly. We will propose
solutions to this issue in the next section.

Multiple PDBs for Decoupled Search
As the size of PDBs grows exponentially in the number
of variables included in their pattern, planners typically
compute a set of small PDB heuristics and combine them
admissibly with one of the techniques mentioned in the
background section. In the following, we assume that we
are provided with a set H of additive sets H of admis-
sible PDB heuristics. In the spirit of the canonical PDB
heuristic, we admissibly combine the heuristics as hH(s) =
maxH∈H

∑
h∈H h(s). Note that this definition covers both

the canonical PDB heuristic (in which case H = A(C) for
the set of patterns C underlying all heuristics occurring in
H, and heuristics in H can be part of several additive sets
H) and arbitrarily cost-partitioned heuristics (in which case
multiple heuristics inH can be computed over the same pat-
tern, but most likely using a different cost function). In the
following we drop the superscript P of PDB heuristics.

Besides hH, we also consider two special cases:

• H-sum: |H| = 1, the heuristic is a set of additive PDBs.

• H-max: |H| = 1 for all H ∈ H and the heuristic is
simply the maximum of a set of PDBs.

To evaluate hH for decoupled search, the straight-
forward way is to use the explicit decoupled heuris-
tic (cf. section “Decoupled Heuristics”): hHF ,ex(sF) =

mins∈[sF] price(sF , s) + maxH∈H
∑

h∈H h(s).
In our previous example, assuming three PDBs with pat-

terns P1 = {t, p1}, P2 = {p2}, and P3 = {p1, p2}, where
P1 and P2 are additive, so H = {{hP1 ,hP2}, {hP3}}, and
that the goal is G = {p1 = r, p2 = l}, the heuristic value of

the initial decoupled state IF is obtained as follows:

hHF ,ex(IF) =

min(price(IF , I) + max(hP1(I) + hP2(I),hP3(I)),

price(IF , s1) + max(hP1(s1) + hP2(s1),hP3(s1))

= min(0 + max(3 + 2, 4), 1 + max(2 + 2, 3)) = 5

Besides this exact way, we suggest several approxima-
tions in the following, and discuss their complexity.

Naı̈ve Combination
As explained in the previous section, the value of a
single PDB can be computed efficiently for decoupled
states. Therefore, a natural and naı̈ve approximation to
compute decoupled hH is to combine the individual
estimates from the decoupled PDBs: hHF ,naı̈ve(s

F) =

maxH∈H
∑

h∈H hF ,ex(sF).
However, such a simple combination is not valid, as it not

only induces information loss, but also makes the sum in-
admissible. The underlying reason for the information loss
is that each decoupled PDB could select a different mem-
ber state which minimizes the heuristic value, whereas hHF ,ex
ensures that the same member state is chosen by all PDBs.
This happens even in H-max, where we are only taking the
maximum out of a set of PDBs.

Proposition 6. hH-max
F ,naı̈ve ≤ hH-max

F ,ex and there are cases where
the inequality is strict.

Proof Sketch. We show that hH-max
F ,naı̈ve and hH-max

F ,ex differ only
on the order of the min and max operations, and the claim
then follows with the max-min inequality.

Note that the same example can be used to show that the
sum of multiple heuristics also incurs an information loss.
Furthermore, the sum is not admissible, as each heuristic
may include the price of leaf states from the same leaf.

Proposition 7. hH-sum
F ,naı̈ve is not admissible.

Proof. Consider the sum of two PDB heuristics h1 and h2
computed for a decoupled state sF with two member states
[sF] = {s1, s2}. Assume h1(s1) = h2(s1) = 1, h1(s2) =
h2(s2) =∞, and h∗(s1) = 2. Furthermore price(sF , s1) =
10 and price(sF , s2) = 0. Then, hHF ,naı̈ve(s

F) = 11 + 11 =

22 > h∗F (sF) = 12.

Hardness of the Explicit Decoupled Additive PDBs
After ruling out the naı̈ve computation, we consider to com-
pute hHF ,ex. However, computing this turns out to be an NP-
complete problem, as it requires finding the member state
that minimizes the heuristic value for the entire PDB col-
lection. This is also true for the special cases H-max and
H-sum. In the following, we prove this result forH-sum and
explain how it transfers toH-max and detecting dead ends.

Definition 3 (Decoupled Additive PDBs Problem). Given
a planning task Π with factoring F , a reachable decoupled
state sF , a bound B ∈ R+ ∪ {∞}, and a set of additive
PDBsH, decide whether hH-sum

F ,ex (sF) < B.

We require sF to be reachable to show that this is not
only hard for decoupled states with arbitrarily defined pric-
ing functions, but that such states can be encountered during
the search. Also, note that we consider H as a set of PDBs,
and not patterns. Therefore, the size of the input is propor-
tional to the number of abstract states in the pattern col-
lection. Thus, the corresponding problem for explicit search
can be computed in polynomial time simply by looking up
the value of s in all PDBs and adding the corresponding val-
ues. However, the same is not true in decoupled search:

Theorem 1. Decoupled Additive PDBs is NP-complete.

Proof Sketch. Membership: Guess a member state s ∈ [sF],
test in polynomial time if price(sF , s) + hH-sum(s) < B.

Hardness: Reduction from 3-SAT. Given any 3-CNF for-
mula φ and clauses {C1, . . . ,Cm}, we construct a plan-
ning task and decoupled state sF s.t. hH-sum

F ,ex (sF) = 0 if
φ is satisfiable, and hH-sum

F ,ex (sF) = ∞ otherwise. Our con-
struction has a leaf Li per clause Ci, that represents as-
signments over the 3 propositions in Ci. In sF , each mem-
ber state corresponds to assignments satisfying all clauses,
but assignments to each proposition may be different in
each leaf. Then, the PDB collection contains a PDB per
pair of clauses, which identifies as dead-end any state con-
taining an inconsistent assignment among those clauses.
Therefore, there exists a member state s ∈ [sF] for which
price(sF , s) + hH-sum(s) <∞ iff φ is satisfiable.

Note that in our construction action costs are irrelevant,
so exactly the same argument applies to hH-max

F ,ex , and to the
problem of deciding whether sF is a dead end.

Corollary 2. hHF ,ex cannot be computed in polynomial time
in the size of the leaf state spaces in F and the abstract state
spaces of PDBs inH unless P = NP.

Practical Implementation
Solving an NP-complete problem for every decoupled state
evaluation may seem completely impractical. Yet, as shown
in the evaluation, our algorithm that solves the problem ex-
actly is competitive with the polynomial approximations in-
troduced later in this section. It computes hHF ,ex by enumer-
ating the member states. If done in a clever way, many mem-
ber states can possibly be skipped, namely if their partially
computed heuristic is higher than the current best estimate.

The algorithm, shown in Algorithm 1, recursively (via in-
dex i) enumerates the member states of a decoupled state.
This is done by incrementally constructing a member state
(parameter s), from the center state of sF and all combina-
tions of reached leaf states. Along with s, we incrementally
compute its price ps in sF . Furthermore, we compute the
heuristic value hs = hH(s). This heuristic evaluation can be
done only at the bottom of the recursion in the “else” case,
or—as done in the algorithm—incrementally as soon as a
heuristic can be computed on the partial state s ∪ sL. The
incremental computation uses a restriction H≤i of H that
contains only those h whose affected leaves have already
been treated during the recursion, formally H≤i = {h ∈
H | Lh ⊆ {L1, . . . ,Li}}. The final heuristic value hmin (a

Algorithm 1: Recursive computation of hHF ,ex(sF)

Input: HeuristicsH = {H1, . . . ,Hn}, dec. state sF

Output: hH
F,ex(s

F)
1 hmin ←∞
2 L = 〈L1, . . . ,Ln〉 // order leaves

3 enumerate(0, sC(sF), 0)
4 return hmin

5 def enumerate(i, s, ps):
6 for sL ∈ SLi : prices(sF)[sL] <∞ do
7 psL ← prices(sF)[sL]

8 hs ← maxH∈H
∑

h∈H≤i
h(s ∪ sL)

9 if ps + psL + hs ≥ hmin then
10 continue // pruning

11 if i < n then
12 enumerate(i+ 1, s ∪ sL, p+ psL)
13 else
14 hmin ← min(hmin, p+ psL + hs)

global variable) is initialized to∞ and updated at the bottom
of the recursion.

The incremental heuristic computation of the algorithm
allows pruning, i.e., skipping a recursive call, if the lower
bound on the heuristic value of s, i. e., ps+psL +hs, already
exceeds the current minimum value hmin. Note that this in-
cludes cases where hs is a dead end. (If all member states
are dead ends, then hmin = ∞ is never changed). Since the
order of leaf factors influences the pruning by determining
at which level in the recursion an h ∈ H can be computed
(leaves that are not affected by any heuristic can be skipped),
we experimentally evaluate two different such orders.

We also considered encoding the computation of hHF ,ex as
MIP, but found Algorithm 1 to always perform better.

Polynomial-time Approximations
Given that the admissible combination of multiple PDBs is
NP-hard in general, we propose polynomial-time approxi-
mations of hHF ,ex. An important part is to approximate the
maximum overH by considering each additive subset H in-
dependently. That is, we swap the min and max operators:
maxH∈Hmins∈[sF] price(sF , s)+

∑
h∈H h(s). By Proposi-

tion 6, this is a lossy but admissible approximation of hHF ,ex.
For each additive subsetH , we consider two special cases

for which the estimate can be computed in polynomial time
by imposing restrictions on the PDBs considered by H .

Case 1: leaf-disjoint PDBs Let H = {h1, . . . ,hn} be a
set of additive PDBs. We say that two heuristics h1,h2 are
leaf-disjoint if they do not affect the same leaves, i. e., Lh1

∩
Lh2

= ∅. If all heuristics in H are pairwise leaf-disjoint, we
can simply sum up the estimates and obtain hH-sum

F ,ex :

Proposition 8. Let H = {H}, where H is a set of additive
PDBs. If all heuristics in H are pairwise leaf-disjoint, then
hH-sum
F ,naı̈ve = hH-sum

F ,ex .

Proof Sketch. We can move the sum in hH-sum
F ,ex outward be-

cause all PDBs are leaf-disjoint, so we can minimize the sum
of prices and heuristic separately for each h on the subset of
leaves affected only by h, i. e., over the partial member states
induced by Lh.

Note that the computation is also possible in polynomial
time because it only adds estimates of separately computed
single-PDB heuristics, which can be done in polynomial-
time as discussed in the previous section.

The “leaf disjointness” of PDBs in H can be enforced
easily both when using the CPDB and the SCP heuristics.
For the former, we do not consider two patterns to be dis-
joint additive if they have any leaf variable in common, so
the maximal disjoint-additive subsets are restricted. For the
latter, we skip, during computation, any PDB in H if it af-
fects a leaf affected by any non-skipped PDB ordered earlier
in the SCP computed over H .

Case 2: single-leaf PDBs The second case limits each
PDB to affect at most a single leaf. This means we can parti-
tion H into subsets H = HL1 ∪ · · · ∪HLn where heuristics
in each HLi affect only leaf Li. Then the sum over HLi

corresponds to the leaf-disjoint case detailed before, so it is
admissible. We can compute the heuristic for each HLi

effi-
ciently because it suffices to consider only a single leaf Li.
The heuristic value of H is defined as:∑

L∈L
min

sL∈SL
prices(sF)[sL] +

∑
h∈HL

h(sC(sF) ∪ sL) (1)

Here, sC(sF) ∪ sL is a partial state defined on at least all
variables of the pattern of h and can thus be used by heuris-
tic h. Computing Equation 1 is polynomial-time because in
contrast to the explicit decoupled heuristic, it only requires
iterating over all reached leaf states of each leaf once. Since
all heuristics only affect a single leaf, the sum over all leaves
is admissible and corresponds to hH-sum

F ,ex :

Proposition 9. Let H = {H}, where H is a set of addi-
tive PDBs each affecting at most one leaf. Then Equation 1
equals hH-sum

F ,ex .

Proof Sketch. As each h ∈ H affects only a single leaf, we
can compute hH-sum

F ,ex separately per leaf and sum up these
minimum values across leaves. This is possible because each
h ∈ HL can be computed using only the center state sC(sF)
and a leaf state of L, as all variables of the pattern are part
of such a partial state.

Experiments
We implemented our techniques in the Fast Downward plan-
ner (Helmert 2006). In particular, we build upon the code
base for decoupled search (Gnad 2021) and adapted code
from the Scorpion planner (Seipp 2018) to compute SCPs.

We compute single PDB heuristics using the simple
greedy algorithm of Fast Downward. For the CPDB heuris-
tic, we compute patterns using the hill-climbing (HC) ap-
proach by Haslum et al. (2007) for 900s. For the SCP heuris-
tic, we compute patterns by running the multiple CEGAR
algorithm by Rovner, Sievers, and Helmert (2019) for 100s,

systematically generating all patterns up to size 2 (Pom-
merening, Röger, and Helmert 2013) for 100s, and running
HC for 500s. We then compute a set of diverse heuristic or-
ders for these PDBs for 200s, each optimized using dynamic
greedy ordering for 2s (Seipp, Keller, and Helmert 2020).

We use EXP to denote computing the explicit decoupled
heuristic using Algorithm 1. For single PDBs, we also eval-
uate the efficient computation of decoupled PDBs (dPDB).
For combining multiple PDBs, we evaluate the leaf disjoint
(LD) and single leaf (SL) approximations. For CPDB-LD,
we adapt HC to use CPDB-LD to optimize the pattern col-
lection for the right heuristic. With SCP-LD, there is noth-
ing analogous we could do in the pattern generation, but we
modify the order optimization of the SCP computation to use
SCP-LD computation. For the SL approximation, we restrict
all pattern generation algorithms to single-leaf patterns.

As baseline, we consider explicit A∗ search (E). Besides
the “pure” variant (pE), we consider a variant that computes
the factoring (fE) which allows evaluating the impact of re-
stricting pattern generation. For decoupled search (D), we
consider three types of factorings: forks (F) and inverted
forks (IF) (Gnad, Poser, and Hoffmann 2017), and LP-based
strategies for general star factorings that maximize leaf mo-
bility (MM) (Schmitt, Gnad, and Hoffmann 2019). We also
include results for LM-cut (Helmert and Domshlak 2009).

We run all planners on the benchmarks from the optimal
sequential track of all IPCs, a set comprised of 1827 tasks
over 65 domains. We conduct experiments on Intel Xeon Sil-
ver 4114 CPUs using Downward Lab (Seipp et al. 2017) to
limit each planner to 1800s and 3.5 GiB. We evaluate plan-
ners by the number of state expansions, search time in sec-
onds (excluding preprocessing time of heuristics), and the
number of solved tasks (coverage). We never mix results for
the three factoring methods, and for each method, we only
consider tasks in which it finds a non-trivial factoring. The
additional material (Sievers, Gnad, and Torralba 2022a) also
contains results on the Autoscale 21.11 benchmarks (Tor-
ralba, Seipp, and Sievers 2021) and full per-domain cover-
age results. The code, benchmarks and experimental data are
published online (Sievers, Gnad, and Torralba 2022b).

First, we focus our attention to single PDB heuristics to
compare EXP and dPDB for computing decoupled PDBs.
Figure 2a plots search time of EXP against dPDB for fac-
torings F and MM; with IF, there are nearly no differences.
We observe that the efficient computation can indeed lead
to a significant speed-up and comes at no risk. Therefore,
we always use dPDB when combining multiple PDBs with
the LD approximation (which needs to compute decoupled
PDBs) in the following.

Next, we report results for combining multiple PDBs us-
ing the CPDB and SCP heuristics. Table 1 shows coverage.
First, consider the results for explicit search in the first four
columns. Differences between pE and fE are only due to fE
computing the factoring, and we compare fE against LD and
SL to evaluate the impact of restricting PDBs. We see that
the restriction leads to a loss in coverage most of times, but
it increases for some combinations. Investigating this further
for CPDBs, we found that the restriction to LD has no effect
on heuristic quality for all three factorings. We conjecture

decoupled search (D)

explicit search (E) EXP

p f LD SL NP NI FD AFF LD SL

C
PD

B F 201 201 201 183 182 188 190 194 211 204
IF 192 191 191 174 179 186 185 186 189 171
MM 672 644 644 618 573 587 590 591 605 585

SC
P F 283 284 206 293 206 208 208 212 210 304

IF 226 221 208 206 195 200 201 200 196 193
MM 784 749 662 743 596 603 630 628 607 707

Table 1: Coverage of CPDBs and SCPs with the three fac-
torings fork (F), inverted fork (IF), and general star (MM).
Left block: explicit search (p: pure, f: with factoring though
not using it, LD/SL: leaf-disjoint/single leaf restricted pat-
terns). Right block: decoupled search with explicit heuris-
tic computation with Algorithm 1 (EXP) (without pruning
(NP) and with pruning with non-incremental computation
(NI) and incremental computation with leaf factor order cor-
responding to Fast Downward’s variable order (FD) and pre-
ferring leaves affected by many PDBs (AFF)) and with the
polynomial-time heuristic approximations LD and SL.

that this is due to HC only generating patterns containing a
single goal variable and its predecessors in the causal graph,
thus the goal determines which leaves a pattern affects. The
restriction to SL always results in worse heuristics with the
exception of a few tasks. When looking at SCPs, the pic-
ture changes: LD has a strongly negative impact, which is,
however, mostly attributed to the two domains miconic and
wookworking. With the SL restriction, coverage decreases
with IF and MM and increases with F. A closer look at
heuristic quality, as demonstrated by expansion plots in Fig-
ure 2b comparing unrestricted SCP against LD and SL, re-
veals that restricting PDBs can be both beneficial and bad.
LD reduces the number of heuristics that SCP can combine,
which potentially removes good heuristics, but which also
allows later ordered heuristics to contribute more to the SCP,
which can be beneficial if these heuristics are better than the
skipped ones. SL restricts the generated heuristics and there-
fore has unpredictable effects on techniques that combine
these heuristics. Generally speaking, we see that SCP does
not suffer from the SL restriction as much as CPDB does,
which confirms that SCP is a stronger technique for com-
bining arbitrary sets of PDBs than CPDBs, which rely on
the simpler disjoint-additive criterion.

We now turn to decoupled search. In the first four columns
of that block, we report results for the explicit decou-
pled heuristic computation (EXP). The first column is with-
out pruning (NP), the others with pruning, using the non-
incremental (NI) variant as well as two incremental ones
with two different (precomputed) leaf factor orderings: FD
uses the order of leaf factors in Fast Downward; AFF orders
leaves by decreasing number of PDBs affecting them.2 We

2We also experimented with a simple dynamic order but ob-
tained very similar results. We leave a more thorough investigation
of dynamic orders as future work.

10−210−1 100 101 102 103
10−2

10−1

100

101

102

103

un
s.

uns.

PDB EXP (lower for 17 tasks)

d
P
D
B

(l
ow

er
fo

r5
2

ta
sk

s)

10−210−1 100 101 102 103
10−2

10−1

100

101

102

103

un
s.

uns.

PDB EXP (lower for 117 tasks)

d
P
D
B

(l
ow

er
fo

r1
98

ta
sk

s)

(a) Search time of decoupled search with a single PDB heuristic, us-
ing explicit decoupled heuristic (EXP) vs. decoupled PDB (dPDB)
computation with factorings F (left) and MM (right).

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

un
s.

uns.

fE SCP (lower for 170 tasks)

E
SC

P
L

D
(l

ow
er

fo
r1

35
ta

sk
s)

100 101 102 103 104 105 106 107
100
101
102
103
104
105
106
107

un
s.

uns.

fE SCP (lower for 229 tasks)

E
SC

P
SL

(l
ow

er
fo

r1
03

ta
sk

s)

(b) Expansions of explicit search with the SCP heuristic and factoring
MM, comparing using unrestricted PDBs (fE) vs. PDBs restricted to
be leaf-disjoint (LD; left) or to affect a single leaf (SL; right).

100 101 102 103 104 105 106
100

101

102

103

104

105

106

un
s.

uns.

D SCP EXP (lower for 156 tasks)

D
SC

P
L

D
(l

ow
er

fo
r1

13
ta

sk
s)

100 101 102 103 104 105 106
100

101

102

103

104

105

106

un
s.

uns.

D SCP EXP (lower for 248 tasks)

D
SC

P
SL

(l
ow

er
fo

r6
7

ta
sk

s)

10−210−1 100 101 102 103
10−2

10−1

100

101

102

103

un
s.

uns.

D SCP EXP (lower for 154 tasks)

D
SC

P
L

D
(l

ow
er

fo
r2

06
ta

sk
s)

10−210−1 100 101 102 103
10−2

10−1

100

101

102

103

un
s.

uns.

D SCP EXP (lower for 218 tasks)

D
SC

P
SL

(l
ow

er
fo

r1
83

ta
sk

s)

(c) Expansions (2 plots on the left) and search time (2 plots on the right) of decoupled search with the SCP heuristic and factoring MM,
comparing explicit decoupled heuristic computation (EXP) vs. leaf-disjoint (LD; left) and single-leaf (SL; right) approximations.

Figure 2: Scatter plots of expansions and search time for different search types, heuristics and factorings.

observe that pruning always improves coverage, and both in-
cremental variants fare better than the non-incremental one,
with the AFF ordering having a clear edge in particular with
SCP. Since AFF prefers enumerating leaf states of leaves
which are affected by many PDBs, we can partially compute
many heuristic values early on, allowing for more pruning.

We next compare EXP to the two polynomial approxi-
mations. For CPDBs, using SL mostly decreases coverage,
similar to the results for explicit search which showed that
using SL means a severe information loss for CPDBs. With
LD, however, coverage increases with all factorings. As ob-
served for the explicit search counter part, the expansions are
mostly the same, so LD benefits from an accelerated heuris-
tic computation while computing the same information. For
SCP, we again have a different picture, in line with the re-
sults for explicit search: LD has a substantially negative ef-
fect on coverage and SL can even have a significant posi-
tive impact (F and MM). Comparing expansions in the two
left-most plots of Figure 2c, we observe that while heuris-
tic quality decreases in more cases than it increases, the re-
duced search time more often than not compensates this, as
evidenced in the two right-most plots of the same figure.

Finally, we compare our results with decoupled PDB-
based heuristics to their explicit counterparts and decoupled
LM-cut, the state-of-the-art in optimal decoupled search.
While the decoupled variants in general cannot compete
with their explicit counterparts on the IF and MM factor-
ings, the CPDB-LD and SCP-SL approximations with F
solve more tasks than all explicit variants. Decoupled LM-

cut solves 299 (F), 198 (IF) and 700 (MM) tasks and is
thus better than all CPDB variants; however, SCP-SL solves
more tasks with F (304) and MM (709).

Conclusions
Abstraction heuristics are the state of the art in optimal plan-
ning as heuristic search. For decoupled search, the only pre-
vious way of using heuristics was via a task compilation
depending on the decoupled state, which made using ab-
straction heuristics practically infeasible. Our paper intro-
duces the explicit decoupled heuristic, which enumerates the
member states of the decoupled state, as an alternative way
of using arbitrary heuristics for decoupled search. Further-
more, we show how to efficiently compute pattern database
heuristics for decoupled states. We show that admissibly
combining arbitrary additive pattern collections for a decou-
pled state without losing information is NP-complete. While
our algorithm that exactly solves this problem is competitive
empirically, we propose two efficient approximations based
on imposing restrictions on the pattern collections, which
are preferable in most settings, and outperform decoupled
search with the LM-cut heuristic in some settings.

In future work, we also want to consider other types of
abstractions besides projections. We think that many of our
results hold for general partial abstractions, which can also
be obtained using the merge-and-shrink framework, for ex-
ample. Furthermore, the two approximative cases of the ex-
plicit decoupled heuristic we presented in this work can be
generalized to settings where patterns (or abstractions) are

restricted not to a single, but several leaves. These cases will
require a more general handling, e.g., using cost-partitioning
techniques that also take the pricing function of decoupled
states into account.

Acknowledgements
Silvan Sievers has received funding for this work from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement no. 817639). Moreover, this work was par-
tially supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation. Finally, this work was
also partially supported by TAILOR, a project funded by the
EU Horizon 2020 research and innovation programme under
grant agreement no. 952215.

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. AIJ, 129(1): 5–33.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence, 14(3): 318–334.
Edelkamp, S. 2001. Planning with Pattern Databases. In
Proc. ECP 2001, 84–90.
Felner, A.; Korf, R.; and Hanan, S. 2004. Additive Pattern
Database Heuristics. JAIR, 22: 279–318.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Gnad, D. 2021. Star-Topology Decoupled State-Space
Search in AI Planning and Model Checking. Ph.D. thesis,
Saarland University.
Gnad, D.; and Hoffmann, J. 2018. Star-Topology Decoupled
State Space Search. AIJ, 257: 24–60.
Gnad, D.; Poser, V.; and Hoffmann, J. 2017. Beyond Forks:
Finding and Ranking Star Factorings for Decoupled Search.
In Proc. IJCAI 2017, 4310–4316.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proc.
AAAI 2007, 1007–1012.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR, 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proc. ICAPS 2009, 162–169.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.;
and Furcy, D. 2006. Maximizing over Multiple Pattern
Databases Speeds up Heuristic Search. AIJ, 170(16–17):
1123–1136.

Katz, M.; and Domshlak, C. 2010. Optimal admissible com-
position of abstraction heuristics. AIJ, 174(12–13): 767–
798.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Proc. AAAI 2015, 3335–3341.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning. In
Proc. IJCAI 2013, 2357–2364.
Rovner, A.; Sievers, S.; and Helmert, M. 2019.
Counterexample-Guided Abstraction Refinement for
Pattern Selection in Optimal Classical Planning. In Proc.
ICAPS 2019, 362–367.
Schmitt, F.; Gnad, D.; and Hoffmann, J. 2019. Advanced
Factoring Strategies for Decoupled Search Using Linear
Programming. In Proc. ICAPS 2019, 377–381.
Seipp, J. 2018. Fast Downward Scorpion. In IPC-9 Planner
Abstracts, 77–79.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
JAIR, 62: 535–577.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. JAIR, 67: 129–
167.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Sievers, S.; Gnad, D.; and Torralba, Á. 2022a. Additive Pat-
tern Databases for Decoupled Search: Additional Material.
https://doi.org/10.5281/zenodo.6553142.
Sievers, S.; Gnad, D.; and Torralba, Á. 2022b. Code, bench-
marks and experiment data for the SoCS 2022 paper “Ad-
ditive Pattern Databases for Decoupled Search”. https://doi.
org/10.5281/zenodo.6553029.
Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A
Compositional Theory of Transformations of Factored Tran-
sition Systems. JAIR, 71: 781–883.
Sievers, S.; Ortlieb, M.; and Helmert, M. 2012. Efficient
Implementation of Pattern Database Heuristics for Classical
Planning. In Proc. SoCS 2012, 105–111.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient Symbolic Search for Cost-optimal Planning.
AIJ, 242: 52–79.
Torralba, Á.; Seipp, J.; and Sievers, S. 2021. Automatic In-
stance Generation for Classical Planning. In Proc. ICAPS
2021, 376–384.

