Additive Pattern Databases for Decoupled Search

Silvan Sievers¹ Daniel Gnad² Álvaro Torralba³

¹University of Basel, Switzerland

²Linköping University, Sweden

³Aalborg University, Denmark

HSDIP, June 2022

Motivation

- state of the art in optimal classical planning: explicit heuristic search with abstractions
- goal: use abstraction heuristics also with decoupled search
- contribution: pattern database (PDB) and their additive combination for decoupled search

Background

▶ planning tasks: finite-domain state variables for representing states

Background

- planning tasks: finite-domain state variables for representing states
- pattern database (PDB) heuristics:
 - project variables to a subset
 - store perfect heuristic values of abstraction

Decoupled Search in a Nutshell

- partition state variables to decompose the task: center factor and leaf factors
- branch over center states and actions, handle leaves separately

Decoupled Search in a Nutshell

- partition state variables to decompose the task: center factor and leaf factors
- branch over center states and actions, handle leaves separately
- ightharpoonup decoupled state $s^{\mathcal{F}}$:
 - center state
 - pricing function: cost of reachable leaf states

Decoupled Search in a Nutshell

- partition state variables to decompose the task: center factor and leaf factors
- branch over center states and actions, handle leaves separately
- ightharpoonup decoupled state $s^{\mathcal{F}}$:
 - center state
 - pricing function: cost of reachable leaf states
 - ► → represents exponentially many (explicit) member states

Heuristics for Decoupled Search So Far

- previous approaches based on buy-leaves compilation:
 - compile prices of current state into task
 - compute arbitrary explicit heuristic on transformed task

Heuristics for Decoupled Search So Far

- previous approaches based on buy-leaves compilation:
 - compile prices of current state into task
 - compute arbitrary explicit heuristic on transformed task
- problems:
 - can be information-lossy (e.g., delete relaxation)
 - impractical for abstraction-based heuristics

Alternative Definition for Computing Decoupled Heuristics

explicit decoupled heuristic

$$h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + h(s)$$

Alternative Definition for Computing Decoupled Heuristics

explicit decoupled heuristic

$$h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + h(s)$$

problem: exponentially many member states

Single PDBs for Decoupled Search

reminder: explicit decoupled heuristic

$$h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + h(s)$$

Single PDBs for Decoupled Search

reminder: explicit decoupled heuristic

$$h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + h(s)$$

Decoupled PDB

$$dPDB(h^{P}, s^{F}) = \min_{s^{P} \in S^{P}} price(s^{F}, s^{P}) + h^{P}(s^{P})$$

Combining Multiple PDBs

explicit search

- ▶ given: $\mathcal{H} = \{H_1, \dots, H_n\}$ with H_i additive set of (PDB) heuristics
- canonical combination:

$$h^{\mathcal{H}}(s) = \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

Combining Multiple PDBs

explicit search

- ▶ given: $\mathcal{H} = \{H_1, \dots, H_n\}$ with H_i additive set of (PDB) heuristics
- canonical combination:

$$h^{\mathcal{H}}(s) = \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

how to transfer to decoupled search?

Naïve Combination

reminder: canonical heuristic

$$h^{\mathcal{H}}(s) = \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

Naïve Combination

reminder: canonical heuristic

$$h^{\mathcal{H}}(s) = \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

compute decoupled PDBs individually:

$$h_{\mathcal{F},\mathsf{na\"{i}ve}}^{\mathcal{H}}(s^{\mathcal{F}}) = \max_{H \in \mathcal{H}} \sum_{h \in H} rac{m{h}_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}})}{}$$

Naïve Combination

reminder: canonical heuristic

$$h^{\mathcal{H}}(s) = \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

compute decoupled PDBs individually:

$$h_{\mathcal{F},\mathsf{na\"{i}ve}}^{\mathcal{H}}(s^{\mathcal{F}}) = \max_{H \in \mathcal{H}} \sum_{h \in H} h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}})$$

properties

- information-lossy: use different minimizing member state in each PDB
- ▶ inadmissible: may count prices of leaves multiple times in different heuristics

Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

$$h_{\mathcal{F}, \mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}}, s) + h(s)$$

Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

$$h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + h(s)$$

$$ightharpoonup$$
 now: $h(s) = h^{\mathcal{H}}(s) = \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$

Explicit Decoupled Canonical Heuristic (1)

reminder: explicit decoupled heuristic

$$h_{\mathcal{F},\mathsf{ex}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + h(s)$$

▶ now: $h(s) = h^{\mathcal{H}}(s) = \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$

explicit decoupled canonical heuristic

$$h_{\mathcal{F},\mathsf{ex}}^{\mathcal{H}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}},s) + \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

Explicit Decoupled Canonical Heuristic (2)

complexity

computing $h_{\mathcal{F},\mathsf{ex}}^{\mathcal{H}}$ is **NP**-complete

Explicit Decoupled Canonical Heuristic (2)

complexity

computing $h_{\mathcal{F}, ex}^{\mathcal{H}}$ is **NP**-complete

- practical implementation via branch-and-bound
- incremental computation of member states allows pruning
- worst case: enumeration of all exponentially many member states

reminder: explicit decoupled canonical heuristic

$$h_{\mathcal{F}, \mathsf{ex}}^{\mathcal{H}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}}, s) + \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

reminder: explicit decoupled canonical heuristic

$$h_{\mathcal{F}, \mathsf{ex}}^{\mathcal{H}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}}, s) + \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

expensive part: finding minimizing member state s

reminder: explicit decoupled canonical heuristic

$$h_{\mathcal{F}, \mathsf{ex}}^{\mathcal{H}}(s^{\mathcal{F}}) = \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}}, s) + \max_{H \in \mathcal{H}} \sum_{h \in H} h(s)$$

- expensive part: finding minimizing member state s
- ▶ alternative: consider each $H \in \mathcal{H}$ independently, i.e., swap min and max:

$$\max_{H \in \mathcal{H}} \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}}, s) + \sum_{h \in H} h(s)$$

reminder: explicit decoupled canonical heuristic

$$\textit{h}_{\mathcal{F}, \mathsf{ex}}^{\mathcal{H}}(\textit{s}^{\mathcal{F}}) = \min_{\textit{s} \in [\textit{s}^{\mathcal{F}}]} \mathsf{price}(\textit{s}^{\mathcal{F}}, \textit{s}) + \max_{\textit{H} \in \mathcal{H}} \sum_{\textit{h} \in \textit{H}} \textit{h}(\textit{s})$$

- expensive part: finding minimizing member state s
- ▶ alternative: consider each $H \in \mathcal{H}$ independently, i.e., swap min and max:

$$\max_{H \in \mathcal{H}} \min_{s \in [s^{\mathcal{F}}]} \mathsf{price}(s^{\mathcal{F}}, s) + \sum_{h \in H} \mathit{h}(s)$$

admissible, but lossy approximation

Leaf-Disjoint PDBs

additive sets: pairwise leaf-disjoint PDBs

Leaf-Disjoint PDBs

additive sets: pairwise leaf-disjoint PDBs

Single-Leaf PDBs

each PDB affects at most one leaf

Leaf-Disjoint PDBs

additive sets: pairwise leaf-disjoint PDBs

Single-Leaf PDBs

each PDB affects at most one leaf

- minimize sum of prices and heuristic separately for each set of affected leaves
- heuristic value equals $h_{\mathcal{F},ex}^{\mathcal{H}}$

F MM		

	exp	explicit search		
		LD	SL	
F		206		
MM	749	662	743	

	decoupled se				search
	explicit search			expl. dec. heur.	
		LD	SL	no pruning	
F	284	206	293	206	
MM	749	662	743	596	

			decoupled search						
	explicit search			expl. dec. heur.					
		LD	SL	no pruning	pruning				
F	284	206	293	206	212				
MM	749	662	743	596	628				

				decoupled search						
	explicit search			expl. dec	poly. approx.					
		LD	SL	no pruning	pruning	LD				
F	284	206	293	206	212	210				
MM	749	662	743	596	628	607				

				decoupled search			
	explicit search			expl. dec. heur.		poly. approx.	
		LD	SL	no pruning	pruning	LD	SL
F	284	206	293	206	212	210	304
MM	749	662	743	596	628	607	707

Conclusions

- alternative way of computing explicit heuristics for decoupled search
- efficient computation of PDBs for decoupled search
- admissible combination of sets of additive PDBs NP-complete
- practical implementation and polynomial-time approximations