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Introduction

IRecent large interest in pruning methods for optimal planning
ITwo existing methods:
IBounded Intention Planning (BIP) (Wolfe and Russell 2011)
IStubborn Sets (e. g. Valmari 1989, Wehrle and Helmert 2014)

IOur contribution: Relate BIP to strong stubborn sets

Stubborn Sets – High Level Idea

IAt state s, restrict branching to Ts ⊆ O
IApplicable operators not in Ts remain applicable
IAvoid looking at all permutations of an operator sequence

leading to the same state

Stubborn Sets – More Details

IOperator set Ts ⊆ O is a generalized strong stubborn set
(GSSS) in solvable state s iff:

1. Ts contains all operators interfering with applicable operators from Ts
2. Ts contains a necessary enabling set for all inapplicable operators in Ts
3. Ts contains at least one operator starting a strongly optimal s-plan

Bounded Intention Planning – High Level Idea

IMethod for domains with unary operators and acyclic CGs
IRepeatedly choose a subgoal
IOnly plan for subgoal, avoiding unnecessary interleavings
ITo do so, use augmented representation to explicitly set

intention variables (representing subgoals)

Bounded Intention Planning – Operator Partitioning

IWhen expanding states:
IPartition operators with identical preconditions and prevail conditions
IChoose arbitrary partition: branch only inside partitions

BIP Theorem 2 (Wolfe and Russell 2011)

For every state s and applicable operator partition p there ex-
ists an optimal s-plan that begins with an operator in p.

Contribution – Relation of BIP to SSS

ILet s be a solvable state, let Ps be the set of applicable
operator partitions in s

Theorem
For every X ∈ Ps, Ts := X ∪ {o | o interferes with o′ ∈ X}
satisfies conditions (1) and (2) of the GSSS definition.

IOperators o interfering with X are not applicable in s
IX constitutes a necessary enabling set for all such o

Theorem
For at least one X ∈ Ps, Ts := X∪{o | o interferes with o′ ∈ X}
satisfies condition (3) of the GSSS definition for and hence is
a GSSS with the same applicable operators as X .

IFrom s solvable, there exists an operator o starting a strongly
optimal s-plan

IPs contains exactly the applicable operators, hence o is in
some X ∈ Ps

Theorems – Remarks

IPreferably select partitions that correspond to a GSSS
IProblem: computationally hard to find those

Conclusion

IBIP’s operator partitioning is a variant of a stubborn method:
IAll partitions induce sets that satisfy conditions (1) and (2) of the GSSS

definition (semistubborn sets)
IAt least one partition induces a GSSS

Future work

IWhat is the pruning power of BIP?
ICan BIP be generalized to arbitrary operators?
⇒ Starting point: GSSS defined for arbitrary operators

Bounded Intention Planning – Example

IExample planning task:
IV: v ,w , D(v) = D(w) = {0,1}
IO: ov = (v = 0; v = 1; ∅),

ow = (w = 0; w = 1; ∅)
I s0: v = 0, w = 0
I s?: v = 1, w = 1
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IAugmented planning task: (simplified –
without extra goal variable)
I V̄: v ,w ,Ov ,Ow ,Cv ,Cw
I Ō:

I SetO(ov) = (Ov = free; Ov = ov ; v = 0)
I SetO(ow) = (Ow = free; Ow = ow ; w = 0)
I Freeze(v ,0) = (Ov = free; Ov = frozen; v = 0)
I Freeze(v ,1) = (Ov = free; Ov = frozen; v = 1)
I Freeze(w ,0) = (Ow = free; Ow = frozen; w = 0)
I Freeze(w ,1) = (Ow = free; Ow = frozen; w = 1)
I Fire(ov) = (v = 0,Ov = ov ; v = 1,Ov = free; ∅)
I Fire(ow) = (w = 0,Ow = ow ; w = 1,Ow = free; ∅)

I s̄0: v = 0, w = 0, Ov = free, Ow = free,
Cv = free, Cw = free

I s̄? = s?
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I s̄0: applicable partitions
ISetOv=0 = {SetO(ov),Freeze(v ,0)}
ISetOw=0 = {SetO(ow),Freeze(w ,0)}

IFireov = {Fire(ov)}
IFireow = {Fire(ow)}

I s̄0: inapplicable partitions
ISetOv=1 = {Freeze(v ,1)}
ISetOw=1 = {Freeze(w ,1)}
IFireov = {Fire(ov)}
IFireow = {Fire(ow)}

Augmented search space:
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