
Fast Downward Stone Soup 2018

Jendrik Seipp and Gabriele Röger
University of Basel
Basel, Switzerland

{jendrik.seipp, gabriele.roeger}@unibas.ch

Fast Downward Stone Soup (Helmert, Röger, and Karpas
2011) is a portfolio planner, based on the Fast Downward
planning system (Helmert 2006; 2009). It already partici-
pated in the International Planning Competitions (IPC) 2011
and 2014.

In this planner abstract, we present the Fast Downward
Stone Soup portfolio that we submitted to the sequential sat-
isficing and bounded-cost tracks of IPC 2018. It uses differ-
ent component algorithms than the 2011 and 2014 variants
but employs the same procedure for building the portfolio.
Therefore, we only briefly recapitulate the procedure and re-
fer the reader to the original Fast Downward Stone Soup
paper for a more detailed discussion (Helmert, Röger, and
Karpas 2011).

Building the Portfolio
The Stone Soup algorithm requires the following informa-
tion as input:

• A set of planning algorithms A. We use a set of 144 Fast
Downward configurations, which we describe below.

• A set of training instances I, for which portfolio perfor-
mance is optimized. We use a set of 2115 instances, de-
scribed below.

• Complete evaluation results that include, for each algo-
rithm A ∈ A and training instance I ∈ I,

– the runtime t(A, I) of the given algorithm on the given
training instance on our evaluation machines, in sec-
onds (we did not consider anytime planners), and

– the plan cost c(A, I) of the plan that was found.

We use time and memory limits of 30 minutes and 3.5 GiB
to generate this data. If algorithm A fails to solve instance
I within these bounds, we set t(A, I) = c(A, I) =∞.

The procedure computes a portfolio as a mapping P :
A → N0 which assigns a time limit (possibly 0 if the al-
gorithm is not used) to each component algorithm. It is a
simple hill-climbing search in the space of portfolios, shown
in Figure 1.

In addition to the algorithms and the evaluation results,
the algorithm takes two parameters, granularity and timeout,
both measured in seconds. The timeout is an upper bound on
the total time for the generated portfolio, which is the sum of

build-portfolio(algorithms, results, granularity, timeout):
portfolio := {A 7→ 0 | A ∈ algorithms}
repeat btimeout/granularityc times:

candidates := successors(portfolio, granularity)
portfolio := argmaxC∈candidates score(C, results)

portfolio := reduce(portfolio, results)
return portfolio

Figure 1: Stone Soup algorithm for building a portfolio.

all component time limits. The granularity specifies the step
size with which we add time slices to the current portfolio.

The search starts from a portfolio that assigns a time limit
of 0 seconds to all algorithms. In each hill-climbing step,
it generates all possible successors of the current portfolio.
There is one successor per algorithm A, where the only dif-
ference between the current portfolio and the successor is
that the time limit of A is increased by the given granularity.

We evaluate the quality of a portfolio P by computing
its portfolio score s(P ). The portfolio score is the sum of
instance scores s(P, I) over all instances I ∈ I. The func-
tion s(P, I) is similar to the scoring function used for the
International Planning Competitions since 2008. The only
difference is that we use the best solution quality among our
algorithms as reference quality (instead of taking solutions
from other planners into account): if no algorithm in a port-
folio P solves an instance I within its allotted runtime, we
set s(P, I) = 0. Otherwise, s(P, I) = c∗I/c

P
I , where c∗I is

the lowest solution cost for I of any input algorithm A ∈ A
and cPI denotes the best solution cost among all algorithms
A ∈ A that solve the instance within their allotted runtime
P (A).

In each hill-climbing step the search chooses the succes-
sor with the highest portfolio score. Ties are broken in favor
of successors that increase the timeout of the component al-
gorithm that occurs earliest in some arbitrary total order.

The hill-climbing phase ends when all successors would
exceed the given time bound. A post-processing step reduces
the time assigned to each algorithm by the portfolio. It con-
siders the algorithms in the same arbitrary order used for
breaking ties in the hill-climbing phase and sets their time
limit to the lowest value that would still lead to the same
portfolio score.



Training Benchmark Set
Our set of training instances consists of almost all tasks
from the satisficing tracks of IPC 1998–2014 plus tasks from
various other sources: compilations of conformant planning
tasks (Palacios and Geffner 2009), finite-state controller
synthesis problems (Bonet, Palacios, and Geffner 2009),
genome edit distance problems (Haslum 2011), alarm pro-
cessing tasks for power networks (Haslum and Grastien
2011), and Briefcaseworld tasks from the FF/IPP domain
collection.1 In total, we use 2115 training instances.

Planning Algorithms
We collect our input planning algorithms from several
sources. First, we use the component algorithms of the fol-
lowing portfolios that participated in the sequential satisfic-
ing track of IPC 2014:

• Fast Downward Cedalion (Seipp, Sievers, and Hutter
2014; Seipp et al. 2015): 18 algorithms2

• Fast Downward Stone Soup 2014 (Röger, Pommerening,
and Seipp 2014): 27 algorithms3

• Fast Downward Uniform (Seipp, Braun, and Garimort
2014): 21 algorithms

Second, for each of the 66 algorithms A above, we add
another version A′ which only differs from A in that A′ uses
an additional type-based open list (Xie et al. 2014) with the
type (g), i.e., the distance to the initial state. Both A and A′

alternate between their open lists (Röger and Helmert 2010).
Third, we add 12 different variants of the configuration

used in the first iteration of LAMA 2011 (Richter, Westphal,
and Helmert 2011). We vary the following parameters:

• preferred successors first ∈ {true, false}:
Consider states reached via preferred operators first?

• randomize successors ∈ {true, false}:
Randomize the order in which successors are generated?4

• additional type-based open list ∈ {none, (g), (hFF, g)}:
Alternate between only the original open lists used by
the first iteration of LAMA 2011 or include an additional
type-based open list (Xie et al. 2014) with the type (g) or
(hFF, g)?

In total, this leaves us with (18+ 27+21) · 2+12 = 144
planner configurations as input of the hill-climbing proce-
dure. For the timeout parameter we use 1800 seconds, the
time limit used for IPC 2018. We tried different values for
the granularity parameter and achieved the best results (com-
puted for the training set) with a granularity of 30 seconds.

1http://fai.cs.uni-saarland.de/hoffmann/
ff-domains.html

2The only change we make to the algorithms is disabling the
YAHSP lookahead (Vidal 2004).

3We ignore the anytime algorithm which is run after a solution
has been found.

4When randomizing successors and considering preferred suc-
cessors first, randomization happens before preferred successors
are moved to the front.

Resulting Portfolio
The resulting portfolio uses 41 of the 144 possible al-
gorithms, running them between 8 and 135 seconds. On
the training set, the portfolio achieves an overall score of
1999.93, which is much better than the best component al-
gorithm with a score of 1650.40. If we had an oracle to select
the best algorithm (getting allotted the full 1800 seconds) for
each instance, we could reach a total score of 2073.

Executing The Sequential Portfolio
In the previous sections, we assumed that a portfolio simply
assigns a runtime to each algorithm, leaving their sequential
order unspecified. With the simplifying assumption that all
planner runs use the full assigned time and do not commu-
nicate information, the order is indeed irrelevant. In reality
the situation is more complex.

First, the Fast Downward planner uses a preprocessing
phase that we need to run once before we start the port-
folio, so we do not have the full 1800 seconds available.5
Therefore, we treat per-algorithm time limits defined by the
portfolio as relative, rather than absolute values: whenever
we start an algorithm, we compute the total allotted time of
this and all following algorithms and scale it to the actually
remaining computation time. We then assign the respective
scaled time to the run. As a result, the last algorithm is al-
lowed to use all of the remaining time.

Second, in the satisficing setting we would like to use the
cost of a plan found by one algorithm to prune the search
of subsequent planner runs (in the bounded-cost setting we
stop after finding the first plan that is at most as expensive as
the given bound). We therefore use the best solution found
so far for pruning based on g values: only paths in the state
space that are cheaper than the best solution found so far are
pursued.

Third, planner runs often terminate early, e.g., because
they run out of memory or find a plan. Since we would like
to use the remaining time to continue the search for a plan or
improve the solution quality, we sort the algorithms by their
coverage scores in decreasing order, hence beginning with
algorithms likely to succeed quickly.

Acknowledgments
For a portfolio planner, not those who combined the com-
ponents deserve the main credit but those who contributed
them. We therefore wish to thank all Fast Downward con-
tributors and the people who came up with the algorithms we
use in our portfolio. We are also grateful to Álvaro Torralba
and Vidal Alcázar for allowing us to use their h2 mutexes
code.

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the
importance of computing and exploiting invariants in plan-

5The preprocessing phase consists of converting the input
PDDL task (Fox and Long 2003) into a SAS+ task (Bäckström and
Nebel 1995) with the Fast Downward translator component and
pruning irrelevant operators via computing h2 mutexes (Alcázar
and Torralba 2015)



ning. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilber-
stein, S., eds., Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling (ICAPS
2015), 2–6. AAAI Press.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Auto-
matic derivation of memoryless policies and finite-state con-
trollers using classical planners. In Gerevini, A.; Howe, A.;
Cesta, A.; and Refanidis, I., eds., Proceedings of the Nine-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2009), 34–41. AAAI Press.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Haslum, P., and Grastien, A. 2011. Diagnosis as planning:
Two case studies. In ICAPS 2011 Scheduling and Planning
Applications woRKshop, 37–44.
Haslum, P. 2011. Computing genome edit distances using
domain-independent planning. In ICAPS 2011 Scheduling
and Planning Applications woRKshop, 45–51.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A baseline for building planner portfolios.
In ICAPS 2011 Workshop on Planning and Learning, 28–35.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173:503–
535.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
Journal of Artificial Intelligence Research 35:623–675.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011 (planner abstract). In IPC 2011 planner ab-
stracts, 50–54.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
Brafman, R.; Geffner, H.; Hoffmann, J.; and Kautz, H., eds.,
Proceedings of the Twentieth International Conference on
Automated Planning and Scheduling (ICAPS 2010), 246–
249. AAAI Press.
Röger, G.; Pommerening, F.; and Seipp, J. 2014. Fast Down-
ward Stone Soup 2014. In Eighth International Planning
Competition (IPC-8): planner abstracts, 28–31.
Seipp, J.; Sievers, S.; Helmert, M.; and Hutter, F. 2015. Au-
tomatic configuration of sequential planning portfolios. In
Proceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence (AAAI 2015), 3364–3370. AAAI Press.
Seipp, J.; Braun, M.; and Garimort, J. 2014. Fast Down-
ward uniform portfolio. In Eighth International Planning
Competition (IPC-8): planner abstracts, 32.
Seipp, J.; Sievers, S.; and Hutter, F. 2014. Fast Down-
ward Cedalion. In Eighth International Planning Compe-
tition (IPC-8): planner abstracts, 17–27.

Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Zilberstein, S.; Koehler, J.; and Koenig, S., eds.,
Proceedings of the Fourteenth International Conference on
Automated Planning and Scheduling (ICAPS 2004), 150–
159. AAAI Press.
Xie, F.; Müller, M.; Holte, R. C.; and Imai, T. 2014. Type-
based exploration with multiple search queues for satisficing
planning. In Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence (AAAI 2014), 2395–2401.
AAAI Press.


