Heuristics and Symmetries in Classical Planning

Alexander Shleyfman1 \quad Michael Katz2 \quad Malte Helmert3
Silvan Sievers3 \quad Martin Wehrle3

1Technion
Haifa, Israel

2IBM Haifa Research Lab
Israel

3University of Basel
Switzerland
A STRIPS Planning task is 4-tuple \(\langle P, O, I, G \rangle \):

- **P**: finite set of propositions
- **O**: finite set of actions of form \(\langle \text{Pre}, \text{Add}, \text{Del}, c \rangle \) (Preconditions/Add/Delete; subsets of propositions)

 \(c \in \mathbb{R}^{0+} \) captures action cost
- **I**: initial state (subset of propositions)
- **G**: goal description (subset of propositions)
Classical Planning as Heuristic Search

Recipe

1. Search algorithm - *BFS* (GBFS or WA*)
2. Heuristic(s) function(s)
3. Secret ingredients:
 - Inference–based state/action pruning
 - Action preferences
 - ...

Introduction
Symmetries
End
Classical Planning as Heuristic Search

Recipe

1. Search algorithm - \textit{BFS} (\textit{GBFS} or \textit{WA}*)
2. Heuristic(s) function(s)
3. Secret ingredients:
 - Inference–based state/action pruning
 - Action preferences
 - ...

Introduction
Symmetries
End
BFS tree step-by-step

s_0
BFS tree step-by-step
BFS tree step-by-step

Introduction
Symmetries
End
BFS tree step-by-step
BFS tree step-by-step

\[s_0 \]

- Diagram showing a breadth-first search tree with root node \(s_0 \) and several levels of children nodes.
BFS tree step-by-step

Introduction
Symmetries
End
BFS tree step-by-step
BFS tree step-by-step
BFS tree step-by-step

\[s_0 \]

\[s_* \]
BFS tree step-by-step
Motivation to use symmetries
Motivation to use symmetries
Motivation to use symmetries
Exploiting Symmetries for Pruning

General Recipe

1. Efficiently generate a **subgroup** of the **automorphism group** of the problem’s transition graph
 - efficiently = empirically efficiently

2. Use that subgroup to prune **some** symmetric states

- Emerson & Sistla (1996) [model checking]
- Rintanen (1993) [planning as SAT]
- Pochter, Zohar, and Rosenschein (2011) [heuristic search]
- Domshlak, Katz, Shleyfman (2012, 2013) [heuristic search]
Exploiting Symmetries for Pruning

General Recipe

1. Efficiently generate a subgroup of the automorphism group of the problem’s transition graph
 - efficiently = empirically efficiently
2. Use that subgroup to prune some symmetric states

- Emerson & Sistla (1996) [*model checking*]
- Rintanen (1993) [*planning as SAT*]
- Fox & Long (1999, 2002) [*Graphplan-style*]
- Pochter, Zohar, and Rosenschein (2011) [*heuristic search*]
- Domshlak, Katz, Shleyfman (2012, 2013) [*heuristic search*]
Exploiting Symmetries for Pruning

General Recipe

1. Efficiently generate a subgroup of the **automorphism group** of the problem's transition graph
 - efficiently = empirically efficiently
2. Use that subgroup to prune some symmetric states

- Emerson & Sistla (1996) [*model checking*]
- Rintanen (1993) [*planning as SAT*]
- Fox & Long (1999, 2002) [*Graphplan-style*]
- Pochter, Zohar, and Rosenschein (2011) [*heuristic search*]
- Domshlak, Katz, Shleyfman (2012, 2013) [*heuristic search*]
Symmetry Groups

STRIPS
Symmetry Groups

STRIPS

$Aut(\mathcal{T}_\Pi)$
Symmetry Groups

PDG

STRIPS

$\text{Aut}(\mathcal{T}_\Pi)$
Symmetry Groups

Strips

PDG

$Aut(PDG)$

$Aut(T_{II})$
Symmetry Groups

PDG

STRIPS

Aut(PDG)
Symmetry Groups

Introduction
Symmetries
Symmetric Heuristics
End
Definition

Let $\langle P, O, I, G \rangle$ be a STRIPS planning task. A permutation σ is a structural symmetry if

$\sigma(P) = P$

$\sigma(O) = O$, and for all $o \in O$:

$Pre(\sigma(o)) = \sigma(Pre(o))$

$Add(\sigma(o)) = \sigma(Add(o))$

$Del(\sigma(o)) = \sigma(Del(o))$

$C'(\sigma(o)) = C(o)$

$\sigma(G') = G$
Born equal?
Why do we want to know?
Why do we want to know?

$A \xrightarrow{\text{symmetry pruning}} A'$

Symmetries
Symmetric Heuristics
End
Why do we want to know?

Why do we want to know?
Heuristics Invariance Under Structural Symmetries

Non-symmetric

Symmetric
<table>
<thead>
<tr>
<th>Non-symmetric</th>
<th>Symmetric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h^+ Hoffmann & Nebel</td>
</tr>
</tbody>
</table>
Heuristics Invariance Under Structural Symmetries

Non-symmetric

Symmetric

\(h^+ \) Hoffmann & Nebel

\(h_{\text{max}} \) Bonet & Geffner
Heuristics Invariance Under Structural Symmetries

Non-symmetric

Symmetric

\(h^+ \) Hoffmann & Nebel
\(h_{\text{max}} \) Bonet & Geffner
\(h_{\text{add}} \) Bonet & Geffner
Heuristics Invariance Under Structural Symmetries

<table>
<thead>
<tr>
<th>Non-symmetric</th>
<th>Symmetric</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{FF} Hoffmann & Nebel</td>
<td>h^+ Hoffmann & Nebel</td>
</tr>
<tr>
<td></td>
<td>h_{max} Bonet & Geffner</td>
</tr>
<tr>
<td></td>
<td>h_{add} Bonet & Geffner</td>
</tr>
<tr>
<td></td>
<td>$E h_{FF}$ Hoffmann & Nebel</td>
</tr>
</tbody>
</table>
Heuristics Invariance Under Structural Symmetries

Non-symmetric

- h_{FF} Hoffmann & Nebel
- h_{FF}/h_{add} Keyder & Geffner

Symmetric

- h^+ Hoffmann & Nebel
- h_{max} Bonet & Geffner
- h_{add} Bonet & Geffner
- $\mathbb{E}h_{FF}$ Hoffmann & Nebel
Heuristics Invariance Under Structural Symmetries

Non-symmetric

- h_{FF} Hoffmann & Nebel
- $h_{\text{FF}}/h_{\text{add}}$ Keyder & Geffner
- $h_{\text{FF}}/h_{\text{max}}$ Keyder & Geffner

Symmetric

- h^+ Hoffmann & Nebel
- h_{max} Bonet & Geffner
- h_{add} Bonet & Geffner
- $\mathbb{E}h_{\text{FF}}$ Hoffmann & Nebel
Heuristics Invariance Under Structural Symmetries

Non-symmetric

- h_{FF} Hoffmann & Nebel
- h_{FF}/h_{add} Keyder & Geffner
- h_{FF}/h_{max} Keyder & Geffner

Symmetric

- h^+ Hoffmann & Nebel
- h_{max} Bonet & Geffner
- h_{add} Bonet & Geffner
- $E h_{FF}$ Hoffmann & Nebel
- h^m Haslum & Geffner
Heuristics Invariance Under Structural Symmetries

<table>
<thead>
<tr>
<th>Non-symmetric</th>
<th>Symmetric</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{FF} Hoffmann & Nebel</td>
<td>h^+ Hoffmann & Nebel</td>
</tr>
<tr>
<td>h_{FF}/h_{add} Keyder & Geffner</td>
<td>h_{max} Bonet & Geffner</td>
</tr>
<tr>
<td>h_{FF}/h_{max} Keyder & Geffner</td>
<td>h_{add} Bonet & Geffner</td>
</tr>
<tr>
<td>$h^L M$-cut Helmert & Domshlak</td>
<td>m Haslum & Geffner</td>
</tr>
<tr>
<td></td>
<td>$h^L M$-cut Helmert & Domshlak</td>
</tr>
</tbody>
</table>
Landmarks and generation procedures

Non-symmetric

Symmetric

- Given that generation method is invariant under structural symmetry the heuristics below are symmetric
 - counting landmarks (Richter, Helmert, & Westphal)
 - optimal/uniform cost partitioning (Karpas & Domshlak)
 - hitting sets (Bonet & Helmert)
Landmarks and generation procedures

<table>
<thead>
<tr>
<th>Non-symmetric</th>
<th>Symmetric</th>
</tr>
</thead>
</table>
| ZG Zhu & Givan 2003 | }
Landmarks and generation procedures

Non-symmetric

Symmetric

ZG Zhu & Givan 2003

KRH Keyder, Richter, & Helmert 2010
<table>
<thead>
<tr>
<th>Landmarks and generation procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-symmetric</td>
</tr>
<tr>
<td>Symmetric</td>
</tr>
<tr>
<td>ZG Zhu & Givan 2003</td>
</tr>
<tr>
<td>KRH Keyder, Richter, & Helmert 2010</td>
</tr>
</tbody>
</table>

RHW Richter, Helmert, & Westphal 2008
Landmarks and generation procedures

Non-symmetric

Symmetric

G Zhu & Givan 2003

KRH Keyder, Richter, & Helmert 2010

RHW Richter, Helmert, & Westphal 2008

Given that generation method is invariant under structural symmetry the heuristics below are symmetric

- counting landmarks (Richter, Helmert, & Westphal)
- optimal/uniform cost partitioning (Karpas & Domshlak)
- hitting sets (Bonet & Helmert)
Lobster is taken from: http://www.biology.ualberta.ca/palmer.hp/asymp/axes/split lobster.GIF