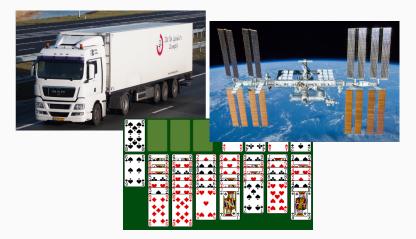
Counterexample-guided Cartesian Abstraction Refinement and Saturated Cost Partitioning for Optimal Classical Planning

Jendrik Seipp February 28, 2018

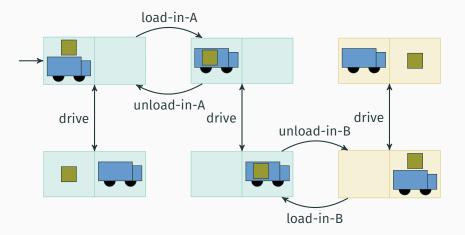
University of Basel

Planning

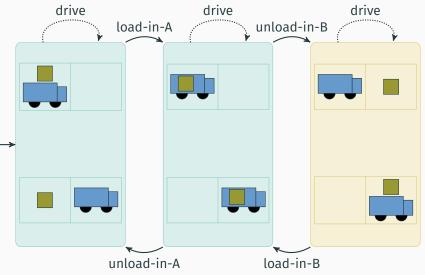


Find a sequence of actions that achieves a goal.

Optimal Classical Planning



Optimal Classical Planning: Example Abstraction



- abstraction heuristics never overestimate \rightarrow admissible
- A* + admissible heuristic \rightarrow optimal plan
- higher accuracy \rightarrow better guidance

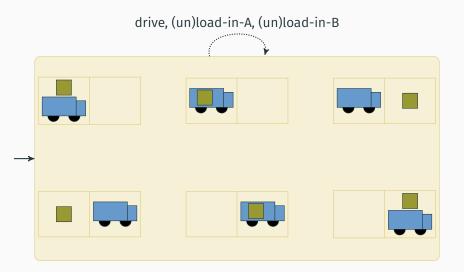
- abstraction heuristics never overestimate \rightarrow admissible
- A* + admissible heuristic \rightarrow optimal plan
- higher accuracy \rightarrow better guidance
- how to create abstractions?

Counterexample-guided Cartesian Abstraction Refinement

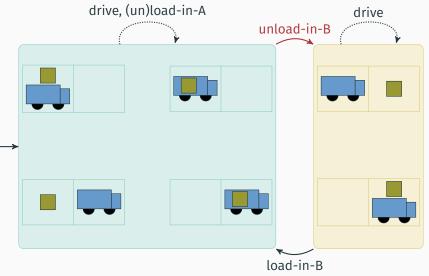
CEGAR Algorithm

- start with coarse abstraction
- until finding concrete solution or running out of time:
 - find abstract solution
 - check if and why it fails in the real world
 - refine abstraction

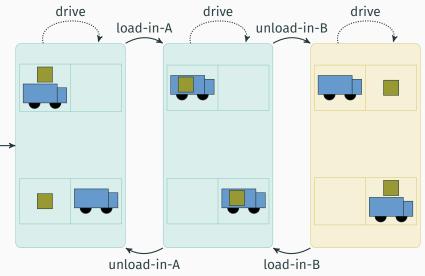
Example Refinement



Example Refinement



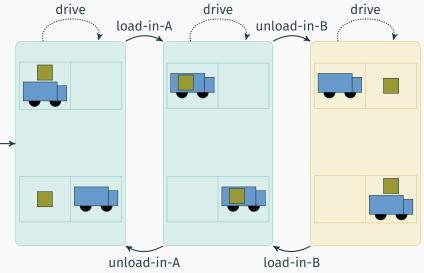
Example Refinement



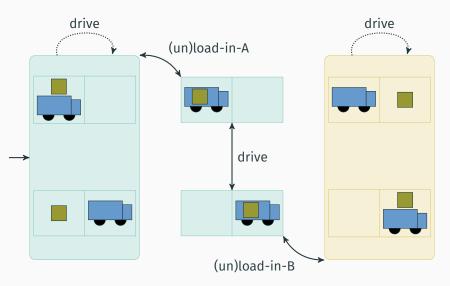
Cartesian Abstractions

relation to other classes of abstractions?

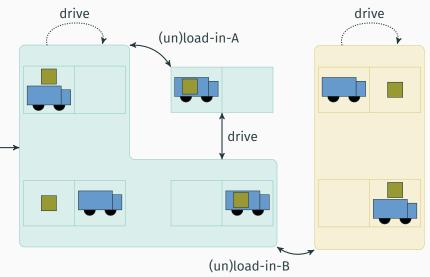
Projection (PDB)



Cartesian Abstraction



Merge-and-shrink Abstraction

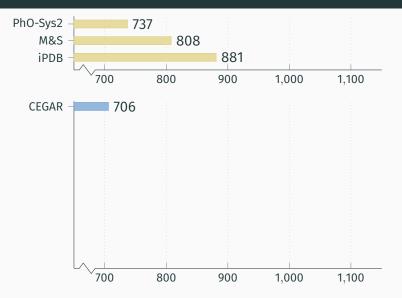


Projections (PDBs)

refinement at least doubles number of states

- Cartesian Abstractions allow efficient and fine-grained refinement
- Merge-and-shrink Abstractions refinement complicated and expensive

Solved Tasks



Diminishing Returns

- finding solutions takes longer
- heuristic values only increase logarithmically

Diminishing Returns

- finding solutions takes longer
- heuristic values only increase logarithmically
- \rightarrow multiple smaller abstractions

• build abstraction for each goal fact

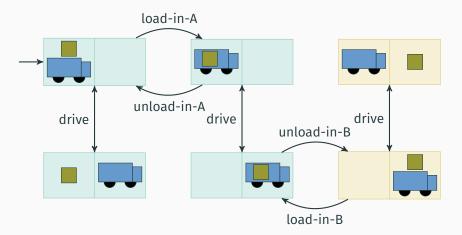
- build abstraction for each goal fact
- problem: tasks with single goal fact

Task Decomposition by Landmarks

build abstraction for each fact landmark

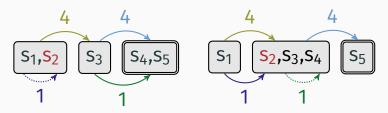
Task Decomposition by Landmarks

build abstraction for each fact landmark

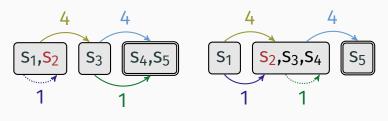


how to combine multiple heuristics?

how to combine multiple heuristics?



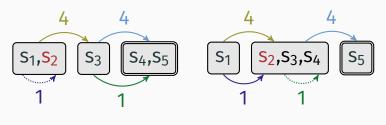
how to combine multiple heuristics?



 $h_1(s_2) = 5$

 $h_2(s_2) = 4$

how to combine multiple heuristics?



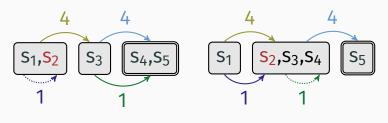
 $h_1(s_2) = 5$

 $h_2(s_2) = 4$

maximize over estimates:

•
$$h(s_2) = 5$$

how to combine multiple heuristics?



 $h_1(s_2) = 5$

 $h_2(s_2) = 4$

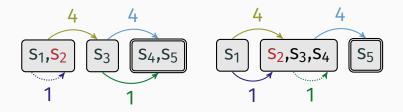
maximize over estimates:

- $h(s_2) = 5$
- only selects best heuristic
- does not combine heuristics

Multiple Heuristics: Cost Partitioning

Cost Partitioning

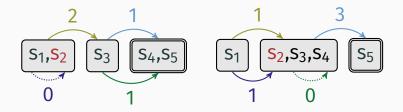
- split operator costs among heuristics
- sum of costs must not exceed original cost



Multiple Heuristics: Cost Partitioning

Cost Partitioning

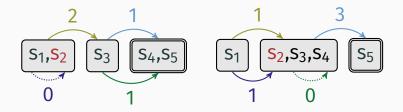
- split operator costs among heuristics
- sum of costs must not exceed original cost



Multiple Heuristics: Cost Partitioning

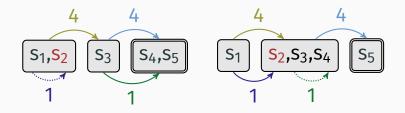
Cost Partitioning

- split operator costs among heuristics
- sum of costs must not exceed original cost

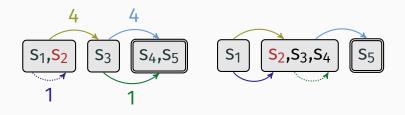


 $h(s_2) = 3 + 3 = 6$

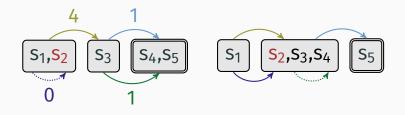
- order heuristics, then for each heuristic h:
 - use minimum costs preserving all estimates of h
 - · use remaining costs for subsequent heuristics



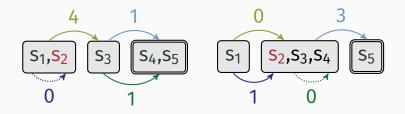
- order heuristics, then for each heuristic h:
 - use minimum costs preserving all estimates of h
 - · use remaining costs for subsequent heuristics



- order heuristics, then for each heuristic h:
 - use minimum costs preserving all estimates of h
 - · use remaining costs for subsequent heuristics



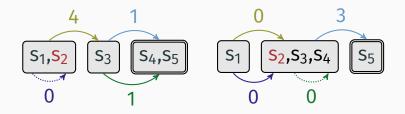
- order heuristics, then for each heuristic h:
 - use minimum costs preserving all estimates of h
 - · use remaining costs for subsequent heuristics



Saturated Cost Partitioning

Saturated Cost Partitioning Algorithm

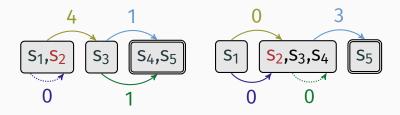
- order heuristics, then for each heuristic h:
 - use minimum costs preserving all estimates of h
 - · use remaining costs for subsequent heuristics



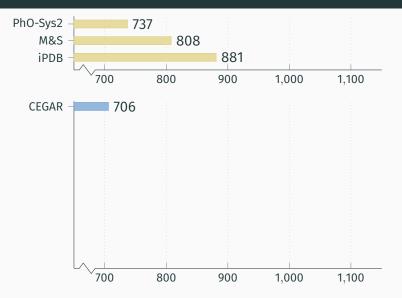
Saturated Cost Partitioning

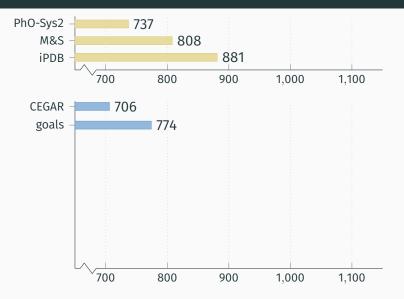
Saturated Cost Partitioning Algorithm

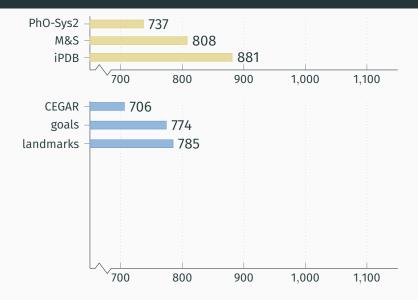
- order heuristics, then for each heuristic h:
 - use minimum costs preserving all estimates of h
 - · use remaining costs for subsequent heuristics

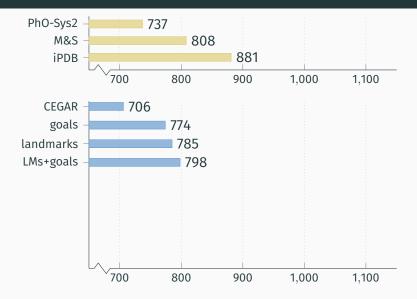


 $h(s_2) = 5 + 3 = 8$

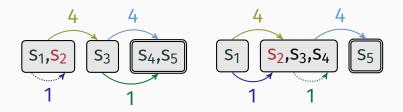




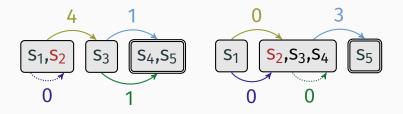




Order of Heuristics Is Important

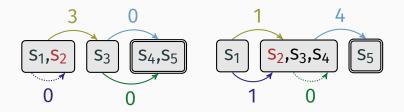


Order of Heuristics Is Important



 $h^{\text{SCP}}_{\rightarrow}(s_2) = 5 + 3 = 8$

Order of Heuristics Is Important



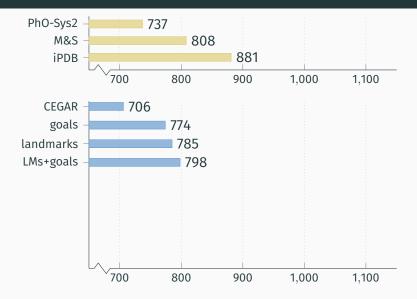
$$\begin{split} h^{SCP}_{\rightarrow}(s_2) &= 5+3 = 8 \\ h^{SCP}_{\leftarrow}(s_2) &= 3+4 = 7 \end{split}$$

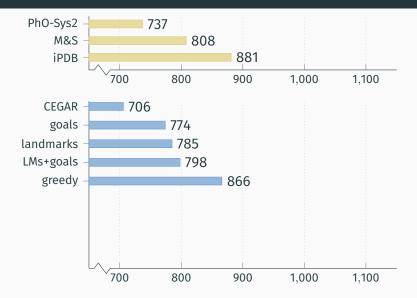
- n heuristics \rightarrow n! orders

- n heuristics \rightarrow n! orders
- $\rightarrow\,$ search for good order: greedy initial order + optimization

Goal: high estimates and low costs

Goal: high estimates and low costs \rightarrow order by heuristic/costs ratio

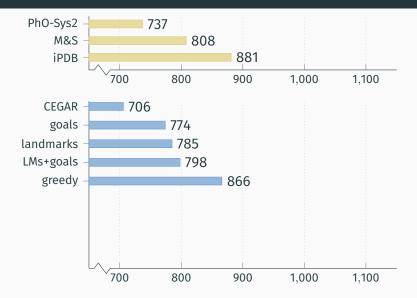


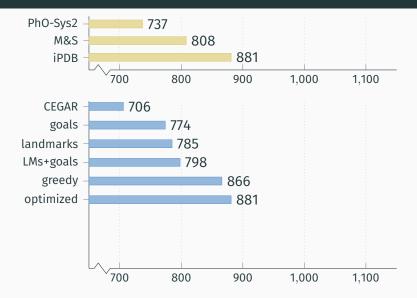


Optimization: finding initial order usually only first step

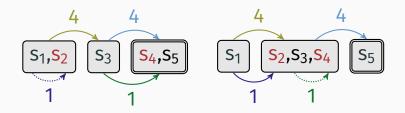
Hill-climbing Search

- start with initial order
- until no better successor found:
 - switch positions of two heuristics
 - commit to first improving successor





One Order Is Not Enough

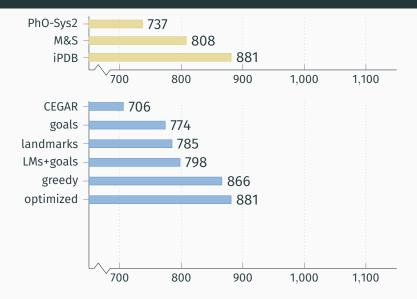


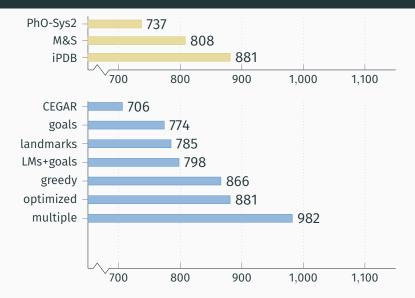
$$\begin{split} h^{\text{SCP}}_{\rightarrow}(\textbf{s}_2) &= 8 \\ h^{\text{SCP}}_{\leftarrow}(\textbf{s}_2) &= 7 \end{split}$$

$$\begin{split} h^{\text{SCP}}_{\rightarrow}(\textbf{s}_4) &= 3 \\ h^{\text{SCP}}_{\leftarrow}(\textbf{s}_4) &= 4 \end{split}$$

Approach:

- compute saturated cost partitioning for multiple orders
- maximize over heuristic estimates



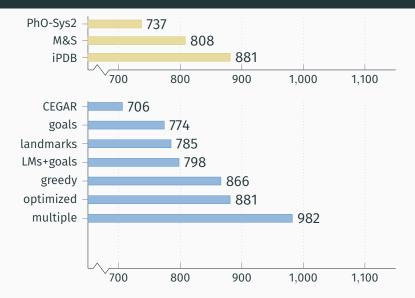


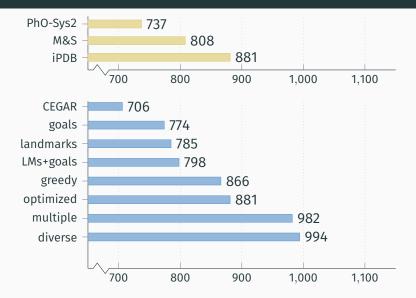
Problems:

- many useless orders
- slow evaluation

Diversification Algorithm

- sample 1000 states
- start with empty set of orders
- until time limit is reached:
 - generate an optimized order
 - if a sample profits from it, keep it
 - otherwise, discard it





Comparison of Cost Partitioning Algorithms

UCP

Uniform Cost Partitioning distribute costs evenly among relevant heuristics

UCP

Greedy Zero-one Cost Partitioning order heuristics and give full cost to first relevant heuristic

PhO

UCP

Post-hoc Optimization

compute weight for each heuristic and return weighted sum

GZOCP

PhO

CAN

UCP

Canonical Heuristic maximum over sums of independent heuristic subsets

GZOCP

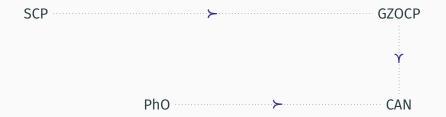
Pommerening et al. 2013

UCP

SCP

UCP

UCP

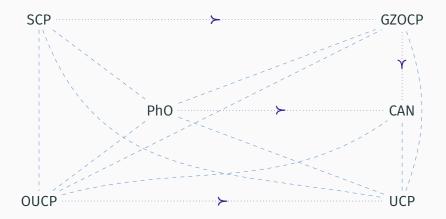


OUCP

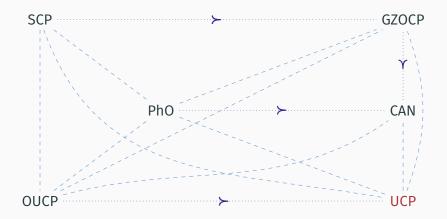
UCP

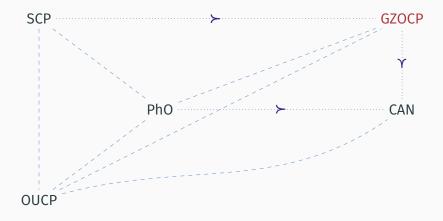
Theoretical Comparison

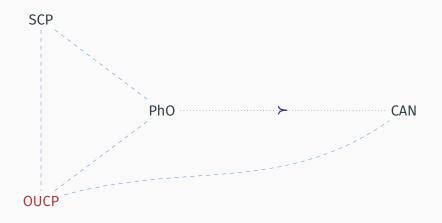
Theoretical Comparison



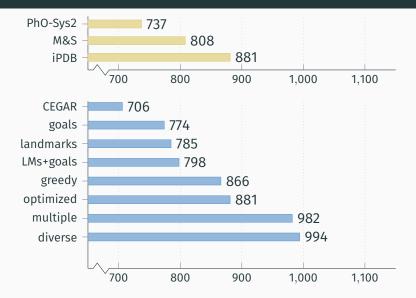
• Heuristics: Cartesian abstraction heuristics + PDBs



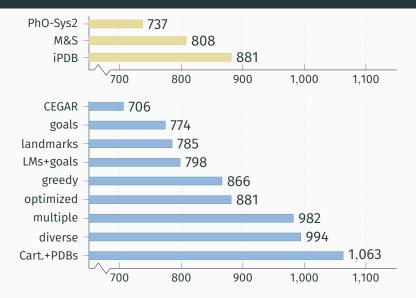




Solved Tasks



Solved Tasks



Counterexample-guided Cartesian Abstraction Refinement

- refines abstraction only where needed
- decompositions yield complementary heuristics

Conclusion

Counterexample-guided Cartesian Abstraction Refinement

- refines abstraction only where needed
- decompositions yield complementary heuristics

Saturated Cost Partitioning

- assigns each heuristic only the costs it needs
- · best results for diverse optimized orders

Conclusion

Counterexample-guided Cartesian Abstraction Refinement

- refines abstraction only where needed
- decompositions yield complementary heuristics

Saturated Cost Partitioning

- assigns each heuristic only the costs it needs
- best results for diverse optimized orders

Comparison of Cost Partitioning Algorithms

- dominances and non-dominances
- saturated cost partitioning preferable in all settings