Bounded Intention Planning Revisited

Silvan Sievers, Martin Wehrle and Malte Helmert

University of Basel, Switzerland

Introduction

Recent large interest in pruning methods for optimal planning

Two existing methods:

- Bounded Intention Planning (BIP) (Wolfe and Russell 2011)
- Stubborn Sets (e.g. Valmari 1989, Wehrle and Helmert 2014)
- Our contribution: Relate BIP to strong stubborn sets

Stubborn Sets – High Level Idea

At state *s*, restrict branching to $T_s \subseteq \mathcal{O}$

Contribution – Relation of BIP to SSS

Let s be a solvable state, let P_s be the set of applicable operator partitions in s

Theorem

For every $X \in P_s$, $T_s := X \cup \{o \mid o \text{ interferes with } o' \in X\}$ satisfies conditions (1) and (2) of the GSSS definition.

Operators *o* interfering with *X* are not applicable in *s X* constitutes a necessary enabling set for all such *o*

- > Applicable operators not in T_s remain applicable
- Avoid looking at all permutations of an operator sequence leading to the same state

Stubborn Sets – More Details

Operator set $T_s \subseteq \mathcal{O}$ is a generalized strong stubborn set (GSSS) in solvable state *s* iff:

1. T_s contains all operators interfering with applicable operators from T_s 2. T_s contains a necessary enabling set for all inapplicable operators in T_s 3. T_s contains at least one operator starting a strongly optimal *s*-plan

Bounded Intention Planning – High Level Idea

- Method for domains with unary operators and acyclic CGs
- Repeatedly choose a subgoal
- Only plan for subgoal, avoiding unnecessary interleavings
- To do so, use augmented representation to explicitly set intention variables (representing subgoals)

Bounded Intention Planning – Operator Partitioning

Theorem

For at least one $X \in P_s$, $T_s := X \cup \{o \mid o \text{ interferes with } o' \in X\}$ satisfies condition (3) of the GSSS definition for and hence is a GSSS with the same applicable operators as *X*.

- From s solvable, there exists an operator o starting a strongly optimal s-plan
- ► P_s contains exactly the applicable operators, hence o is in some $X \in P_s$

Theorems – Remarks

Preferably select partitions that correspond to a GSSS
 Problem: computationally hard to find those

Conclusion

BIP's operator partitioning is a variant of a stubborn method:

When expanding states:

- Partition operators with identical preconditions and prevail conditions
- Choose arbitrary partition: branch only inside partitions

BIP Theorem 2 (Wolfe and Russell 2011)

For every state *s* and applicable operator partition *p* there exists an optimal *s*-plan that begins with an operator in *p*.

- All partitions induce sets that satisfy conditions (1) and (2) of the GSSS definition (semistubborn sets)
- At least one partition induces a GSSS

Future work

- What is the pruning power of BIP?
- Can BIP be generalized to arbitrary operators?
 - \Rightarrow Starting point: GSSS defined for arbitrary operators

Bounded Intention Planning – Example

► Example planning task:
► V: v, w, D(v) = D(w) = {0, 1}
► O: o_v = (v = 0; v = 1; Ø), o_w = (w = 0; w = 1; Ø)
► s₀: v = 0, w = 0
► s_{*}: v = 1, w = 1

\$\vec{s}_0\$: applicable partitions
 \$\vec{SetO}_{v=0} = {\vec{SetO}(o_v), Freeze(v, 0)}\$
 \$\vec{SetO}_{w=0} = {\vec{SetO}(o_w), Freeze(w, 0)}\$

\$\vec{s}_0\$: inapplicable partitions
\$\vec{SetO}_{v=1} = {\vec{Freeze}(v, 1)}\$
\$\vec{SetO}_{w=1} = {\vec{Freeze}(w, 1)}\$
\$\vec{Fire}_{o_v} = {\vec{Fire}(o_v)}\$
\$\vec{Fire}_{o_w} = {\vec{Fire}(o_w)}\$

Augmented search space:

Augmented planning task: (simplified – without extra goal variable) *V*: *v*, *w*, *O_v*, *O_w*, *C_v*, *C_w O*:
SetO(*o_v*) = (*O_v* = *free*; *O_v* = *o_v*; *v* = 0)
SetO(*o_w*) = (*O_v* = *free*; *O_w* = *o_w*; *w* = 0)
Freeze(*v*, 0) = (*O_v* = *free*; *O_v* = *frozen*; *v* = 0)
Freeze(*v*, 1) = (*O_v* = *free*; *O_v* = *frozen*; *v* = 1)
Freeze(*w*, 0) = (*O_w* = *free*; *O_w* = *frozen*; *w* = 1)
Freeze(*w*, 1) = (*O_w* = *free*; *O_w* = *frozen*; *w* = 1)
Freeze(*w*, 1) = (*O_w* = *free*; *O_w* = *frozen*; *w* = 1)
Freeze(*w*, 1) = (*O_w* = *free*; *O_w* = *frozen*; *w* = 1)
Fire(*o_v*) = (*v* = 0, *O_v* = *o_v*; *v* = 1, *O_v* = *free*; Ø)
Fire(*o_w*) = (*w* = 0, *O_w* = *o_w*; *w* = 1, *O_w* = *free*; Ø) *F*_o: *v* = 0, *w* = 0, *O_v* = *f*_{ree}, *O_w* = *f*_{ree}; Ø) *S*_o: *v* = 0, *w* = 0, *O_v* = *f*_{ree}, *O_w* = *f*_{ree}; Ø) *S*_o: *v* = 0, *w* = *f*_{ree} *S*_x = *S_x*

