Better Orders for Saturated Cost Partitioning in Optimal Classical Planning

Jendrik Seipp

University of Basel

June 17, 2017

Setting

- optimal classical planning
- A* search + admissible heuristic
- abstraction heuristics

Setting

- optimal classical planning
- A* search + admissible heuristic
- abstraction heuristics

• single heuristic unable to capture enough information

single heuristic unable to capture enough information
→ use multiple heuristics

- single heuristic unable to capture enough information
 → use multiple heuristics
- how to combine multiple heuristics admissibly?

Multiple Heuristics

Multiple Heuristics

Multiple Heuristics

• maximizing only selects best heuristic $\rightarrow h(s_1) = 1$

Multiple Heuristics: Cost Partitioning

Cost Partitioning

- split operator costs among heuristics
- total costs must not exceed original costs
- \rightarrow combines heuristics
- \rightarrow allows summing heuristic values admissibly

Saturated Cost Partitioning Seipp & Helmert (ICAPS 2014)

Saturated Cost Partitioning Algorithm

- order heuristics
- for each heuristic h:
 - use minimum costs preserving all estimates of h
 - use remaining costs for subsequent heuristics

Saturated Cost Partitioning Seipp & Helmert (ICAPS 2014)

Saturated Cost Partitioning Algorithm

- order heuristics
- for each heuristic h:
 - use minimum costs preserving all estimates of h
 - use remaining costs for subsequent heuristics

Saturated Cost Partitioning Seipp & Helmert (ICAPS 2014)

Saturated Cost Partitioning Algorithm

- order heuristics
- for each heuristic h:
 - use minimum costs preserving all estimates of h
 - use remaining costs for subsequent heuristics

Orders for Saturated Cost Partitioning Seipp, Keller & Helmert (AAAI 2017)

- orders can be arbitrarily bad
 - \rightarrow hill climbing in space of orders
- a single order might only be good for a single state \rightarrow use multiple orders
- using too many orders slows down evaluation \rightarrow use diverse orders

	ICAPS 2017			
	$h_{\rm HC}^{\rm SCP}$	$h_{\rm Sys}^{\rm SCP}$	$h_{\rm Cart}^{\rm SCP}$	
Tasks (1667)	805	852	965	

 $\max(\langle h_1 \rangle, \langle h'_1, h'_2 \rangle) \le \ \max(\langle h_1, h'_1, h'_2 \rangle, \langle h'_1, h'_2, h_1 \rangle)$

Drawbacks of Diversification

Diversification algorithm

- sample 1000 states
- start with empty set of orders
- until time limit is reached:
 - generate a random order
 - if it improves upon current set of orders, keep it
 - otherwise, discard it

Drawbacks of Diversification

Diversification algorithm

- sample 1000 states
- start with empty set of orders
- until time limit is reached:
 - generate a random order
 - if it improves upon current set of orders, keep it
 - otherwise, discard it
- considers only random orders
 - \rightarrow too many orders to stumble over good ones

Drawbacks of Hill Climbing

Hill climbing search

- sample 1000 states
- start with random order
- until no better successor for samples found:
 - swap positions of two heuristics
 - move to first improving successor

Drawbacks of Hill Climbing

Hill climbing search

- sample 1000 states
- start with random order
- until no better successor for samples found:
 - swap positions of two heuristics
 - move to first improving successor
- tries to find order for set of states
 - \rightarrow there may not be a single order for multiple states
- starts with random order

 \rightarrow decent initial solution important for local optimization

- optimize for single state
- start with greedy order
- diversify optimized greedy orders

Greedy Order

Objectives:

- increase heuristic value quickly
- preserve costs for subsequent heuristics

Greedy Order

Objectives:

- increase heuristic value quickly
- preserve costs for subsequent heuristics

Value-per-cost ratio

$$ratio(h,s) = \frac{h(s)}{saturated \ costs \ for \ h}$$

Greedy Order

Objectives:

- increase heuristic value quickly
- preserve costs for subsequent heuristics

Value-per-cost ratio

$$ratio(h,s) = \frac{h(s)}{\text{saturated costs for } h}$$

Greedy algorithm

- start with empty order
- until all heuristics are ordered
 - append heuristic h with highest value-per-cost ratio
 - subtract saturated costs for *h* from overall costs

Greedy Order: Example

Greedy Order: Example

 $h_1(s_1) = 1$ saturated costs: 1 ratio: 1

 $h_2(s_1) = 1$ saturated costs: 2 ratio = 0.5

Greedy Order: Example

 $h_1(s_1) = 1$ saturated costs: 1 ratio: 1 $h_2(s_1) = 1$ saturated costs: 2 ratio = 0.5

 $\rightarrow \langle h_1, h_2 \rangle$

	random	greedy	random-opt	greedy-opt
random	-	105	0	20
greedy	989	_	268	0
random-opt	1086	463	-	111
greedy-opt	1108	548	402	-

Diverse Orders

New diversification algorithm

Until time limit is reached:

- sample state s
- find greedy order for s
- optimize order with hill climbing
- keep order if diverse

Diverse Orders

New diversification algorithm

Until time limit is reached:

- sample state s
- find greedy order for s
- optimize order with hill climbing
- keep order if diverse

	max	random	random-opt	greedy-opt
Tasks (1667)	1032	1006	1009	1048

Using h^2 mutexes:

- SymBA_2* outperforms $h_{\rm greedy-opt}^{\rm SCP}$ in 11 domains
- $h_{\text{greedy-opt}}^{\text{SCP}}$ outperforms SymBA $_2^*$ in 22 domains
- SymBA^{*}₂ solves 1008 tasks
- $h_{\rm greedy-opt}^{\rm SCP}$ solves 1084 tasks

Related ICAPS Talk and Poster Seipp, Keller & Helmert (ICAPS 2017)

A Comparison of Cost Partitioning Algorithms for Optimal Classical Planning

- theoretical and empirical comparison of cost partitioning algorithms
- saturated cost partitioning usually method of choice for hill climbing PDBs, systematic PDBs, Cartesian abstractions and landmark heuristics

Presented on Wednesday in the first ICAPS session "Optimal Planning"

- new greedy algorithm for finding orders
- pair with optimization and diversification
- combine heterogeneous abstraction heuristics