An Analysis of Merge Strategies for Merge-and-Shrink Heuristics

Silvan Sievers Martin Wehrle Malte Helmert

University of Basel Switzerland

June 15, 2016

Outline

2 Evaluation

- All Merge Strategies
- Random Merge Strategies
- DFP
- A New Strategy

- Classical planning as heuristic search
- Merge-and-shrink: abstraction heuristic

Merge Strategy

• Binary tree over state variables

Motivation

- Recent development allows (efficient) non-linear merge strategies
- Presumably (and theoretically) large potential for better merge strategies
- Only little research on merge strategies

Outline

- All Merge Strategies
- Random Merge Strategies
- DFP
- A New Strategy

All Merge Strategies – Zenotravel #5

All Merge Strategies – Zenotravel #5

Random Merge Strategies

• Sample of 1000 random merge strategies per task on the entire benchmark set

Random Merge Strategies

- Sample of 1000 random merge strategies per task on the entire benchmark set
- Expected coverage: 680.17 (baseline: 710 757)
- 72 tasks in 19 domains solved by strategies from the literature, but no random one

Random Merge Strategies

- Sample of 1000 random merge strategies per task on the entire benchmark set
- Expected coverage: 680.17 (baseline: 710 757)
- 72 tasks in 19 domains solved by strategies from the literature, but no random one
- 21 tasks in 9 domains solved by at least one random strategy, but none from the literature

Random Merge Strategies – NoMystery-2011 #9

Random Merge Strategies – NoMystery-2011 #9

- Score-based merge strategy: prefer transition systems with common labels synchronizing close to abstract goal states
- Problem: many merge candidates with equal scores

- Score-based merge strategy: prefer transition systems with common labels synchronizing close to abstract goal states
- Problem: many merge candidates with equal scores
- Use tie-breaking:
 - Prefer atomic or composite transition systems
 - Additionally: variable order (L or RL or RND)
 - Alternatively: fully randomized

DFP – Results

	Prefer atomic			Prefer composite			Ran-
	RL	L	RND	RL	L	RND	dom
Coverage Linear (%)	726 10.8	<mark>760</mark> 10.9	723 <mark>10.6</mark>	745 81.7	729 <i>86.5</i>	697 84.3	<i>706</i> 13.2

- Performance (coverage) strongly susceptible to tie-breaking
- Strategies ranging from mostly linear to mostly non-linear

A New Strategy

- Based on the causal graph (CG)
- Compute SCCs of the CG
- Use DFP for merging within and between SCCs
- Mixture of precomputed and score-based strategies

A New Strategy (SCC-DFP) – Results

	Prefer atomic			Prefer composite			Ran-
	RL	L	RND	RL	L	RND	dom
Coverage	751	760	732	776	751	741	736
	(+25)	(+0)	(+9)	(+31)	(+22)	(+44)	(+30)
Linear (%)	8.2	8.4	8.2	58.2	58.7	61.6	11.5
	(-2.6)	(-2.5)	(-2.4)	(-23.5)	(-27.9)	(-23.2)	(-1.7)

• Complementary to MIASM

Conclusions

- Random merge strategies show the potential for devising better merge strategies
- DFP strongly susceptible to tie-breaking
- New state-of-the-art non-linear merge-strategy
- More details: paper or poster

Appendix – MIASM

• Precomputed (sampling-based) merge strategy which aims at "maximizing pruning": partitioning of state variables based on searching the space of variable subsets

Appendix – MIASM

- Precomputed (sampling-based) merge strategy which aims at "maximizing pruning": partitioning of state variables based on searching the space of variable subsets
- Simpler score-based variant:
 - Compute all potential merges
 - Choose the one allowing the highest amount of pruning

Appendix – MIASM

- Precomputed (sampling-based) merge strategy which aims at "maximizing pruning": partitioning of state variables based on searching the space of variable subsets
- Simpler score-based variant:
 - Compute all potential merges
 - Choose the one allowing the highest amount of pruning
 - Performance not far from original MIASM (best coverage: 747)

Appendix – Score Based MIASM

	Prefer atomic			Prefer composite			Ran-
	RL	L	RND	RL	L	RND	dom
Coverage Linear (%)	743 10.4	746 10.5	745 11.9	747 45.2	724 53.2	730 51.2	<i>726</i> 11.8