Deep Learning for Cost-Optimal Planning: Task-Dependent Planner Selection

<u>Silvan Sievers</u>¹ Michael Katz² Shirin Sohrabi² Horst Samulowitz² Patrick Ferber¹

¹University of Basel, Switzerland ²IBM Research AI, Yorktown Heights, NY, USA

January 30, 2019

Introduction ●○○	Planning Task Representation	Learning 000000	Discussion
Setting			

- (General) Domain-independent planning
- Problem: no single best planner for all domains

Introduction	Planning Task Representation	Learning	Discussion
•00	00000	000000	00000

Setting

- (General) Domain-independent planning
- Problem: no single best planner for all domains
- Combine planners in portfolios [Gerevini et al. 2011, Helmert et al. 2011, Vallati 2012, Seipp et al. 2012/2015, Seipp et al. 2014, Núñez et al. 2015, Cenamor et al. 2016]
- Most prominent in satisficing planning/learning settings

Introduction 000	Planning Task Representation	Learning 000000	Discussion
Problem			

Motivation

- Can we construct a good portfolio for optimal planning?
- Online portfolios: solve classification task for (single) planner selection
- Good technique for classification tasks: deep learning

Introduction 000	Planning Task Representation	Learning 000000	Discussion
Problem			

Motivation

- Can we construct a good portfolio for optimal planning?
- Online portfolios: solve classification task for (single) planner selection
- Good technique for classification tasks: deep learning

Contributions:

- Representation of planning tasks consumable by deep learning
- Proper evaluation of techniques used in Delfi1, winner of last optimal IPC
- Discussion of encountered issues

Introduction 00●	Planning Task Representation	Learning 000000	Discussion
Outline			

Introduction	Planning Task Representation	Learning	Discussion
000	●○○○○	000000	
Outline			

2 Planning Task Representation

3 Learning

4 Discussion

Introduction 000	Planning Task Representation	Learning 000000	Discussion
Planning T	asks		

Given in a logic-based description (PDDL):

Introdu	uction

Planning Task Representation

Learning

Discussion

Representing Planning Tasks

Goal

Use image convolution for classification.

Introduction 000 Planning Task Representation

Learning

Discussion 00000

Representing Planning Tasks

Goal

Use image convolution for classification.

How to obtain representative images?

- SAT/CSP: convert textual problem description into images
- Here: focus on structure of planning tasks

Introduction 000	Planning Task Representation	Learning 000000	Discussion
Representativ	e Graphs		

Abstract structure graph: compact encoding

- Nodes for components of the PDDL description (predicates, objects, parameters, etc.)
- Edges to connect components if one is part of another

Introduction 000	Planning Task Representation	Learning 000000	Discussion
Representativ	e Graphs		

Abstract structure graph: compact encoding

- Nodes for components of the PDDL description (predicates, objects, parameters, etc.)
- Edges to connect components if one is part of another

Introduction 000	Planning Task Representation	Learning 000000	Discussion
Representativ	e Images		

Conversion of graphs into images:

- Encode adjacency matrix as black&white image
- Turn into grayscale by clustering pixels
- Resize to fixed size

Introduction	Planning Task Representation	Learning	Discussion
000		oooooo	00000
Representativ	e Images		

Conversion of graphs into images:

- Encode adjacency matrix as black&white image
- Turn into grayscale by clustering pixels
- Resize to fixed size

Introduction	Planning Task Representation	Learning	Discussion
000		●○○○○○	00000
Outline			

1 Introduction

2 Planning Task Representation

4 Discussion

Introduction 000	Planning Task Representation	Learning ○●○○○○	Discussion
Overview			

- Goal: predict which planner(s) from the portfolio solve a given task
- Use simple convolutional neural networks

Introduction 000	Planning Task Representation	Learning ○●○○○○	Discussion
Overview			

- Goal: predict which planner(s) from the portfolio solve a given task
- Use simple convolutional neural networks

(raction pick-up iparameters (%) iprecondition (and (clear 7%) (ontable 7%) (handempty)) ioffact (and (ont (clear 7%)) (not (handempty))) (holding 7%))

Learning

Performance Representation

Multilabel classification:

- Binary: predict whether planners solve given task
- Discretized runtime (3 intervals): predict in which interval planners belong

Multilabel regression: predict ...

- Raw runtime
- Normalized runtime

Learning

Performance Representation

Multilabel classification:

- Binary: predict whether planners solve given task
- Discretized runtime (3 intervals): predict in which interval planners belong

Multilabel regression: predict ...

- Raw runtime
- Normalized runtime

Delfi1: binary

	allastiona		
Introduction	Planning Task Representation	Learning ○○○●○○	Discussion

- Fast Downward-based planners from Delfi1
- Those from Delfi1 + additional planners from IPC 2018
- Minimal subset of above to cover training data

Introduction 000	Planning Task Representation	Learning ○○○○●○	Discussion
Benchmarks			

- Training set: domains from IPCs prior 2018
- Test set: domains from IPC 2018

Introduction 000	Planning Task Representation	Learning ○○○○○●	Discussion
Training Data	Separation		

- Two training data splits: random vs. domain-preserving random split
- Validation vs. no validation

Introduction	Planning Task Representation	Learning
		00000

Training Data Separation

 Two training data splits: random vs. domain-preserving random split Discussion

- Validation vs. no validation
- Choices of Delfi1:
 - Hand-crafted domain-preserving split
 - No validation for final training (only for hyper parameter optimization)

Introduction	Planning Task Representation	Learning	Discussion
000		000000	●○○○○
Outline			

1 Introduction

2 Planning Task Representation

3 Learning

Introduction	Planning Task Representation	Learning	Discussion
000		000000	○●○○○
Results			

48 settings, train 10 models for each

Introduction	Planning Task Representation	Learning	Discussion
000		000000	○●○○○
-			

Results

48 settings, train 10 models for each

Comparison of Different Settings

- No domination of any setting over all others
- Delfi1 planner collection significantly better than other two

Introduction 000	Planning Task Representation	Learning 000000	Discussion
-			

48 settings, train 10 models for each

Comparison of Different Settings

- No domination of any setting over all others
- Delfi1 planner collection significantly better than other two

Further Observations:

Results

- Mostly consistent planner selection within domains
- Not as strong as Delfi1 itself

Introduction	Planning Task Representation	Learning 000000	Discussion

Issues

- Somewhat large variance across different models
- Data is not independently identically distributed (i.i.d.)

Introduction Planning Task Representation	Learning 000000	Discussion

Potential Future work

- More sophisticated networks, graph conversion
- Use graphs convolution
- Automatically generate tasks with a certain structure: → i.i.d. distribution of tasks?

Introduction	Planning Task Representation	Learning	Discussion
000		000000	○○○○●
The End			

Thank you for listening! Poster tonight 7:00 – 8:30 pm: PRS 5097