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Introduction Planning Task Representation Learning Discussion

Setting

(General) Domain-independent planning
Problem: no single best planner for all domains

Combine planners in portfolios
[Gerevini et al. 2011, Helmert et al. 2011, Vallati 2012, Seipp et al.
2012/2015, Seipp et al. 2014, Núñez et al. 2015, Cenamor et al. 2016]

Most prominent in satisficing planning/learning settings
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Introduction Planning Task Representation Learning Discussion

Problem

Motivation
Can we construct a good portfolio for optimal planning?
Online portfolios: solve classification task for (single)
planner selection
Good technique for classifcation tasks: deep learning

Contributions:
Representation of planning tasks consumable by deep
learning
Proper evaluation of techniques used in Delfi1, winner of
last optimal IPC
Discussion of encountered issues
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Planning Tasks

Given in a logic-based description (PDDL):

(:action pick-up
:parameters (?x)
:precondition
(and (clear ?x) (ontable ?x) (handempty))
:effect
(and (not (ontable ?x))

(not (clear ?x))
(not (handempty))
(holding ?x))

)
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Introduction Planning Task Representation Learning Discussion

Representing Planning Tasks

Goal
Use image convolution for classification.

How to obtain representative images?
SAT/CSP: convert textual problem description into images
Here: focus on structure of planning tasks
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Representative Graphs

Abstract structure graph: compact encoding
Nodes for components of the PDDL description
(predicates, objects, parameters, etc.)
Edges to connect components if one is part of another
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Representative Images

Conversion of graphs into images:
Encode adjacency matrix as black&white image
Turn into grayscale by clustering pixels
Resize to fixed size
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Overview

Goal: predict which planner(s) from the portfolio solve a
given task
Use simple convolutional neural networks

(:action pick-up
:parameters (?x)
:precondition
(and (clear ?x) (ontable ?x) (handempty))
:effect
(and (not (ontable ?x))
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Performance Representation

Multilabel classification:
Binary: predict whether planners solve given task
Discretized runtime (3 intervals): predict in which interval
planners belong

Multilabel regression: predict . . .
Raw runtime
Normalized runtime

Delfi1: binary
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Planner Collections

Fast Downward-based planners from Delfi1
Those from Delfi1 + additional planners from IPC 2018
Minimal subset of above to cover training data
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Benchmarks

Training set: domains from IPCs prior 2018
Test set: domains from IPC 2018
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Introduction Planning Task Representation Learning Discussion

Training Data Separation

Two training data splits: random vs. domain-preserving
random split
Validation vs. no validation

Choices of Delfi1:
Hand-crafted domain-preserving split
No validation for final training (only for hyper parameter
optimization)
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Results

48 settings, train 10 models for each

Comparison of Different Settings

No domination of any setting over all others
Delfi1 planner collection significantly better than other two

Further Observations:
Mostly consistent planner selection within domains
Not as strong as Delfi1 itself
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Issues

Somewhat large variance across different models
Data is not independently identically distributed (i.i.d.)
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Potential Future Work

More sophisticated networks, graph conversion
Use graphs convolution
Automatically generate tasks with a certain structure:
→ i.i.d. distribution of tasks?
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The End

Thank you for listening!

Poster tonight 7:00 – 8:30 pm: PRS 5097
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