Merge-and-Shrink Heuristics	Previous Label Redcution	Generalized Label Reduction	Experiments	Conclusion

Generalized Label Reduction for Merge-and-Shrink Heuristics

Silvan Sievers and Martin Wehrle and Malte Helmert

University of Basel, Switzerland

June 22, 2014

Merge-and-Shrink Heuristics ©	Previous Label Redcution	Generalized Label Reduction	Experiments	Conclusion 0
Outline				

Merge-and-Shrink Heuristics

- Previous Label Redcution
- Generalized Label Reduction

4 Experiments

Merge-and-Shrink Heuristics ●	Previous Label Redcution	Generalized Label Reduction	Experiments 00	Conclusion O
Merge-and-Shrink	Heuristic			

Computation of merge-and-shrink heuristics:

- Start with the set of atomic transition systems
- Repeatedly apply one of the following:
 - Merge: replace two transition systems by their synchronized product
 - Shrink: replace a transition system by an abstract transition system
- Stop when one transition system is left, use as heuristic

State-of-the-art abstraction heuristic for planning

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments 00	Conclusion 0
Outline				

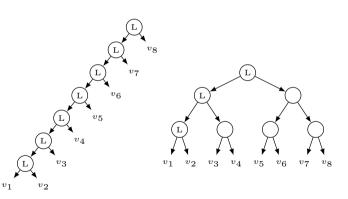
Merge-and-Shrink Heuristics

- Previous Label Redcution
- Generalized Label Reduction

4 Experiments

Merge-and-Shrink Heuristics	Previous Label Redcution	Generalized Label Reduction	Experiments	Conclusion
0	●00		00	0
Concept				

Label Reduction:


- Identify and eliminate semantically equivalent labels in transition systems
- Always useful:
 - Reduction of memory and time consumption
 - Heuristic quality preserved
 - Fast to compute
- Crucial for efficiently computing merge-and-shrink heuristics

 Merge-and-Shrink Heuristics
 Previous Label Reduction
 Generalized Label Reduction
 Experiments
 Conclusion

 O
 O
 O
 O
 O
 O
 O

Previous theory:

- Choose one pivot variable
- Label reduction only allowed for transition systems containing pivot variable

Example merge trees:

Merge-and-Shrink Heuristics	Previous Label Redcution	Generalized Label Reduction	Experiments	Conclusion
0	00●		00	0
Drawbacks				

Main drawback of previous label reduction:

• Label reduction limited to one branch of the merge tree

Consequences:

- Usage of linear merge strategies to circumvent drawbacks
- Large part of the space of possible merge strategies not yet explored

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments	Conclusion O
Outline				

Merge-and-Shrink Heuristics

- Previous Label Redcution
- Generalized Label Reduction

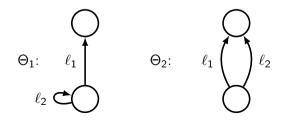
4 Experiments

5 Conclusion

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments 00	Conclusion 0
Generalized Label I	Reduction			

A label reduction for a set of transition systems with label set L is defined as follows:

- For a set of labels L' ⊆ L, choose new label ℓ ∉ L and set cost(ℓ) := min_{ℓ'∈L'} cost(ℓ').
- Replace each label $\ell' \in L'$ by the new label ℓ in all transition systems.


Formally: a label reduction τ is a label mapping, i. e. a function defined on L.

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments 00	Conclusion O
Generalized Label	Reduction			

A label reduction for a set of transition systems with label set L is defined as follows:

- For a set of labels L' ⊆ L, choose new label ℓ ∉ L and set cost(ℓ) := min_{ℓ'∈L'} cost(ℓ').
- Replace each label $\ell' \in L'$ by the new label ℓ in all transition systems.

Formally: a label reduction τ is a label mapping, i. e. a function defined on L.



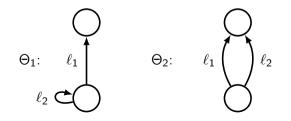
Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments 00	Conclusion O
Generalized Label	Reduction			

A label reduction for a set of transition systems with label set L is defined as follows:

- For a set of labels L' ⊆ L, choose new label ℓ ∉ L and set cost(ℓ) := min_{ℓ'∈L'} cost(ℓ').
- Replace each label $\ell' \in L'$ by the new label ℓ in all transition systems.

Formally: a label reduction τ is a label mapping, i. e. a function defined on L.

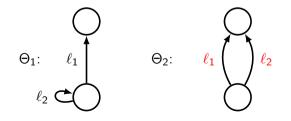
Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments 00	Conclusion 0
Theorem: Safeness				


Label reduction is always safe, i. e. leaves the heuristic admissible. (Formal proof in the paper)

Intuition:

- Transitions are preserved: transitions not lost in synchronized product
- (Goal) states of transition systems not modified
- Transition costs not increased

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments 00	Conclusion O
Combinable Labels				


Let X be a set of transition systems with label set L, let $\ell_1, \ell_2 \in L$ and let $\Theta \in X$.

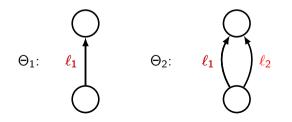
Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments 00	Conclusion 0
Combinable Labels				

Let X be a set of transition systems with label set L, let $\ell_1, \ell_2 \in L$ and let $\Theta \in X$.

• ℓ_1 and ℓ_2 are locally equivalent in Θ if they label the same set of transitions in Θ .

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments 00	Conclusion 0
Combinable Labels	2			

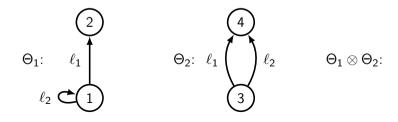
Let X be a set of transition systems with label set L, let $\ell_1, \ell_2 \in L$ and let $\Theta \in X$.


- ℓ_1 and ℓ_2 are locally equivalent in Θ if they label the same set of transitions in $\Theta.$
- ℓ_1 and ℓ_2 are Θ -combinable in X if they are locally equivalent in all $\Theta' \in X \setminus \{\Theta\}$.

Merge-and-Shrink Heuristics	Previous Label Redcution	Generalized Label Reduction	Experiments	Conclusion
0		00●0	00	0
Combinable Label	\$			

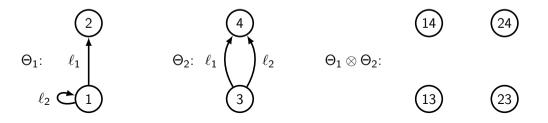
Let X be a set of transition systems with label set L, let $\ell_1, \ell_2 \in L$ and let $\Theta \in X$.

- ℓ_1 and ℓ_2 are locally equivalent in Θ if they label the same set of transitions in $\Theta.$
- ℓ_1 and ℓ_2 are Θ -combinable in X if they are locally equivalent in all $\Theta' \in X \setminus \{\Theta\}$.
- ℓ_1 globally subsumes ℓ_2 if the set of transitions labeled by ℓ_2 is a subset of the set of transitions labeled by ℓ_1 in all transition systems.

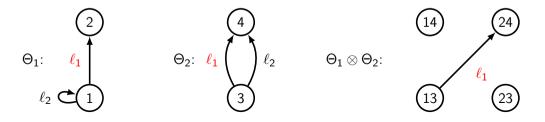


Merge-and-Shrink Heuristics	Previous Label Redcution	Generalized Label Reduction	Experiments	Conclusion
0		000●	00	0
Theorem: Exactn	A22			

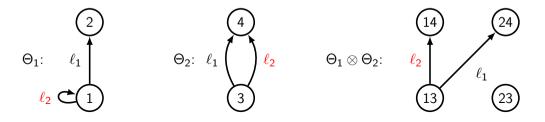
- ℓ_1 globally subsumes ℓ_2 , or
- 2 ℓ_2 globally subsumes ℓ_1 , or
- **③** ℓ_1 and ℓ_2 are Θ -combinable for some $\Theta \in X$.


Merge-and-Shrink Heuristics	Previous Label Redcution	Generalized Label Reduction	Experiments	Conclusion
0		000●	00	0
Theorem: Exactin	ACC			

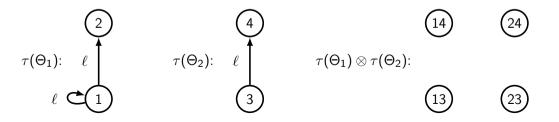
- ℓ_1 globally subsumes ℓ_2 , or
- 2 ℓ_2 globally subsumes ℓ_1 , or
- **③** ℓ_1 and ℓ_2 are Θ -combinable for some $\Theta \in X$.


Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction 000●	Experiments	Conclusion 0
Theorem: Evacto	ACC			

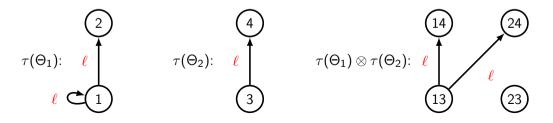
- ℓ_1 globally subsumes ℓ_2 , or
- 2 ℓ_2 globally subsumes ℓ_1 , or
- **③** ℓ_1 and ℓ_2 are Θ -combinable for some $\Theta \in X$.


Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction 000●	Experiments	Conclusion 0
Theorem: Evacto	ACC			

- ℓ_1 globally subsumes ℓ_2 , or
- 2 ℓ_2 globally subsumes ℓ_1 , or
- **③** ℓ_1 and ℓ_2 are Θ -combinable for some $\Theta \in X$.


Merge-and-Shrink Heuristics	Previous Label Redcution	Generalized Label Reduction	Experiments	Conclusion
0		000●	00	0
Theorem: Exactin	ACC			

- ℓ_1 globally subsumes ℓ_2 , or
- 2 ℓ_2 globally subsumes ℓ_1 , or
- **③** ℓ_1 and ℓ_2 are Θ -combinable for some $\Theta \in X$.


Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction 000●	Experiments	Conclusion 0
Theorem: Exacta	ACC			

- ℓ_1 globally subsumes ℓ_2 , or
- 2 ℓ_2 globally subsumes ℓ_1 , or
- **(3)** ℓ_1 and ℓ_2 are Θ -combinable for some $\Theta \in X$.

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction 000●	Experiments	Conclusion 0
Theorem: Evacto	ACC			

- ℓ_1 globally subsumes ℓ_2 , or
- 2 ℓ_2 globally subsumes ℓ_1 , or
- **(3)** ℓ_1 and ℓ_2 are Θ -combinable for some $\Theta \in X$.

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments	Conclusion 0
Outline				

Merge-and-Shrink Heuristics

Previous Label Redcution

3 Generalized Label Reduction

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments ●0	Conclusion O
Experimental Setur	C			

General:

• Fast Downward planning system

Merge-and-shrink heuristic:

- Linear merge strategy reverse-level (RL)
- Non-linear merge strategy proposed by Dräger et al. (DFP)
- Shrinking based on bisimulation (B)

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments ○●	Conclusion 0
Coverage Results				

Observations:

- Label reduction always useful
- New better than old: larger computational effort compensated by reduced memory/time consumption
- Non-linear merge strategy DFP: best performer

Coverage:

merge/shrink	Label Reduction		
strategy	none	old	new
RL-B-N50k	577	618	634
RL-B-N100k	560	599	639
RL-B-N200k	544	590	630
DFP-B-N50k	565		644
DFP-B-N100k	551	—	632
DFP-B-N200k	522	—	625

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments 00	Conclusion ☉
Outline				

- Merge-and-Shrink Heuristics
- Previous Label Redcution
- Generalized Label Reduction
- 4 Experiments

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments 00	Conclusion ●
Conclusion				

Summary:

- Generalized label reduction for merge-and-shrink heuristics:
 - Safe transformation: always allowed on all transition systems
 - Exact transformation: if based on Θ-combinability (among others)
- Prepared the ground for non-linear merge strategies in practice:
 - Implemented non-linear merge strategy DFP
 - Experimental performance gain

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments	Conclusion 0
The End				

Thank you!

 $\underset{\circ}{\mathsf{Merge-and-Shrink}} \; \underset{\circ}{\mathsf{Heuristics}}$

Previous Label Redcution

Generalized Label Reduction

Experiments

Conclusion 0

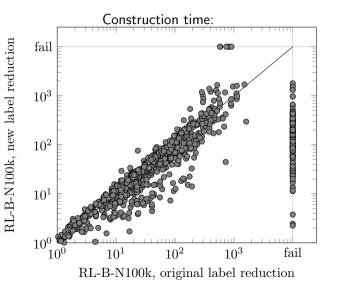
Results: Usefulness of Label Reduction (1)

		RL-B-100K		DFP-I	3-50K
	none	old	new	none	new
mprime (35)	8	+6	+15	6	+17
miconic (150)	60	+13	+13	58	+14
gripper (20)	7	+13	+13	7	+11
freecell (80)	6	-2	+13	9	+11
mystery (30)	8	+1	+8	8	+8
zenotravel (20)	9	+3	+3	10	+2
pipesworld-tankage (50)	8	+2	+3	12	+2
nomystery-opt11-strips (20)	17	+1	+1	16	+2
woodworking-opt08-strips (30)	11	-1	+1	11	+2
blocks (35)	25	-3	-3	25	+2
grid (5)	1	+2	+2	1	+1
floortile-opt11-strips (20)	5	+1	+1	4	+1
rovers (40)	7	+1	+1	7	+1
satellite (36)	5	+1	+1	5	+1
scanalyzer-08-strips (30)	12	+1	+1	12	+1
scanalyzer-opt11-strips (20)	9	+1	+1	9	+1
woodworking-opt11-strips (20)	6	-1	+1	6	+1
pipesworld-notankage (50)	14	±0	± 0	14	+1
sokoban-opt08-strips (30)	24	±0	+2	25	± 0
trucks-strips (30)	6	±0	+2	6	±0
transport-opt11-strips (20)	6	+1	+1	6	± 0
driverlog (20)	13	$^{-1}$	-1	12	±0
Sum (791)	267	+39	+79	269	+79
Remaining domains (605)	293	±0	±0	296	±0
Sum (1396)	560	599	639	565	644

 Merge-and-Shrink Heuristics
 Previous Label Reduction
 Generalized Label Reduction
 Experiments
 Conclusion

 Nesults:
 Usefulness of Label Reduction (2)

Remarks:


- Label reduction of crucial importance for efficiency
- Bisimulation based shrinking profits from label reduction

Merge-and-Shrink Heuristics Previous Label Reduction Generalized Label Reduction Conclusion Conclus

Remarks:

- Resulting heuristics similarly informative
- Failures almost always due to memory limit

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments 00	Conclusion 0
Previous Label Red	cution: Remarks			

Weaknesses of previous label reduction:

- Local transformation of one transition system (problematic for synchronization behavior)
- Syntax-based comparison of labels (requires access to underlying planning operators)
- Independence of shrink strategy (no label reduction opportunities from shrinking)

Merge-and-Shrink Heuristics 0	Previous Label Redcution	Generalized Label Reduction	Experiments 00	Conclusion O
General Label Red	uction: Remarks			

Notes on the implementation:

- \bullet Label reduction through $\Theta\text{-combinability}$ may enable other $\Theta\text{'-combinability}$ opportunities
 - \rightarrow Label reduction performed as fixpoint computation
- Order of considered transition systems matters
 - \rightarrow Randomized order