Deep Learning for Cost-Optimal Planning: Task-Dependent Planner Selection

Silvan Sievers¹ Michael Katz² Shirin Sohrabi² Horst Samulowitz² Patrick Ferber¹ ¹University of Basel, Switzerland ²IBM Research AI, Yorktown Heights, NY, USA

Introduction

Setting

- General purpose of domain-independent planning: solve new planning tasks from unseen domains
- Problem: many domains, many planners but no single best planner for all domains
- Combine planners in portfolios: parallel (multi-core) or sequential, offline or online schedules, learning setting
 - [Gerevini et al. 2011, Helmert et al. 2011, Vallati 2012, Seipp et al. 2012/2015, Seipp et al. 2014, Núñez et al. 2015, Cenamor et al. 2016]
- Most prominent in satisficing planning/learning settings

Motivation

- Can we construct a good portfolio for optimal planning?
- Online portfolios: solve classification task for planner selection
- Good technique for classification tasks: deep learning

Learning (continued)

Planner Collections

- Fast Downward-based planners from Delfi1
- ► Those from Delfi1 + additional planners from IPC 2018
- Minimal subset of above to cover training data

Benchmarks

- ► Training set: domains from IPCs prior 2018
- ► Test set: domains from IPC 2018

Training Data Separation

- Two training data splits: random vs. domain-preserving random split
- Validation vs. no validation
- Choices of Delfi1:
- Hand-crafted domain-preserving split

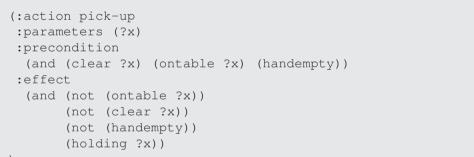
Contributions

- Deep learning for classification of planning tasks
- Suitable representation of planning tasks
- Proper evaluation of techniques used in Delfi1, winner of last optimal IPC
- Discussion of encountered issues

Planning Task Representation

Example Planning Task

Given in a logic-based description (PDDL):



Two variables per block: position (4 values) and clearness (binary)

729 states

Representing Planning Tasks

Goal:

- Use image convolution for classification
- Requires images serving as planning task representation How to obtain representative images?
- ► SAT/CSP: convert textual problem description into images
- ► Here: focus on structure of planning tasks

Representative Graphs

Abstract structure graph: compact encoding of the task description

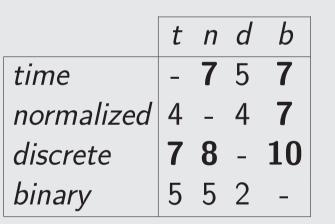
► No validation for final training (only for hyper parameter optimization)

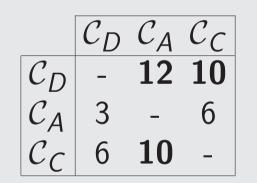
Total of 48 settings; train 10 models for each setting

Experiments

Results: Comparison of Different Settings

		doma	in-pr	reserving	g split	random split					
		valida	tion	no vali	dation	valida	tion	no validation			
		mean	std	mean	std	mean	std	mean	std		
	\mathcal{C}_D	50.0	4.4	57.3	1.6	57.5	1.5	57.5	0.0		
time	$\mathcal{C}_{\mathcal{A}}$	48.7	4.4	49.9	2.7	50.8	3.4	48.8	0.9		
	$\mathcal{C}_{\mathcal{C}}$		3.9	50.5	2.2	50.7	3.9	50.3	2.3		
	\mathcal{C}_D		4.4	53.8	2.0	55.4	3.1	54.9	3.1		
normalized	$\mathcal{C}_{\mathcal{A}}$	51.8	3.7	50.5	2.6	48.8	1.2	49.3	1.8		
	$\mathcal{C}_{\mathcal{C}}$	49.5	5.6	50.2	2.1	50.0	1.3	50.3	1.8		
	\mathcal{C}_D	49.5	4.0	53.7	5.9	53.9	3.3	54.1	3.0		
discrete	$\mathcal{C}_{\mathcal{A}}$	55.4	3.4	52.7	2.2	53.9	3.8	53.7	5.1		
	$\mathcal{C}_{\mathcal{C}}$	50.5	1.6	51.6	3.1	58.3	5.2	53.3	1.4		
	\mathcal{C}_D		4.0	50.2	1.4	52.0	3.3	50.3	1.1		
binary	$\mathcal{C}_{\mathcal{A}}$		4.7	48.9	1.8	49.9	2.2	49.6	1.5		
	$\mathcal{C}_{\mathcal{C}}$	53.4	3.0	49.2	2.2	52.3	2.7	51.7	3.6		

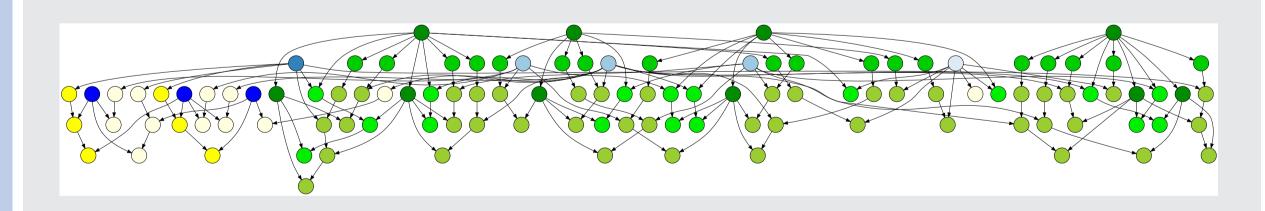




► Nodes for components of the PDDL description (predicates, objects, parameters, etc.)

m

Edges to connect components if one is part of another



Representative Images

Conversion of graphs into images:

- Encode adjacency matrix as black&white image
- ► Turn into grayscale by clustering pixels
- Resize to fixed size

Learning

Performance Representation, CNN Model

Multilabel classification:

- Binary: predict whether planners solve given task
- Discretized runtime (3 intervals): predict in which interval planners belong

Multilabel regression: predict ...

Input						
(None, 128, 128, 1)						
2D Convolution						
(None, 127, 127, 128)						
Max Pooling						
(None, 64, 64, 128)						
Flatten						
(None, 524288)						
Dropout						

	domain-pr	reserving split	random split			
	validation	no validation	validation	no validation		
dom-pres. split & val.	-	5	5	5		
dom-pres. split & no val.	7	-	2	3		
random split & val.	7	10	-	8		
random split & no val.	7	9	3	_		

- No domination of any setting over all others
- Delfi1 planner collection significantly better than other two
- Random split somewhat better than domain-preserving split, in particular with validation

Results: Comparison against Baseline

rnd. C_D rnd. C_A		rnd. C_C		oracle			best				
mean	std	mean	std	mean	std	\mathcal{C}_D	$\mathcal{C}_{\mathcal{A}}$	$\mathcal{C}_{\mathcal{C}}$	C2	Sym	Delfi1
42.8	8.3	45.0	8.8	50.3	9.8	67.9	72.1	70.8	58.3	57.1	60.0

- Mostly consistent planner selection within domains
- Mostly better than best individual planners of the collections
- Not as strong as Delfi1 itself

Discussion

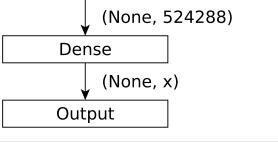
Encountered Issues

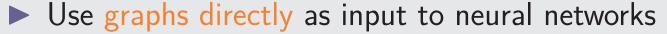
- Data is not independently identically distributed (i.i.d.)
- Somewhat large variance across different models

Potential Future Work

More sophisticated networks







• Automatically generate tasks with a certain structure: \rightarrow i.i.d. distribution of tasks?