Evaluation: All Merge Strategies

<table>
<thead>
<tr>
<th>Merge and Shrink</th>
<th>Coverage</th>
<th>Constr (sec)</th>
<th>Exp (50th)</th>
<th>Exp (75th)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoMystery-2011 #9</td>
<td>743</td>
<td>746</td>
<td>745</td>
<td>747</td>
</tr>
<tr>
<td>Elevators-2008 #7</td>
<td>776</td>
<td>751</td>
<td>741</td>
<td>730</td>
</tr>
</tbody>
</table>

Evaluation: Random Merge Strategies

- Sample of 1000 random merge strategies on each planning task:
 - Expected coverage: 680.17
 - 72 tasks in 19 domains solved by some baseline, but no random strategy
 - 21 tasks in 9 domains solved by some random, but no baseline strategy

Evaluation: DFP

- Score-based merge strategy: prefer transition systems with common labels synchronizing close to abstract goal states
- Problem: many merge candidates with equal scores
- Use tie-breaking: prefer atomic or composite transition systems
- Further tie-breaking based on variable order (R, L, or RND)

Evaluation: MIASM

- Precomputed merge strategy: partition state variables based on searching for variable subsets that “maximize pruning”
- Simple score-based variant of MIASM: compute all merges, choose the one with highest amount of pruning

Evaluation: New Strategy (SCC-DFP)

- Based on the causal graph (CG)
- Compute clusters of variables corresponding to SCCs of the CG
- Use DFP for merging within and between SCCs
- “Plan ahead”: mixture of precomputed and score-based strategies

Conclusions

- Random strategies show potential for devising better strategies
- DFP strongly susceptible to tie-breaking
- Simple MIASM variant performs close to original MIASM
- New state-of-the-art non-linear merge-strategy based on CG-SCCs