Motivation

State-space search:

- Fundamental problem of artificial intelligence
- Specify large state spaces compactly as family of labeled transition systems Merge-and-shrink heuristic:
- Construct single transition system starting from a family of small transition systems
- State-of-the-art abstraction heuristic in planning

Labeled Transition Systems

A labeled transition system is a 4-tuple $\Theta = \langle S, L, T, S_{\star} \rangle$ with

- ► S: a finite set of states
- ► L: a finite set of labels
- ► $T \subseteq S \times L \times S$: a set of (labeled) transitions
- ▶ $S_{\star} \subseteq S$: a set of goal states

Notation:

- ▶ $s \stackrel{\ell}{\rightarrow} s'$ for transition $\langle s, \ell, s' \rangle \in T$
- ► $s \xrightarrow{\ell} s' \in \Theta$ for $s \xrightarrow{\ell} s' \in T$ with *T* transition relation of Θ

Merge-and-Shrink Heuristics

Computation of merge-and-shrink heuristics:

- ► Start with the set *X* of atomic transition systems
- Transform X by repeatedly applying one of the following: • Merge: replace two transition systems $\Theta, \Theta' \in X$ by their synchronized product
- Shrink: replace a transition system $\Theta \in X$ by an abstract transition system
- Stop when one transition system is left, use as heuristic

Label Reduction for Merge-and-Shrink

Concept:

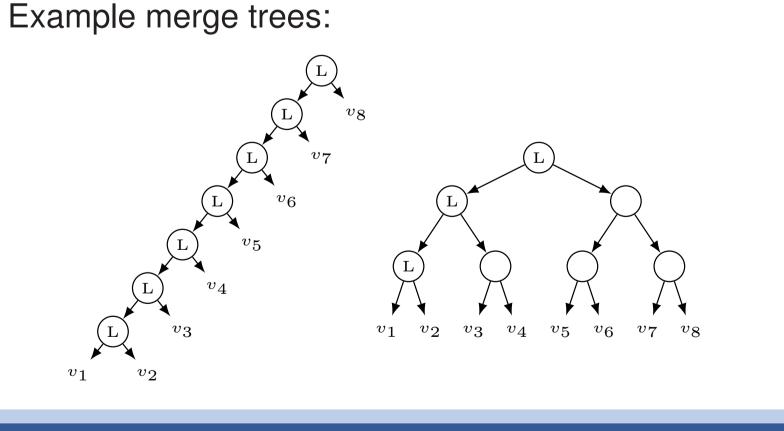
Identify and eliminate semantically equivalent labels in transition systems

- Always useful:
- Reduction of memory and time consumption
- Heuristic quality preserved
- Fast to compute
- Crucial for efficiently computing merge-and-shrink heuristics

Previous Label Reduction in the Merge-and-Shrink Computation

Previous theory:

- Choose one pivot variable
- Label reduction only allowed for transition systems containing pivot variable


Consequence:

Label reduction only possible in one branch of the merge tree

Discussion of Previous Label Reduction

Drawbacks:

- Local transformation of one transition system (problematic for synchronization behavior)
- Syntax-based comparison of labels (requires access to underlying planning operators) Independence of shrink strategy (no label reduction opportunities from shrinking)
- Consequences:
- Label reduction only applicable in limited cases (pivot variable)
- Rather complex theory
- Usage of linear merge strategies to circumvent drawbacks
- Large part of the space of possible merge strategies not yet explored

Generalized Label Reduction for Merge-and-Shrink Heuristics

Silvan Sievers and Martin Wehrle and Malte Helmert University of Basel, Switzerland

Generalized Label Reduction

Definition

Let X be a set of transition systems with label set L. A label reduction for X is defined as follows:

Theorem

Label reduction is always safe, i.e. leaves the heuristic admissible.

Intuition:

- Synchronization behavior preserved because transitions are preserved
- Goal) states of transition systems not modified
- Transition costs not increased

Example:

After label

reduction:

Before label reduction:

 Θ_1 : Θ_2 : \mathcal{P}^{ℓ_2} $au(\Theta_1)$: $\tau(\Theta_2)$:

Main Result

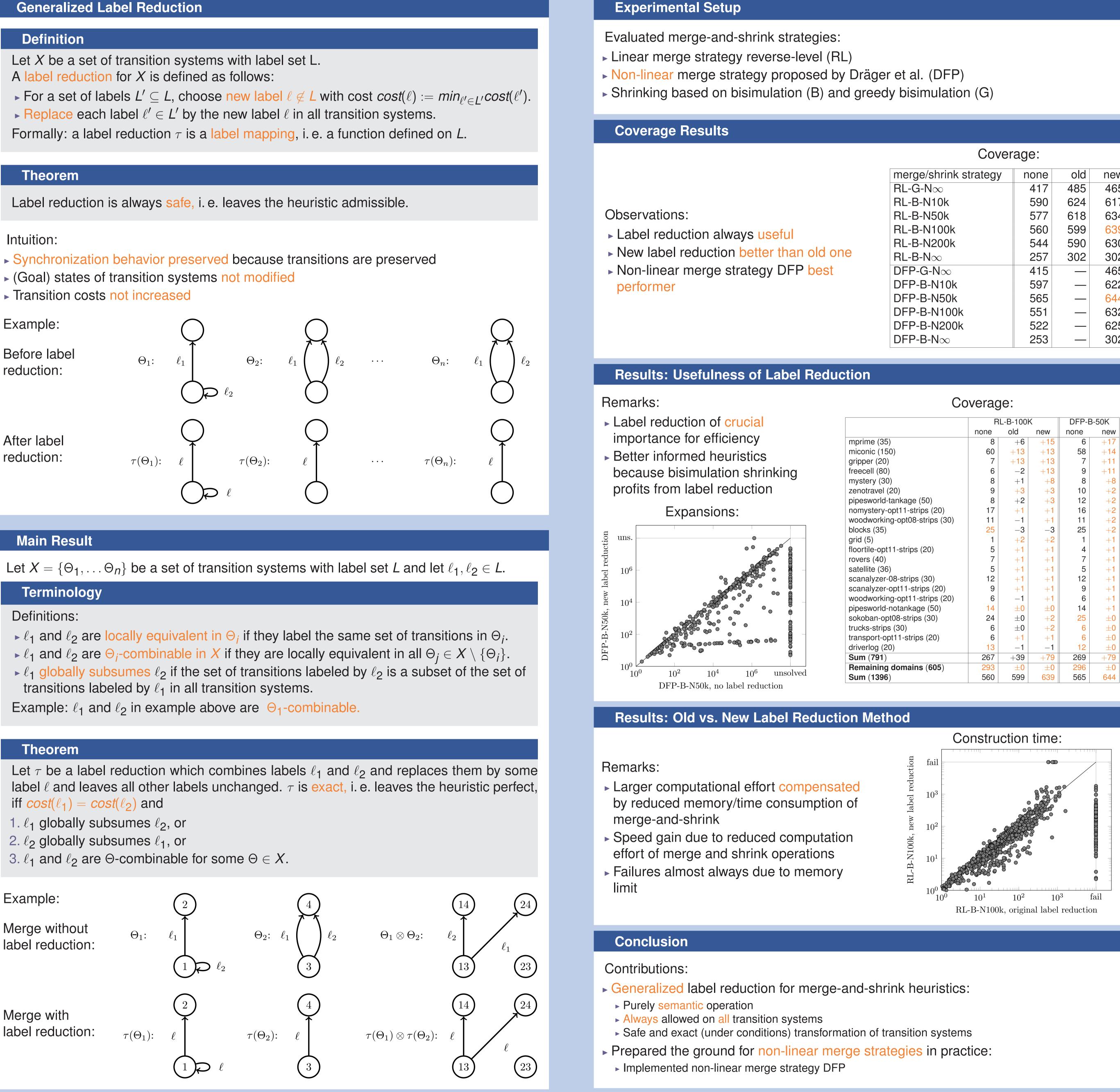
Terminology

- Definitions:

- transitions labeled by ℓ_1 in all transition systems.

Example: ℓ_1 and ℓ_2 in example above are Θ_1 -combinable.

Theorem


iff $cost(\ell_1) = cost(\ell_2)$ and

- 1. ℓ_1 globally subsumes ℓ_2 , or
- 2. ℓ_2 globally subsumes ℓ_1 , or
- 3. ℓ_1 and ℓ_2 are Θ -combinable for some $\Theta \in X$.

Example:

Merge without label reduction:

Merge with label reduction:

	merge/shrink strategy	none	old	new
one t	$RL-G-N\infty$	417	485	465
	RL-B-N10k	590	624	617
	RL-B-N50k	577	618	634
	RL-B-N100k	560	599	639
	RL-B-N200k	544	590	630
	$RL ext{-}B ext{-}N\infty$	257	302	302
	$DFP ext{-}G ext{-}N\infty$	415		465
	DFP-B-N10k	597		622
	DFP-B-N50k	565		644
	DFP-B-N100k	551		632
	DFP-B-N200k	522		625
	$DFP ext{-}B ext{-}N\infty$	253		302

	R	RL-B-100K			DFP-B-50K	
	none	old	new	none	new	
mprime (35)	8	+6	+15	6	+17	
miconic (150)	60	+13	+13	58	+14	
gripper (20)	7	+13	+13	7	+11	
freecell (80)	6	-2	+13	9	+11	
mystery (30)	8	+1	+8	8	+8	
zenotravel (20)	9	+3	+3	10	+2	
pipesworld-tankage (50)	8	+2	+3	12	+2	
nomystery-opt11-strips (20)	17	+1	+1	16	+2	
woodworking-opt08-strips (30)	11	-1	+1	11	+2	
blocks (35)	25	-3	-3	25	+2	
grid (5)	1	+2	+2	1	+1	
floortile-opt11-strips (20)	5	+1	+1	4	+1	
rovers (40)	7	+1	+1	7	+1	
satellite (36)	5	+1	+1	5	+1	
scanalyzer-08-strips (30)	12	+1	+1	12	+1	
scanalyzer-opt11-strips (20)	9	+1	+1	9	+1	
woodworking-opt11-strips (20)	6	-1	+1	6	+1	
pipesworld-notankage (50)	14	±0	±0	14	+1	
sokoban-opt08-strips (30)	24	± 0	+2	25	± 0	
trucks-strips (30)	6	± 0	+2	6	± 0	
transport-opt11-strips (20)	6	+1	+1	6	± 0	
driverlog (20)	13	-1	-1	12	± 0	
Sum (791)	267	+39	+79	269	+79	
Remaining domains (605)	293	±0	±0	296	±0	
Sum (1396)	560	599	639	565	644	