
Bounded Intention Planning Revisited
Silvan Sievers, Martin Wehrle and Malte Helmert

University of Basel, Switzerland

Introduction

IRecent large interest in pruning methods for optimal planning
ITwo existing methods:
IBounded Intention Planning (BIP) (Wolfe and Russell 2011)
IStubborn Sets (e. g. Valmari 1989, Wehrle and Helmert 2014)

IOur contribution: Relate BIP to strong stubborn sets

Stubborn Sets – High Level Idea

IAt state s, restrict branching to Ts ⊆ O
IApplicable operators not in Ts remain applicable
IAvoid looking at all permutations of an operator sequence

leading to the same state

Stubborn Sets – More Details

IOperator set Ts ⊆ O is a generalized strong stubborn set
(GSSS) in solvable state s iff:

1. Ts contains all operators interfering with applicable operators from Ts
2. Ts contains a necessary enabling set for all inapplicable operators in Ts
3. Ts contains at least one operator starting a strongly optimal s-plan

Bounded Intention Planning – High Level Idea

IMethod for domains with unary operators and acyclic CGs
IRepeatedly choose a subgoal
IOnly plan for subgoal, avoiding unnecessary interleavings
ITo do so, use augmented representation to explicitly set

intention variables (representing subgoals)

Bounded Intention Planning – Operator Partitioning

IWhen expanding states:
IPartition operators with identical preconditions and prevail conditions
IChoose arbitrary partition: branch only inside partitions

BIP Theorem 2 (Wolfe and Russell 2011)

For every state s and applicable operator partition p there ex-
ists an optimal s-plan that begins with an operator in p.

Contribution – Relation of BIP to SSS

ILet s be a solvable state, let Ps be the set of applicable
operator partitions in s

Theorem
For every X ∈ Ps, Ts := X ∪ {o | o interferes with o′ ∈ X}
satisfies conditions (1) and (2) of the GSSS definition.

IOperators o interfering with X are not applicable in s
IX constitutes a necessary enabling set for all such o

Theorem
For at least one X ∈ Ps, Ts := X∪{o | o interferes with o′ ∈ X}
satisfies condition (3) of the GSSS definition for and hence is
a GSSS with the same applicable operators as X .

IFrom s solvable, there exists an operator o starting a strongly
optimal s-plan

IPs contains exactly the applicable operators, hence o is in
some X ∈ Ps

Theorems – Remarks

IPreferably select partitions that correspond to a GSSS
IProblem: computationally hard to find those

Conclusion

IBIP’s operator partitioning is a variant of a stubborn method:
IAll partitions induce sets that satisfy conditions (1) and (2) of the GSSS

definition (semistubborn sets)
IAt least one partition induces a GSSS

Future work

IWhat is the pruning power of BIP?
ICan BIP be generalized to arbitrary operators?
⇒ Starting point: GSSS defined for arbitrary operators

Bounded Intention Planning – Example

IExample planning task:
IV: v ,w , D(v) = D(w) = {0,1}
IO: ov = (v = 0; v = 1; ∅),

ow = (w = 0; w = 1; ∅)
I s0: v = 0, w = 0
I s?: v = 1, w = 1

00

01 10

11

ow ov

ov ow

IAugmented planning task: (simplified –
without extra goal variable)
I V̄: v ,w ,Ov ,Ow ,Cv ,Cw
I Ō:

I SetO(ov) = (Ov = free; Ov = ov ; v = 0)
I SetO(ow) = (Ow = free; Ow = ow ; w = 0)
I Freeze(v ,0) = (Ov = free; Ov = frozen; v = 0)
I Freeze(v ,1) = (Ov = free; Ov = frozen; v = 1)
I Freeze(w ,0) = (Ow = free; Ow = frozen; w = 0)
I Freeze(w ,1) = (Ow = free; Ow = frozen; w = 1)
I Fire(ov) = (v = 0,Ov = ov ; v = 1,Ov = free; ∅)
I Fire(ow) = (w = 0,Ow = ow ; w = 1,Ow = free; ∅)

I s̄0: v = 0, w = 0, Ov = free, Ow = free,
Cv = free, Cw = free

I s̄? = s?

DTG(Ov)

freefro.

ov

SetO(ov)Fire(ov)

Freeze(v, 0)
Freeze(v, 1)

DTG(Ow)

freefro.

ow

SetO(ow)Fire(ow)

Freeze(w, 0)
Freeze(w, 1)

I s̄0: applicable partitions
ISetOv=0 = {SetO(ov),Freeze(v ,0)}
ISetOw=0 = {SetO(ow),Freeze(w ,0)}

IFireov = {Fire(ov)}
IFireow = {Fire(ow)}

I s̄0: inapplicable partitions
ISetOv=1 = {Freeze(v ,1)}
ISetOw=1 = {Freeze(w ,1)}
IFireov = {Fire(ov)}
IFireow = {Fire(ow)}

Augmented search space:

0, 0, free, free

s0

0, 0, fro., free 0, 0, free, fro.

0, 0, ov, free0, 0, free, ow

0, 0, fro., fro.

deadend

0, 0, ov, fro.0, 0, fro., ow

1, 0, free, free0, 0, ov, ow0, 1, free, free

Freeze(v, 0) Freeze(w, 0)

SetO(ov)SetO(ow)

Freeze(w, 0)

SetO(ow)

Freeze(v, 0)

SetO(ov)

SetO(ow)

Freeze(w, 0)

Fire(ov)

SetO(ov)

Freeze(v, 0)

Fire(ow)

Fire(ow) Fire(ov)

Fire(ov)Fire(ow)

SetO(ov)

Freeze(v, 0)

Freeze(w, 1)

SetO(ow)

Freeze(w, 0)

Freeze(v, 1)


