Theoretical Foundations for Structural Symmetries of Lifted PDDL Tasks

<u>Silvan Sievers</u>¹ Gabriele Röger¹ Martin Wehrle Michael Katz²

¹University of Basel, Switzerland ²IBM Research AI, Yorktown Heights, NY, USA

July 13, 2019

Structural	Symmetries

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Motivation

- Symmetries arise in many areas:
 - Model checking
 - SAT
 - Petri nets
 - Planning
- Planning symmetries (mostly) of ground representations
- Potential application of symmetries before grounding:
 - Invariant synthesis/Speed up grounding
 - Task transformations

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Contributions

- Transfer structural symmetries to lifted planning tasks
- Investigate relationship between lifted and ground symmetries
- Provide graph representation of planning tasks for computing symmetries
- Quantitative analysis of IPC benchmarks

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Outline

2 Relationship to Ground Symmetries

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Abstract Structures

- S: set of symbols s, each with type t(s)
- Abstract structures over S:
 - $s \in S$ abstract structure
 - If A_1, \ldots, A_n abstract structures, then also $\langle A_1, \ldots, A_n \rangle$ and $\{A_1, \ldots, A_n\}$ abstract structures

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Abstract Structures

- S: set of symbols s, each with type t(s)
- Abstract structures over S:
 - $s \in S$ abstract structure
 - If A_1, \ldots, A_n abstract structures, then also $\langle A_1, \ldots, A_n \rangle$ and $\{A_1, \ldots, A_n\}$ abstract structures
- Example:
 - S = {a, b, c, d}, t(a) = t(b) = t₁, t(c) = t(d) = t₂
 A = {⟨a, c⟩, ⟨b, d⟩, {c, d}}

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Structural Symmetries

- Symbol mapping σ : permutation of *S* with $t(\sigma(s)) = t(s)$
- Induced abstract structure mapping σ̃:

$$\tilde{\sigma}(A) := \begin{cases} \sigma(A) & \text{if } A \in S \\ \{\tilde{\sigma}(A_1), \dots, \tilde{\sigma}(A_n)\} & \text{if } A = \{A_1, \dots, A_n\} \\ \langle \tilde{\sigma}(A_1), \dots, \tilde{\sigma}(A_n) \rangle & \text{if } A = \langle A_1, \dots, A_n \rangle \end{cases}$$

• σ structural symmetry for abstract structure A if $\tilde{\sigma}(A) = A$

Structural	Symmetries
000000	

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Abstract structure:

Structural	Symmetries
000000	

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Example

Abstract structure:

•
$$S = \{a, b, c, d\}, t(a) = t(b) = t_1, t(c) = t(d) = t_2$$

•
$$A = \{ \langle a, c \rangle, \langle b, d \rangle, \{c, d\} \}$$

- Symmetry:
 - Symbol mapping *σ*: swap *a* with *b*, swap *c* with *d*
 - σ is structural symmetry: $\tilde{\sigma}(A) = \{ \langle b, d \rangle, \langle a, c \rangle, \{d, c\} \} = A$

Graph Representation

Quantitative Analysis

Lifted Planning Tasks as Abstract Structures

- Lifted representation: normalized PDDL with action costs
- Lifted planning task Π as abstract structure:
 - Symbols with the following types: object, variable, predicate, function, negation, $n \in \mathbb{N}$
 - Abstract structures for modeling atoms, literals, function terms, operators, axioms

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Example Operator (Spanner)

 $\langle \{ \boldsymbol{s}, \boldsymbol{l} \},$

```
 \begin{split} &\{\langle \textit{location}, \textit{I} \rangle, \langle \textit{spanner}, \textit{s} \rangle, \langle \textit{bob-at}, \textit{I} \rangle, \langle \textit{spanner-at}, \textit{s}, \textit{I} \rangle \}, \\ &\{\langle \emptyset, \emptyset, \langle \neg, \langle \textit{spanner-at}, \textit{s}, \textit{I} \rangle \rangle, \langle \emptyset, \emptyset, \langle \textit{carrying}, \textit{s} \rangle \}, \\ &1 \rangle \end{split}
```

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Outline

2 Relationship to Ground Symmetries

Structural Symmetries	Relationship to Ground Symmetries ○●○○	Graph Representation	Quantitative Analysis
Full Grounding			

• ground(Π): fully grounded planning task Π

Structural	Symmetries

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Full Grounding

• ground(Π): fully grounded planning task Π

Theorem

If σ is a structural symmetry for planning task Π , then σ is a structural symmetry for ground(Π).

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Rational Grounding

- Full grounding infeasible in practice
- Optimized grounding: remove some irrelevant part of the task representation (reachability analysis)

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Rational Grounding

- Full grounding infeasible in practice
- Optimized grounding: remove some irrelevant part of the task representation (reachability analysis)
- Rational grounding (ground_{rat}(Π)): remove all or no symmetric irrelevant parts

Theorem

If σ is a structural symmetry for planning task Π , then σ is a structural symmetry for ground_{rat}(Π).

Quantitative Analysis

Relationship to Propositional STRIPS Symmetries

 Propositional STRIPS tasks: set of symbols contains atoms

Relationship to Propositional STRIPS Symmetries

- Propositional STRIPS tasks: set of symbols contains atoms
- Representational differences:
 - Example symmetry of STRIPS task Π : $\sigma(P(a)) = P(a)$ and $\sigma(P(b)) = Q(b)$
 - No analogous symmetry with abstract structures: cannot map predicate *P* to both *Q* and *P*

Relationship to Propositional STRIPS Symmetries

- Propositional STRIPS tasks: set of symbols contains atoms
- Representational differences:
 - Example symmetry of STRIPS task Π : $\sigma(P(a)) = P(a)$ and $\sigma(P(b)) = Q(b)$
 - No analogous symmetry with abstract structures: cannot map predicate *P* to both *Q* and *P*
- Other direction:
 - If σ symmetry of ground task Π (in our definition), then σ also symmetry of Π (in STRIPS)
 - If σ symmetry of lifted task Π, then σ also transition graph symmetry

Structural	Symmetries

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Outline

2 Relationship to Ground Symmetries

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Abstract Structure Graph

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Abstract Structure Graph

•
$$S = \{a, b, c, d\}, t(a) = t(b) = t_1, t(c) = t(d) = t_2$$

• $A = \{\langle a, c \rangle, \langle b, d \rangle, \{c, d\}\}$

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Properties

Let A be an abstract structure.

Theorem

Every colored graph automorphism of ASG_A induces a structural symmetry of A.

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Properties

Let A be an abstract structure.

Theorem

Every colored graph automorphism of ASG_A induces a structural symmetry of A.

Theorem

Every structural symmetry of A induces a colored graph automorphism of ASG_A .

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Outline

2 Relationship to Ground Symmetries

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Summarized Results

- Roughly 53% of IPC tasks with lifted symmetries
- Ground symmetry groups often larger than lifted ones
- Quick computation using abstract structure graphs

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Size of PDG vs. Abstract Structure Graph

Relationship to Ground Symmetries

Graph Representation

Quantitative Analysis

Conclusions

- Summary:
 - Structural symmetries of the lifted representation
 - Lifted symmetries also ground symmetries
 - Graph representation of planning tasks
 - Many lifted symmetries in IPC benchmarks

Graph Representation

Conclusions

- Summary:
 - Structural symmetries of the lifted representation
 - Lifted symmetries also ground symmetries
 - Graph representation of planning tasks
 - Many lifted symmetries in IPC benchmarks
- Future work:
 - Accelerated computation of invariants/grounding: consider only subset of (symmetric) objects (ICAPS 2018)
 - Task transformations