

Setting

- Classical planning as heuristic search
- Merge-and-shrink: abstraction heuristic

Merge-and-Shrink in a Nutshell

 $X \leftarrow \{\text{atomic transition systems}\}$ while |X| > 1 do Choose $\Theta_1, \Theta_2 \in X$ according to merge strategy Shrink Θ_1, Θ_2 according to shrink strategy Merge by computing the synchronized product: $\Theta_1 \otimes \Theta_2$ Replace Θ_1 and Θ_2 by $\Theta_1 \otimes \Theta_2$ in X end while

Merge Strategy

Binary tree over state variables

Called linear if degenerated to a list, non-linear otherwise

Motivation

- Presumably large potential for better merge strategies
- Only little research on merge strategies

Table Legend

Constr (sec): Average construction time in seconds

Evaluation: Baseline Coverage Results										
						symmetries enha				
CGGL	DFP	L	MIASM	RL	CGGL	DFP	L	MIA		
710	745	704	757	725	747	752	742	74		

An Analysis of Merge Strategies for Merge-and-Shrink Heuristics

Silvan Sievers Martin Wehrle Malte Helmert University of Basel, Switzerland

er compo	Ran-			
L	RND	dom		
729	697	706		
89.1	74.9	60.2		
86.5	84.3	13.2		
4008	13760	15873		
488k	1332k	1370k		

Evaluation: MIASM

- choose the one with highest amount of pruning

	Ρι	refer aton	nic	Pre	Ran-		
_	RL	L	RND	RL	L	RND	dom
Coverage	743	746	745	747	724	730	726
Constr (sec)	137.5	143.0	141.9	194.1	236.9	234.0	169.0
Linear (%)	10.4	10.5	11.9	45.2	53.2	51.2	11.8
Exp (50th):	383	412	641	67	370	397	1282
Exp (75th):	231k	231k	231k	185k	231k	279k	359k

Evaluation: New Strategy (SCC-DFP)

- Based on the causal graph (CG)
- Use DFP for merging within and between SCCs

Prefer atomic			Prefer composite			Ran-
RL	L	RND	RL	L	RND	dom
751	760	732	776	751	741	736
61.7	61.7	66.5	59.8	86.0	73.8	60.7
8.2	8.4	8.2	58.2	58.7	61.6	11.5
2252	1796	2649	350	1410	2288	2352
349k	258k	370k	221k	362k	409k	410k
	RL 751 61.7 8.2 2252	RLL75176061.761.78.28.422521796	RLLRND75176073261.761.766.58.28.48.2225217962649	RLLRNDRL75176073277661.761.766.559.88.28.48.258.2225217962649350	RLLRNDRLL75176073277675161.761.766.559.886.08.28.48.258.258.72252179626493501410	RLLRNDRLLRND75176073277675174161.761.766.559.886.073.88.28.48.258.258.761.622521796264935014102288

Conclusions

- DFP strongly susceptible to tie-breaking

Precomputed merge strategy: partition state variables based on searching for variable subsets that "maximize pruning"

Simple score-based variant of MIASM: compute all merges,

Compute clusters of variables corresponding to SCCs of the CG

"Plan ahead": mixture of precomputed and score-based strategies

Comparison of the previous state of the art MIASM to new SCC-DFP (best configuration)

Random strategies show potential for devising better strategies Simple MIASM variant performs close to original MIASM New state-of-the-art non-linear merge-strategy based on CG-SCCs