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Abstract
Counterexample-guided abstraction refinement (CEGAR) is amethodological frame-
work for incrementally computing abstractions of transition systems.

We propose a CEGAR algorithm for computing abstraction heuristics for optimal
classical planning. Starting from a coarse abstraction of the planning task, we itera-
tively compute an optimal abstract solution, check if and why it fails for the concrete
planning task and refine the abstraction so that the same failure cannot occur in future
iterations.

A key ingredient of our approach is a novel class of abstractions for classical plan-
ning tasks that admits efficient and very fine-grained refinement. Our implementation
performs tens of thousands of refinement steps in a few minutes and produces heuris-
tics that are often significantly more accurate than pattern database heuristics of the
same size.

Our second contribution is the application of those heuristics for heuristic im-
provement during search. We show how refining the abstraction online when the
search errs reduces the number of expanded nodes.

Zusammenfassung
Counterexample-guided abstraction refinement (CEGAR) ist eine Methode aus dem
Bereich des Model Checking, mit der inkrementell Abstraktionen von Transitions-
systemen berechnet werden können.

In dieser Arbeit schlagen wir einen CEGAR Algorithmus für das optimale Lösen
von klassischen Handlungsplanungsproblemen vor. Mit einer groben Abstraktion des
Problems beginnend, finden wir iterativ eine optimale abstrakte Lösung, überprüfen
ob und warum sie für das konkrete Planungsproblem scheitert und verfeinern die Ab-
straktion derart, dass derselbe Fehler in nachfolgenden Iterationen nicht mehr auftritt.

Ein wichtiger Teil unseres Ansatzes ist eine neuartige Klasse von Abstraktionen
für klassische Planungsprobleme, die effiziente und sehr feinkörnige Verfeinerungen
erlaubt. Unsere Implementation macht Zehntausende Verfeinerungen in wenigen Mi-
nuten und erzeugt Heuristiken, die häufig deutlich genauer sind alsPattern-Database-
Heuristiken der gleichen Größe.

Außerdem zeigen wir, wie wir diese neuen Heuristiken auch noch während der
Suche im Zustandsraum verfeinern und so die Anzahl der expandierten Zustände ver-
ringern können.
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Chapter 1

Introduction

Classical planning is the problem of finding plans in a fully observable world with a
single initial state, completely deterministic actions and a set of goal states. It has been
shown that this problem is PSPACE-complete (Bylander 1994) and thus we cannot
hope for polynomial algorithms that solve it optimally. When researchers first started
working on classical planning, the predominant technique was to search for a plan in
the space of all possible plans. Today however, traversing the space of world states
is the prevailing method for solving planning problems. This had not been feasible
earlier because the number of possible states can grow exorbitantly large even for
small planning tasks and searching for a plan in such a system does not yield solutions
in a reasonable amount of time if the search does not have a proper guidance. Recent
research overcame this obstacle with the introduction of planning heuristics for state-
space search. The search can navigate through the state space efficiently by querying
such a heuristic for the estimated goal distance of potential next visited states and
choose one that appears to be closest to the goal.

Heuristics for classical planning can be divided into four categories: Delete relax-
ation heuristics, critical path heuristics, landmark heuristics and abstraction heuris-
tics. In this work we focus on the latter and create a new class of abstractions for
classical planning by using counterexample-guided abstraction refinement (CEGAR).

CEGAR is an established technique for model checking in large systems (Clarke,
Grumberg, and Peled 2000; Clarke et al. 2000). The idea is to start from a coarse (i. e.,
small and inaccurate) abstraction, then iteratively improve (refine) the abstraction in
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1. Introduction 7

only the necessary places. In model checking, this means that we search for error
traces (behaviors that violate the system property we want to verify) in the abstract
system, test if these error traces generalize to the actual system (called the concrete
system), and only if not, refine the abstraction in such a way that this particular error
trace is no longer an error trace of the abstraction.

1.1 Related work
Despite the similarity betweenmodel checking and planning, counterexample-guided
abstraction refinement has not been thoroughly explored by the planning community.
The work that comes closest to ours (Chatterjee et al. 2005) contains no experimen-
tal evaluation or indication that the proposed algorithm has been implemented. The
algorithm is based on blind search, and we believe it is very unlikely to deliver com-
petitive performance. Moreover, the paper has several critical technical errors which
make the main contribution (Algorithm 1) unsound.

The purpose of CEGAR approaches in model checking is usually to prove the
absence of an error trace. In this work, we use CEGAR to derive heuristics for optimal
state-space search, and hence our CEGAR procedure does not necessarily have to
completely solve the problem: abstraction refinement can be interrupted at any time to
derive an admissible search heuristic. The application of CEGAR to finding optimal
solutions is (to the best of our knowledge) novel.

Haslum (2012) introduces an algorithm for finding lower bounds on the solution
cost of a planning task by iteratively “derelaxing” its delete relaxation. Keyder, Hoff-
mann, and Haslum (2012) apply this idea to build a strong satisficing planning system
based on the FF heuristic. Our approach is similar in spirit, but technically very differ-
ent from Haslum’s because it is based on homomorphic abstraction rather than delete
relaxation. As a consequence, our method performs shortest-path computations in
abstract state spaces represented as explicit graphs in order to find abstract solutions,
while Haslum’s approach exploits structural properties of delete-free planning tasks.

A key component of our approach is a new class of abstractions for classical plan-
ning, called Cartesian abstractions, which allow efficient and very fine-grained re-
finement. Cartesian abstractions are a proper generalization of the abstractions that
underlie pattern database heuristics (Culberson and Schaeffer 1998; Edelkamp 2001)
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in the sense that every heuristic that is compactly representable as a pattern database
is compactly representable as a Cartesian abstraction, while the opposite is not true.

1.2 Outline
This work is organized as follows. After some preliminaries and a formal definition
of Cartesian abstractions we present the CEGAR algorithm for optimal planning and
illustrate it with an example. In Chapter 4 we go over some of the algorithmic de-
cisions we made and the data structures we used to implement the algorithm within
the Fast Downward planning system. We compare the obtained heuristic with other
abstraction-based planning approaches in Chapter 5. Afterwards, we evaluate the ef-
fectiveness of using the maximum estimate of multiple abstractions as a heuristic. In
the last chapter we show how our CEGAR approach can be used for improving the
heuristic online during search.



Chapter 2

Terms and definitions

Throughout this work we will use a toy planning problem as our running example
for many definitions and algorithms. The task is taken from the Gripper domain
(McDermott 2000) in which a robot has to transport balls from room A to room B.
In our example task the robot has a single gripper G and there is only one ball. The
robot can pick up and drop the ball and move between the two rooms. Initially, the
robot is in room A, so obviously the shortest solution for this problem is to let the
robot pick up the ball, move to room B and drop the ball there.

2.1 Planning tasks and transition systems
We use a SAS+-like (Bäckström and Nebel 1995) finite-domain representation to
formalize planning tasks and note that planning tasks specified in PDDL can be con-
verted to such a representation automatically (Helmert 2009).

Definition 2.1. Planning tasks.
A planning task is a 4-tuple Π = 〈V ,O, s0, s?〉 where:

• V is a finite set of state variables, each with an associated finite domain D(v).

An atom is a pair 〈v, d〉 with v ∈ V and d ∈ D(v).

A partial state is a function s defined on some subset of V . We denote this
subset by Vs. For all v ∈ Vs, we must have s(v) ∈ D(v). Where notationally
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2. Terms and definitions 10

convenient, we treat partial states as sets of atoms. Partial states defined on all
variables are called states, and S(Π) is the set of all states of Π.

The update of partial state swith partial state t, s⊕t, is the partial state defined
on Vs ∪ Vt which agrees with t on all v ∈ Vt and with s on all v ∈ Vs \ Vt.

• O is a finite set of operators. Each operator o is given by a precondition preo
and effect effo, which are partial states, and a cost costo ∈ N0. The postcondi-
tion posto of an operator is defined as preo ⊕ effo.

• We call s0 the initial state and the partial state s? the goal.

In this notation our example can be written as the SAS+ task Π = 〈V ,O, s0, s?〉
with V = {rob, ball}, D(rob) = {A,B}, D(ball) = {A,B,G}, O = {move-A-B,
move-B-A, pick-in-A, pick-in-B, drop-in-A, drop-in-B}, s0(rob) = A, s0(ball) =

A and s?(ball) = B. We demonstrate the definition of SAS+ operators using the
example of operator o = pick-in-A. For o we have preo(rob) = A, preo(ball) = A,
effo(ball) = G and thus posto(rob) = A and posto(ball) = G.

The notion of transition systems is central for assigning semantics to planning
tasks:

Definition 2.2. Transition systems and plans.
A transition system T = 〈S, L, T, s0, S?〉 consists of a finite set of states S, a finite
set of transition labels L, a set of labelled transitions T ⊆ S×L×S, an initial state
s0 and a set of goal states S? ⊆ S. Each label l ∈ L has an associated cost costl.

A path from s0 to any s? ∈ S? following the labelled transitions T is a plan for
T . A plan is optimal if the sum of costs of the labels along the path is minimal.

A planning task Π = 〈V ,O, s0, s?〉 induces a transition system with states S(Π),
labels O, initial state s0, goal states {s ∈ S(Π) | s? ⊆ s} and transitions {〈s, o, s ⊕
effo〉 | s ∈ S(Π), o ∈ O, preo ⊆ s}. Optimal planning is the problem of finding an
optimal plan in the transition system induced by a planning task or proving that no
plan exists.

The transition system induced by the Gripper example is shown in Figure 2.1. It
uses a pair notation for states in which the pair 〈d1, d2〉 stands for the state s with
s(rob) = d1 and s(ball) = d2.
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〈A,G〉 〈B,G〉 〈B,B〉

〈B,A〉〈A,A〉 〈A,B〉

move-A-B

drop-in-A

move-B-A

pick-in-A

drop-in-B

pick-in-B

move-A-B

move-B-A

move-B-Amove-A-B

Figure 2.1: Transition system for the exampleGripper taskwith a single ball, a gripper
G and two rooms A and B. The pair 〈d1, d2〉 stands for the state s with s(rob) = d1
and s(ball) = d2.

For notational convenience we introduce a more general form of this representa-
tion: we assume that the n state variables are (arbitrarily) numbered v1, . . . , vn and
write 〈d1, . . . , dn〉 to denote the state s with s(vi) = di for all 1 ≤ i ≤ n.

2.2 Cartesian abstractions
Abstracting a planning task means losing some distinctions between states to obtain
a more “coarse-grained”, and hence smaller, transition system. For our purposes it is
convenient to use a definition based on equivalence relations:

Definition 2.3. Abstractions.
Let Π be a planning task inducing the transition system 〈S, L, T, s0, S?〉.

An abstraction relation ∼ for Π is an equivalence relation on S. Its equivalence
classes are called abstract states. We write [s]∼ for the equivalence class to which s
belongs. The function mapping s to [s]∼ is called the abstraction function. We omit
the subscript ∼ where clear from context.

The abstract transition system induced by∼ is the transition system T with states
{[s] | s ∈ S}, labels L, transitions {〈[s], l, [s′]〉 | 〈s, l, s′〉 ∈ T}, initial state [s0] and
goal states {[s?] | s? ∈ S?}.

Abstraction preserves paths in the transition system and can therefore be used to
define admissible and consistent heuristics for planning. Specifically, h∼(s) is de-
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{A} × {A,G} {B} × {A,G} {A,B} × {B}

pick/drop-in-A

move pick/drop-in-B

move

Figure 2.2: Example abstraction of the Gripper example. In the left and center state
we know where the robot is, but not whether its gripper holds the ball, whereas in the
abstract goal state we ignore the position of the robot.

fined as the cost of an optimal plan starting from [s] in the abstract transition system.
Practically useful abstractions should be efficiently computable and give rise to infor-
mative heuristics. These are conflicting objectives.

We want to construct compact and informative abstractions through an iterative
refinement process. Choosing a suitable class of abstractions is critical for this. For
example, pattern databases (Edelkamp 2001) do not allow fine-grained refinement
steps, as every refinement at least doubles the number of abstract states. Merge-and-
shrink abstractions (Helmert, Haslum, and Hoffmann 2007) do not maintain effi-
ciently usable representations of the preimage of an abstract state, which makes their
refinement complicated and expensive.

Because of these and other shortcomings, we introduce a new class of abstractions
for planning tasks that is particularly suitable for abstraction refinement.

Definition 2.4. Cartesian sets and Cartesian abstractions.
A set of states is called Cartesian if it is of the form A1 × A2 × ... × An, where
Ai ⊆ D(vi) for all 1 ≤ i ≤ n.

An abstraction is called Cartesian if all its abstract states are Cartesian sets.

Definition 2.5. Abstract domains.
We define D[s](v) ⊆ D(v) as the set of values a variable v ∈ V can have in the
abstract state [s].

Figure 2.2 shows an example Cartesian abstraction for the gripper problem. The
Cartesian sets {A}× {A,G}, {B}× {A,G} and {A,B}× {B} are the states in the
abstract transition system. The heuristic h∼ assigns them the distance to the abstract
goal: 2, 1 and 0.
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The name “Cartesian abstraction” was coined in the model-checking literature
by Ball, Podelski, and Rajamani (2001) for a concept essentially equivalent to Def-
inition 2.4. (Direct comparisons are difficult due to different state models.) Al-
though Cartesian abstractions are a special case of merge-and-shrink abstractions,
they still form a fairly general class since they include the concept of domain abstrac-
tion (Hernádvölgyi and Holte 2000) as a special case. Similarly to Cartesian abstrac-
tions, domain abstractions partition each variable’s domain into sets of values that
are considered equal. While in this abstraction class the same domain partitioning is
made for all abstract states, the more general Cartesian abstractions allow segmenting
the domains for each state individually.

In turn, domain abstractions are more general than pattern databases, because
every domain abstraction that either distinguishes between all or none of the values a
variable can have for all variables in the task is a pattern database.

Unlike the two classes they subsume, general Cartesian abstractions can have very
different levels of granularity in different parts of the abstract state space. One ab-
stract state might correspond to a single concrete state, while another abstract state
corresponds to half of the states of the task.

We illustrate the relationships between the different classes of abstractions with
example abstractions of our Gripper task. Figure 2.3a shows the abstract transition
system induced by the pattern database {rob}. Clearly, this abstraction is also a do-
main, Cartesian and merge-and-shrink abstraction. When we additionally partition
the domain for variable ball into the groups {A} and {B,G}, the abstraction is not
a pattern database anymore (Figure 2.3b). The most specific formalism it adheres
to now is domain abstraction. A further split of state {B} × {B,G} into the two
states {B} × {B} and {B} × {G} yields the Cartesian abstraction in Figure 2.3c.
Since not all domains are split equally for all states, it is not a domain abstraction
anymore. Combining the states {A} × {B,G} and {B} × {A} results in the system
in Figure 2.3d. This abstraction is not Cartesian anymore, but can be expressed in the
merge-and-shrink formalism.
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{A} × {A,B,G} {B} × {A,B,G}

move

(a) Pattern database.

{A} × {A} {A} × {B,G} {B} × {B,G}

{B} × {A}

pick/drop-in-Amove move

(b) Domain abstraction.

{A} × {A} {A} × {B,G} {B} × {G}

{B} × {A} {B} × {B}

pick/drop-in-Amove move

move
pick/drop-in-B

(c) Cartesian abstraction.

{〈A,A〉} {〈A,B〉, 〈A,G〉, 〈B,A〉} {〈B,G〉}

{〈B,B〉}

pick/drop-in-A

move move

move

pick/drop-in-B

(d) Merge-and-shrink abstraction.

Figure 2.3: Example abstractions of the Gripper task for different classes of abstrac-
tions. The captions report the most specific class each abstraction belongs to. Self-
loops are omitted to avoid clutter.
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Theorem 2.6. Properties of Cartesian sets.
The following properties make Cartesian sets interesting for CEGAR in planning:

• (P1) The set of goal states of a planning task is Cartesian.

• (P2) The set of states where operator o is applicable is Cartesian.

• (P3) The intersection of Cartesian sets is Cartesian.

• (P4) The regression of operator o over a Cartesian set is a Cartesian set.

Proof: Let n = |V|.

• (P1) The set of goal states can be written as
A1 × A2 × ...× An with Ai = {s?(vi)} if s?(vi) defined, else Ai = D(vi).

• (P2) The set of states where operator o is applicable can be written as
ϕ = A1 × A2 × ... × An with Ai = {preo(vi)} if preo(vi) defined, else Ai =

D(vi).

• (P3) Given two Cartesian sets X and Y with X = A1 × A2 × ... × An and
Y = B1×B2× ...×Bn the intersectionX ∩Y can be written as (A1 ∩B1)×
(A2∩B2)×...×(An∩Bn). Since each individual intersection (Ai∩Bi) ⊆ D(vi)

for all 1 ≤ i ≤ n, we have that X ∩ Y is Cartesian.

• (P4) The procedure for regressing an abstract state over an operator is presented
in Algorithm 3.3 on page 18. It shows that the regression is Cartesian.

Moreover, the respective computational problems (intersecting twoCartesian sets,
computing the regression, etc.) can all be performed in O(n) time, where n is the
number of atoms of the planning task. We will show a suitable representation for
Cartesian sets guaranteeing this assessment in Chapter 4. The following theorem
states two additional runtime guarantees.
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Theorem 2.7. Runtimes of operations on Cartesian sets.
If n is the number of atoms in the planning task, the following functions are com-
putable in O(n) for Cartesian abstractions ∼:

• (R1) Given s ∈ S, compute [s]∼ and h∼(s) (after abstract goal distances have
been precomputed).

• (R2) Given Cartesian sets A and B and operator o, decide if 〈A, o,B〉 is an
abstract transition.

Proof:

• (R1) We present the function that computes the abstract state corresponding
to a given concrete state in Algorithm 4.1 on page 25. Since we traverse the
refinement hierarchy from the root node and move down one layer with each
iteration of the algorithm, the algorithm runs in time O(j · k) if j is the height
of the tree and each iteration runs in time O(k). The number of atoms in the
planning task n is an upper bound on j because in the worst case, we split
off a single atom of the same state repeatedly. In that case GetWantedAtoms
returns a singleton and thus we have thatO(k) = O(1). Since we can only split
off at most n atoms it follows from j ≤ n that the algorithm runs in O(n). (We
note that in our implementation we ensure that at each node in the refinement
hierarchy only the value of a single variable has to be taken into account for
determining the appropriate child node by adding additional “helper” nodes to
the tree if more than one atom is split off an abstract state.)

• (R2) Algorithm 3.6 on page 22 shows the general procedure for checking if a
transition exists between two states. The runtime of the third case in the loop
dominates the runtimes of the other two because it involves the intersection
of domains instead of a simple membership test. One intersection for vari-
able v runs in time O(|D(v)|). In the worst case an intersection is performed
for each variable v ∈ V thus the whole algorithm has the asymptotic runtime
O(
∑|V|

i=1 |D(vi)|) = O(n).



Chapter 3

Abstraction refinement algorithm

We now describe our abstraction refinement algorithm (Alg. 3.1). At every time,
the algorithm maintains a Cartesian abstraction T ′, which it represents as an explicit
graph. Initially, T ′ is the trivial abstraction with only one abstract state. The algo-
rithm iteratively refines the abstraction until a termination criterion is satisfied (usu-
ally a time or memory limit). At this point, T ′ can be used to derive an admissible
heuristic for state-space search algorithms.

Each iteration of the refinement loop first computes an optimal solution for the
current abstraction, which is returned as a trace τ ′ (i. e., as an interleaved sequence
of abstract states and operators 〈[s′0], o1, . . . , [s′n−1], on, [sn]〉 that form a minimal-cost
goal path in the transition system). If no such trace exists (τ ′ is undefined), the abstract
task is unsolvable, and hence the concrete task is also unsolvable: we are done.

Algorithm 3.1 Refinement loop.
T ′← TrivialAbstraction()
while not Terminate() do
τ ′← FindOptimalTrace(T ′)
if τ ′ is undefined then

return task is unsolvable
(s, ϕ)← FindFlaw(τ ′)
if ϕ is undefined (there is no flaw in τ ′) then

return plan extracted from τ ′

T ′← Refine(T ′, s, ϕ)
return T ′

17
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Algorithm 3.2 Return the first “flawed” concrete state in the concrete trace of the
abstract solution τ ′ and the flaw that occurred in it. In the case of diverging abstract
and concrete paths we consider the last state on the common path flawed.
function FindFlaw(τ ′)
〈[s′0], o1, . . . , [s′n−1], on, [sn]〉 ← τ ′

for all i ∈ {0, . . . , n} do
if [si] 6= [s′i] then
ϕ← Regress([s′i], oi)
return (si−1, ϕ)

else if i = n then
if sn is a goal state then

return (undefined, undefined)
else
ϕ← A1 × A2 × ...× A|V| with Ai =

{
{s?(vi)} if s?(vi) defined
D(vi) else

return (sn, ϕ)
else if oi+1 is not applicable in si then

ϕ←A1×A2×...×A|V|withAi =

{
{preoi+1

(vi)} if preoi+1
(vi) defined

D(vi) else
return (si, ϕ)

else
si+1← Apply(si, oi+1)

Algorithm 3.3 Regress the abstract state [s′] ∈ S ′ over operator o ∈ O.
function Regress([s′] ∈ S ′, o ∈ O)

[r′]← new abstract state
for all v ∈ V do

if posto(v) undefined then
D[r′](v)←D[s′](v)

else if posto(v) /∈ D[s′](v) then
return ∅

else if preo(v) defined then
D[r′](v)← {preo(v)}

else if effo(v) defined then
D[r′](v)←D(v)

return [r′]
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Otherwise, we attempt to convert τ ′ into a concrete trace in the FindFlaw pro-
cedure shown in Algorithm 3.2. This procedure starts from the initial state of the
concrete task and iteratively applies the next operator in τ ′ to construct a sequence of
concrete states s0, . . . , sn until one of the following flaws is encountered:

1. Concrete state si does not fit the abstract state [s′i] in τ ′, i. e., [si] 6= [s′i]: the
concrete and abstract traces diverge. This can happen because abstract transi-
tion systems are not necessarily deterministic: the same state can have multiple
outgoing arcs with the same label.

2. The concrete trace has been completed, but sn is not a goal state.

3. Operator oi+1 is not applicable in concrete state si.

The check for diverging traces is made first in order to ensure that the other two
checks always operate on the correct concrete states.

If none of these conditions occurs, we have found an optimal solution for the
concrete task and can terminate. Otherwise, FindFlaw returns the first “flawed”
state s ∈ S and the flaw ϕ that occurred in it. In the case of diverging abstract
and concrete paths we consider the last concrete state on the common path flawed.
Properties P1, P2 and P4 fromTheorem 2.6 entail thatϕ is a Cartesian set. It indicates
the hypothetical state we would have wanted to land in.

Afterwards, we proceed by refining the abstraction so that ϕ cannot arise in future
iterations by splitting [s] into two abstract states [t′] and [u′] in a way suited for ϕ.
The corresponding Refine function is shown in Algorithm 3.4. It calls the method
GetPossibleSplits (Alg. 3.5) to determine possible splits of state [s] for flaw ϕ. A
split on variable v is feasible if its value in s is not in the set of “wanted” valuesDϕ(v).
In that case we have to separate s(v) ∈ unwanted fromwanted by splitting the abstract
domain D[s](v) appropriately. We are free to choose the partition of the remaining
values unwanted \ {s(v)} and put them into the same partition as s(v). This likely
results in a greater increase of the average h value because the state containing the
wanted values is probably closer to the goal.

Since sometimes there may be multiple variables with feasible splits we call the
function ChooseVariable to make a decision. For now we assume that the choice
is made randomly but compare different selection methods in Chapter 4.
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Algorithm 3.4 Refine the abstraction by splitting the abstract state [s] into two new
states.
function Refine(T ′, s ∈ S, ϕ)
〈S ′, L′, T ′, [s0], S ′?〉 ← T ′
candidates← GetPossibleSplits(s, ϕ)
〈v,wanted, unwanted〉 ← ChooseVariable(candidates)
[t′], [u′]← new abstract states
S ′← S ′ ∪ {[t′], [u′]}
D[t′](v)← unwanted
D[u′](v)← wanted
for all vi ∈ V , vi 6= v do
D[t′](vi)←D[s](vi)
D[u′](vi)←D[s](vi)

for all ([r′], o, [s]) ∈ T ′, [r′] 6= [s] do
CheckAndAddArc([r′], o, [t′])
CheckAndAddArc([r′], o, [u′])
RemoveArc([r′], o, [s])

for all ([s], o, [w′]) ∈ T ′, [w′] 6= [s] do
CheckAndAddArc([t′], o, [w′])
CheckAndAddArc([u′], o, [w′])
RemoveArc([s], o, [w′])

for all ([s], o, [s]) ∈ T ′ do
CheckAndAddArc([t′], o, [u′])
CheckAndAddArc([u′], o, [t′])
CheckAndAddArc([t′], o, [t′])
CheckAndAddArc([u′], o, [u′])
RemoveArc([s], o, [s])

S ′← S ′ \ {[s]}
return T ′

procedure CheckAndAddArc([a′] ∈ S ′, o ∈ O, [b′] ∈ S ′)
if CheckTransition([a′], o, [b′]) then

AddArc([a′], o, [b′])

procedure AddArc([a′] ∈ S ′, o ∈ O, [b′] ∈ S ′)
T ← T ∪ {([a′], o, [b′])}

procedure RemoveArc([a′] ∈ S ′, o ∈ O, [b′] ∈ S ′)
T ← T \ {([a′], o, [b′])}
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Algorithm 3.5 Return a list of variables together with domain partitionings that sat-
isfy the requirements of a split.

function GetPossibleSplits(s ∈ S, ϕ)
candidates← ∅
for all v ∈ V do

wanted←D[s](v) ∩ Dϕ(v)
unwanted←D[s](v) \ Dϕ(v)
if s(v) ∈ unwanted then
candidates← candidates ∪ {〈v,wanted, unwanted〉}

return candidates

Regardless of the chosen variable the effect of a split can be described as follows
using the variable names in the FindFlaw function. In the case of violated precon-
ditions (3.), we split [si] into [t′] and [u′] in such a way that si ∈ [t′] and oi+1 is
inapplicable in all states in [t′]. In the case of violated goals (2.), we split [sn] into
[t′] and [u′] in such a way that sn ∈ [t′] and [t′] contains no goal states. Finally, in
the case of diverging traces (1.), we split [si−1] into [t′] and [u′] in such a way that
si−1 ∈ [t′] and applying oi to any state in [t′] cannot lead to a state in [s′i]. Performing
this split involves computing the regression of [s′i] over the operator oi as shown in
Algorithm 3.3. The Regress function calculates for an abstract state [s′] ∈ S ′ and an
operator o ∈ O the Cartesian set of states in which applying o leads into [s′]. If the
application of o can never take us into state [s′] the empty set is returned. Since we
only call this algorithm for states [s′] that have been reached with o this case never
occurs during the refinement.

Once a suitable split 〈v,wanted, unwanted〉 has been chosen, Refine updates the
abstract transition system by replacing the state [s] that was split with the two new
abstract states [t′] and [u′]. They inherit the abstract domains for all variables except
v from [s] and we assign D[u′](v) the set of “wanted” atoms and D[t′](v) the set of
remaining atoms D[s](v) \ wanted = unwanted. The last job of the Refine function
is “rewiring” the new states. Here we need to decide for each incoming and outgoing
transition of [s] whether a corresponding transition needs to be connected to [t′], to
[u′], or both. This check is done by Algorithm 3.6 which runs in time O(n) where n
is the number of atoms in the planning task as stated in Theorem 2.7.
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Algorithm 3.6 Return true iff there should be an abstract transition labeled o between
states [s′] and [t′].
function CheckTransition([s′] ∈ S ′, o ∈ O, [t′] ∈ S ′)
for all v ∈ V do

if preo(v) defined and preo(v) /∈ D[s′](v) then
return false

if posto(v) defined and posto(v) /∈ D[t′](v) then
return false

if posto(v) undefined and D[s′](v) ∩ D[t′](v) = ∅ then
return false

return true

3.1 Example
Figure 3.1a shows the initial abstraction for the running example. The empty abstract
solution 〈〉, which is an optimal plan for this abstraction since the abstract initial state
is also an abstract goal state, does not solveΠ because s0 does not satisfy the goal. The
GetPossibleSplits function returns the single split candidate 〈ball, {B}, {A,G}〉
and Refine uses it to splitD[s0](ball) into the two partitions {A,G} and {B} leading
to the finer abstraction in Figure 3.1b.

The plan 〈drop-in-B〉 does not solve Π because two preconditions are violated in
s0: ball = G and rob = B. We assume that Refine performs a split based on variable
rob (a split based on ball is also possible), leading to Figure 3.1c.

A further refinement step yields the system in Figure 3.1d with the abstract solu-
tion 〈move-A-B, drop-in-B〉. The first operator is applicable in s0 and takes us into
state s1 with s1(rob) = B and s1(ball) = A, but the second abstract state [s′1] =

{B}× {A} of the trace does not abstract s1: the abstract and concrete paths diverge.
Regression from [s′1] for move-A-B yields the intermediate state ϕ = {A} × {G},
and hence Refine must refine the abstract initial state [s0] in a way that separates ϕ
from the concrete state s0. The result of this refinement is shown in Figure 3.1e.

The solution for this abstraction is also a valid concrete solution, so we stop re-
fining.
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{A,B} × {A,B,G}a)

{A,B} × {A,G} {A,B} × {B}b)
pick/drop-in-B

{A} × {A,G} {B} × {A,G} {A,B} × {B}c)

move pick/drop-in-B

{A} × {A,G} {B} × {G} {A,B} × {B}

{B} × {A}

d)

move

move pick/drop-in-B

{A} × {G} {B} × {G} {A,B} × {B}

{B} × {A}{A} × {A}

e)
move

pick/drop-in-A pick/drop-in-B
move

Figure 3.1: Refining the example abstraction. Self-loops are omitted to avoid clutter.



Chapter 4

Implementation

We implemented the abstraction refinement algorithm in the Fast Downward planning
system (Helmert 2006) which consists of a variety of state-of-the-art heuristics and
search algorithms. This not only allowed us to reuse many components that are nec-
essary for a full planning algorithm, but also simplified comparing our new method
to existing ideas.

4.1 Refinement hierarchy
After the abstraction has been computed, the A∗ search function traverses the state
space and queries the heuristic for estimates for the evaluated states s ∈ S. It is
critical that the abstraction calculates the corresponding abstract state [s] and returns
the precomputed abstract goal distance very fast. To this end, we store a refinement
hierarchy of refined states instead of discarding them from memory when they are
split. This hierarchy is a binary tree of abstract states with the single state in the trivial
abstraction at its root. States that have been split have the two resulting new states
as their child nodes. The leaves of the refinement tree are the states in the current
abstraction. Figure 4.1 shows the refinement hierarchy for the final abstraction of the
Gripper example from Figure 3.1e.

Additionally to the child nodes we also save the variable and the “wanted” atoms
that each state has been split for andmake this information available with the functions
GetChildren, GetVariable and GetWantedAtoms that all take an abstract state

24
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{A,B} × {A,B,G}

{A,B} × {A,G}

{A} × {A,G}

{A} × {A} {A} × {G}

{B} × {A,G}

{B} × {A} {B} × {G}

{A,B} × {B}

Figure 4.1: Refinement hierarchy for the final abstraction of the Gripper example
from Figure 3.1e.

Algorithm 4.1 Return the equivalence class [s] (i. e., the abstract state) for the con-
crete state s by traversing the refinement hierarchy.
function GetAbstractState(s ∈ S)

[s′]← root of the refinement hierarchy
while GetChildren([s′]) is defined do

[t′], [u′]← GetChildren([s′])
v← GetVariable([s′])
if s(v) ∈ GetWantedAtoms([s′]) then

[s′]← [u′]
else

[s′]← [t′]

return [s′]

as their single argument.
The proof of Theorem 2.7 shows how the refinement hierarchy allows for a fast

computation of [s] given s with Algorithm 4.1. Since the operation of retrieving
the precomputed h value of an abstract state runs in time O(1), the total time for
computing h(s) is linear in the number of atoms in the planning task.

4.2 Code optimizations
In this chapter we highlight some of the changes we made to our implementation af-
ter we had implemented the original version as described above. To evaluate their
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effectiveness we let each revision of the code build an abstraction consisting of at
most 10 000 states within a time limit of five minutes for a number of benchmark do-
mains from previous IPC challenges. Tables 4.1 and 4.2 report the time and memory
consumption of each code version relative to the original implementation.

In these and all other tables containing relative data, we obtain the reported values
in the following way: For each task we gather the values for the attribute in question
(e. g. refinement time) from all configurations and calculate the ratio of each value to
a reference value. This can be the value yielded by the first configuration or, e. g., the
lowest value resulting from any configuration. We omit tasks for which at least one
configuration has hit a time or memory limit and thus has no value for the problem
or produced a value equal to zero. This is done in order to ensure that we compare
all configurations on the same set of tasks. The numbers in brackets behind the do-
main names state how many tasks of each domain are taken into consideration for the
comparison. For each domain we list the geometric mean of all ratios and report the
geometric mean of the domain ratios in the last row.

Reuse solutions The refinement loop (Alg. 3.1) repeatedly finds and discards
abstract solutions. An important insight is that we can save a lot of time by reusing
the last found solution if it was not violated by the refinement. This is the case when
the solution is still a valid path in the abstract system after we substitute the split state
[s] with one of its child states [u′] or [t′]. Table 4.1 shows that we save 20% of the
time when we use this shortcut compared to the original implementation.

A∗ search Our original implementation usedDijkstra’s algorithm for finding short-
est paths in the abstract transition system. The FindOptimalTrace function can be
made significantly faster, however, if we use A∗ with the heuristic of the last itera-
tion, i. e., the goal distance each node had before the refinement. This heuristic is
admissible because a refinement can only increase the distances to goal nodes. Using
this guidance during search reduces the times needed to build the abstraction by a
factor of 4 on average across all domains. Some domains benefit even more from this
change and the new runtime is only a tenth of the old one.
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airport (14) 1.00 1.33 4.35 3.60 5.00 11.68 22.13 25.68 35.46 29.14
blocks (26) 1.00 1.40 4.34 5.07 6.27 6.91 14.52 24.49 31.42 32.18
depot (5) 1.00 1.27 9.35 9.53 10.60 14.47 21.22 27.82 33.61 34.17
driverlog (14) 1.00 1.14 10.03 12.20 12.14 14.55 16.35 15.93 17.66 20.17
elevators-08 (30) 1.00 1.41 2.00 1.90 1.96 1.86 1.32 0.92 1.20 1.22
freecell (8) 1.00 1.13 7.56 8.24 10.60 13.76 13.14 23.90 30.85 32.96
grid (4) 1.00 1.41 7.82 16.47 13.29 24.81 25.22 35.95 42.21 38.47
gripper (19) 1.00 1.25 7.22 5.11 6.35 7.21 20.91 17.83 19.29 21.07
logistics-00 (25) 1.00 1.27 7.66 10.10 9.75 13.33 18.92 17.97 19.19 19.92
logistics-98 (6) 1.00 1.16 12.28 14.89 14.63 19.00 22.04 25.27 28.37 28.87
miconic (132) 1.00 1.13 5.60 6.02 6.76 7.66 8.19 6.81 8.74 11.11
mprime (13) 1.00 1.03 0.56 1.12 1.13 1.83 1.67 6.11 10.19 9.97
mystery (6) 1.00 1.04 2.05 1.92 1.76 3.10 3.23 4.37 5.73 6.60
openstacks-06 (14) 1.00 1.21 6.53 7.12 9.00 9.88 18.66 23.50 28.24 30.15
openstacks-08 (29) 1.00 1.42 1.24 1.18 1.54 1.80 1.17 1.82 2.38 2.21
parcprinter-08 (23) 1.00 1.32 7.36 11.89 13.42 17.62 20.51 18.04 20.94 24.99
pathways (9) 1.00 1.25 9.05 10.50 11.59 24.62 19.83 23.29 28.05 30.45
pegsol-08 (29) 1.00 1.38 1.51 1.78 2.03 2.22 1.94 1.34 1.82 1.80
pipesworld-nt (5) 1.00 1.07 3.49 3.95 4.08 6.98 9.83 14.86 18.78 18.69
pipesworld-t (6) 1.00 1.26 4.88 4.85 6.36 8.73 7.10 14.53 15.19 17.81
psr-small (27) 1.00 1.24 2.49 2.91 3.68 3.60 5.06 5.04 6.16 6.09
rovers (13) 1.00 1.32 13.66 15.77 16.93 24.04 23.43 22.06 24.23 24.95
satellite (7) 1.00 1.23 7.01 6.07 7.49 11.60 10.35 13.73 17.20 17.61
scanalyzer-08 (8) 1.00 1.33 4.33 5.11 5.14 6.13 4.66 6.22 6.94 8.33
sokoban-08 (30) 1.00 1.43 2.87 2.80 3.33 3.56 5.61 4.29 5.34 5.30
tpp (9) 1.00 1.30 13.08 19.21 22.80 32.06 29.67 28.91 31.21 32.81
transport-08 (15) 1.00 1.17 4.45 4.79 4.93 6.00 4.44 3.55 4.56 4.49
trucks (9) 1.00 1.30 11.67 16.55 16.79 23.00 40.28 34.36 40.85 42.31
wood-08 (12) 1.00 1.17 4.82 6.65 7.02 9.26 8.83 8.94 11.81 11.17
zenotravel (11) 1.00 1.19 10.24 12.91 12.08 17.73 17.86 19.93 24.02 27.53
Geom. mean (558) 1.00 1.25 5.05 5.85 6.45 8.68 9.83 11.34 13.86 14.44

Table 4.1: Relative refinement speedup of the individual code revisions compared to
the time taken by the original implementation. Each number reports the geometric
mean of all ratios for a given domain and the last row states their geometric mean.
Best values are highlighted in bold.
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airport (12) 1.00 1.00 1.03 1.02 0.28 0.26 0.11 0.23 0.23 0.24
blocks (28) 1.00 1.01 1.44 1.34 1.07 1.20 0.63 0.83 0.83 0.83
depot (6) 1.00 1.05 1.17 1.15 0.92 0.87 0.58 0.98 0.98 0.98
driverlog (14) 1.00 1.01 1.00 0.77 0.56 0.55 0.55 0.82 0.82 0.83
elevators-08 (30) 1.00 0.98 0.99 1.06 0.95 0.99 1.23 2.48 2.48 2.51
freecell (8) 1.00 1.06 1.09 1.05 0.89 0.94 0.98 2.16 2.16 2.12
grid (4) 1.00 1.02 0.87 0.73 0.58 0.45 0.41 0.55 0.56 0.56
gripper (20) 1.00 1.08 1.17 1.42 0.88 0.82 0.26 0.28 0.29 0.28
logistics-00 (26) 1.00 1.01 1.09 0.69 0.46 0.42 0.41 0.49 0.49 0.48
logistics-98 (6) 1.00 1.00 1.06 0.71 0.53 0.52 0.50 0.70 0.70 0.73
miconic (135) 1.00 1.00 1.00 1.01 0.48 0.46 0.47 0.76 0.76 0.76
mprime (13) 1.00 1.01 2.00 0.95 0.89 1.08 1.16 1.03 1.03 1.07
mystery (9) 1.00 1.04 1.29 1.19 1.01 1.10 0.99 1.21 1.21 1.22
openstacks-06 (14) 1.00 1.01 1.09 1.06 0.52 0.57 0.32 0.50 0.50 0.49
openstacks-08 (29) 1.00 1.04 1.14 1.14 0.68 0.64 0.75 1.20 1.20 1.27
parcprinter-08 (25) 1.00 0.95 0.91 0.68 0.27 0.27 0.23 0.30 0.31 0.31
pathways (10) 1.00 0.98 1.00 0.82 0.39 0.35 0.41 0.57 0.57 0.58
pegsol-08 (30) 1.00 0.99 1.10 1.06 0.50 0.50 0.55 1.00 1.00 0.98
pipesworld-nt (5) 1.00 0.98 1.39 1.37 0.94 0.87 0.67 0.84 0.84 0.88
pipesworld-t (6) 1.00 0.98 1.06 1.07 0.80 0.83 0.88 1.41 1.41 1.39
psr-small (31) 1.00 1.02 1.04 1.01 0.39 0.45 0.39 0.53 0.53 0.54
rovers (13) 1.00 1.01 0.99 0.72 0.34 0.34 0.38 0.53 0.54 0.55
satellite (7) 1.00 0.97 0.99 0.92 0.65 0.64 0.67 1.03 1.02 1.02
scanalyzer-08 (5) 1.00 0.96 1.02 0.97 0.82 0.84 0.89 1.75 1.75 1.76
sokoban-08 (30) 1.00 1.00 0.94 0.94 0.29 0.29 0.24 0.38 0.39 0.39
tpp (10) 1.00 0.99 1.00 0.71 0.26 0.25 0.27 0.33 0.33 0.33
transport-08 (16) 1.00 1.02 1.02 0.97 0.79 0.81 0.82 1.55 1.56 1.56
trucks (9) 1.00 1.00 1.02 0.76 0.57 0.56 0.34 0.72 0.72 0.73
wood-08 (12) 1.00 1.01 0.99 0.79 0.52 0.58 0.55 0.82 0.82 0.83
zenotravel (11) 1.00 1.00 0.97 0.70 0.59 0.60 0.66 1.09 1.09 1.09
Geom. mean (574) 1.00 1.01 1.08 0.94 0.58 0.58 0.51 0.76 0.77 0.77

Table 4.2: Relative amount of memory the individual code revisions need for building
the abstraction compared to the amount used by the original implementation. Each
number reports the geometric mean of all ratios for a given domain and the last row
states their geometric mean. Best values are highlighted in bold.
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Loops vector In the original implementation we used two vectors of incoming
and outgoing transitions for each abstract state to represent the transitions T . We
recognized however, that introducing a separate vector for self-loops, i. e., transitions
of the form ([s′], o, [s′]) for an abstract state [s′] and an operator o ∈ O, further reduces
the time needed to construct an abstraction. This is expected, because we can now
easily avoid the overhead of following self-loops in the FindOptimalTrace function.
Additionally, this change also saves a significant amount of memory. While we have
to store two pointers for each “normal” transition, one for the operator and one for
the destination state, we only need a single operator pointer for each self-loop. This
results in a significant drop of memory usage for some domains as shown in Table 4.2.

Single bitset A simple way to save the abstract domains D[s′](v), i. e., the sets of
values each variable v can have in an abstract state [s′], is to use a vector of sets of
integers. While we could have used the set data structure from the C++ standard li-
brary, we used the more space-efficient dynamic_bitset type from the Boost library
to represent a set of integers in our original implementation. A further optimization
is to combine the dynamic bitsets in a single one to allow for aligning the sets of
values for variables with small domains (e. g. booleans) much more compactly. Inter-
nally dynamic bitsets are stored as vectors of words and each vector induces a certain
amount of memory overhead. With this change we only need to store a single vector
for each state, instead of one for every state plus one for every variable. Table 4.2
shows that this optimization is responsible for the biggest part of the memory savings
introduced by all changes. It uses only 2/3 of the memory the previous revision needs
on average over all domains and as little as 1/3 for some domains. As expected, the
Airport domain with many boolean variables benefits the most from this replacement
of data structures.

Informed transition check In Chapter 3 we have introduced the CheckTransi-
tion function (Alg. 3.6). Since this algorithm is called very often for each refinement
it is crucial to make it as fast as possible. While it is perfectly suited for deciding if
there should be an abstract transition between two states for an operator in general, we
can leverage that we already have more information in our specific situation during a
refinement because we only have to take into account the variable we refine on.
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Algorithm 4.2 The refinement in progress splits state [s] for variable v ∈ V . This
pseudocode adds new transitions for the old arc ([r′], o, [s]) from [r′] to the new states
[t′] and [u′] where necessary.
procedure UpdateIncomingArc(([r′] ∈ S ′, o ∈ O, [s] ∈ S ′), v ∈ V )

[t′], [u′]← GetChildren([s])
if posto(v) undefined then

if |D[r′](v) ∩ D[t′](v)| 6= ∅ then
AddArc([r′], o, [t′])

if |D[r′](v) ∩ D[u′](v)| 6= ∅ then
AddArc([r′], o, [u′])

else if posto(v) ∈ D[u′](v) then
AddArc([r′], o, [u′])

else
AddArc([r′], o, [t′])

Algorithm 4.3 The refinement in progress splits state [s] for variable v ∈ V . This
pseudocode adds new transitions for the old arc ([s], o, [w′]) from the new states [t′]
and [u′] to [w′] where necessary.
procedure UpdateOutgoingArc(([s] ∈ S ′, o ∈ O, [w′] ∈ S ′), v ∈ V )

[t′], [u′]← GetChildren([s])
if posto(v) undefined then

if |D[t′](v) ∩ D[w′](v)| 6= ∅ then
AddArc([t′], o, [w′])

if |D[u′](v) ∩ D[w′](v)| 6= ∅ then
AddArc([u′], o, [w′])

else if preo(v) undefined then
AddArc([t′], o, [w′])
AddArc([u′], o, [w′])

else if preo(v) ∈ D[u′](v) then
AddArc([u′], o, [w′])

else
AddArc([t′], o, [w′])
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Algorithm 4.4 The refinement in progress splits state [s] for variable v. This pseu-
docode adds new loops for and transitions between the new states [t′] and [u′] for the
old loop ([s], o, [s]) where necessary.
procedure UpdateLoop(([s] ∈ S ′, o ∈ O), v ∈ V )

[t′], [u′]← GetChildren([s])
if preo(v) undefined then

if posto(v) undefined then
AddLoop([t′], o)
AddLoop([u′], o)

else if posto(v) ∈ D[u′](v) then
AddArc([t′], o, [u′])
AddLoop([u′], o)

else
AddLoop([t′], o)
AddArc([u′], o, [t′])

else if preo(v) ∈ D[u′](v) then
if posto(v) ∈ D[u′](v) then

AddLoop([u′], o)
else

AddArc([u′], o, [t′])

else if posto(v) ∈ D[u′](v) then
AddArc([t′], o, [u′])

else
AddLoop([t′], o)

procedure AddLoop([a′] ∈ S ′, o ∈ O)
T ← T ∪ {([a′], o, [a′])}
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For this purpose we split up the code for updating the transition system and use
a specialized procedure for updating each of the three transition types: UpdateIn-
comingArc (Figure 4.2), UpdateOutgoingArc (Figure 4.3) and UpdateLoop (Fig-
ure 4.4). They require a lot more code to handle all the possible cases, but lead to a
20% reduction of execution time on average while some domains even only require
half the time after the specialization.

Cascaded refinements We noted above that we reuse previous solutions if they
remain valid after the refinement, i. e., the solution path is still a legal path through
the abstract transition system after we substitute the split state [s] with one of its
child states [t′] or [u′]. When we revisited our implementation we noticed that this
approach was a good start, but that the idea could be improved. To this end, we let
our algorithm recognize if a solution remains valid already during the refinement, and
split the previous state in the solution in the same way as we split [s] if it does. With
this pattern we work our way backwards from the state in which the flaw occurred
towards the abstract initial state, until a refinement breaks the solution. This saves
us some time, because the refinement would have had to be made in the next round
anyway.

Keep transitions Since we store the incoming and outgoing transitions of each
state as an unordered vector, it is cheap to insert, but costly to remove a transition,
because the time it takes to find a specific one is linear in the number of transitions.
We tried to keep the vectors sorted, but experienced longer processing times instead
of the desired speedup. Therefore, we employ a common technique and never delete
invalid transitions, but only check whether they are still valid when accessing them.
This results in a 1.15-fold speedup over the previous version of the code on average
across all domains, while the amount of memory needed for building the abstraction
rises by 49%. We accept the higher memory usage because the change allows us to
build abstractions for domains with many transitions much faster, resulting in a big
increase in the number of finished abstractions.

Intersection hash table The functions FindOptimalTrace and Refine are re-
sponsible for most of the processing time in the refinement loop (Alg. 3.1). While
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the time spent looking for optimal solutions increases with more abstract states in-
evitably, we can make the Refine function faster by caching the results of its most
expensive operation, the intersection of abstract domains. For this purpose we save
whether the sets D[s′](v) and D[t′](v) intersect for two states [s′], [t′] and variable v
in a hash table. This memoization saves us about 1/5 of the time across all domains
compared to the previous version of the code while the peak memory usage remains
almost constant.

Heuristic updates As noted above we use A∗ search for finding the next abstract
solution. When extracting a solution we update the goal distances of the states on
the solution path, but leave the goal distances of other nodes untouched, because a
complete backwards search from the goal node with Dijkstra’s algorithm is too expen-
sive to be performed after each refinement. Consequently, we allow specifying how
often the goal distances of all states should be updated. While all previous code ver-
sions did an update every 3000 steps, experiments showed that updating the heuristic
values every 1000 steps yields the best ratio of extra processing time versus informed-
ness during search. Table 4.1 shows that this change only has a small impact on the
time needed to build the abstraction. However, the effect is more noticeable once
the abstractions get bigger and the searches need better heuristic estimates for a fast
execution. Regardless of the parameter setting we update all abstract goal distances
once again after the refinement finishes.

Summary In total the code optimizations decrease the time it takes to build an
abstraction with 10 000 states by a factor of about 14 across all domains and around
33 on domains that benefit the most from the changes. These numbers would be even
higher if we included more complex tasks in the comparison which are not accounted
for due to the small time limit of 5 minutes for the refinement. Table 4.3 demonstrates
the effectiveness of the changes convincingly: the original implementation manages
to build abstractions for 13 of the 30 tasks in the TPP domain whereas the final version
finishes them for the whole domain within the 5 minute time limit.
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#01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#04 0.03 0.02 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.01
#05 36.63 25.62 2.90 2.73 1.88 2.05 2.06 2.58 2.43 2.17
#06 63.12 52.49 3.90 3.45 2.55 2.08 2.43 2.64 2.47 2.40
#07 73.06 41.20 4.89 3.91 3.12 2.64 2.53 2.78 2.76 2.58
#08 71.01 53.23 4.54 3.93 3.02 2.49 2.55 3.66 3.71 3.03
#09 90.95 82.64 8.08 4.72 4.05 3.03 2.88 2.76 2.46 2.58
#10 102.74 86.05 8.58 5.85 4.74 2.58 2.39 2.79 2.68 2.87
#11 126.35 123.09 17.58 7.06 6.73 4.63 4.39 5.18 4.47 3.96
#12 148.89 114.47 9.29 5.82 5.79 3.41 3.38 3.41 3.08 3.10
#13 299.70 195.21 19.90 10.82 11.24 5.10 10.74 4.75 4.03 3.88
#14 – 265.92 33.66 11.16 12.37 5.70 5.34 6.38 5.81 4.43
#15 – – 25.43 15.05 14.69 6.09 8.94 5.71 4.98 4.32
#16 – – 58.54 25.90 30.09 7.10 6.68 7.18 6.98 5.64
#17 – – 77.51 27.96 37.66 8.95 8.44 9.41 7.56 6.20
#18 – – 107.87 63.93 77.63 9.54 12.09 9.90 7.67 6.56
#19 – – 90.18 45.86 59.03 8.84 10.25 9.76 8.40 7.06
#20 – – 82.87 55.14 59.36 8.93 10.42 8.80 6.69 6.87
#21 – – 157.41 62.04 83.85 12.04 13.29 10.29 8.47 7.21
#22 – – 276.97 97.66 119.26 28.87 35.30 11.49 9.35 7.98
#23 – – 259.46 118.25 137.26 17.20 18.66 13.81 10.16 9.07
#24 – – 172.49 85.88 117.29 17.64 18.22 12.97 10.57 9.19
#25 – – 291.03 126.71 159.28 35.91 43.56 13.36 11.11 12.21
#26 – – – 265.98 – 30.71 48.43 20.31 15.38 21.38
#27 – – – 170.05 214.58 34.88 55.55 17.03 14.56 14.05
#28 – – – 189.22 272.91 34.08 52.03 27.10 22.09 16.06
#29 – – – – – 53.44 55.67 28.06 21.97 19.18
#30 – – – – – 82.04 87.76 33.93 20.78 22.45

Table 4.3: Time in seconds for building an abstraction with at most 10 000 states in
the TPP domain for the different code versions. Best values are highlighted in bold
for non-trivial tasks.
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4.3 Random starts
Due to the fact that the algorithm always starts finding and breaking the next solution
from the abstract initial state, the heuristic tends to have a good estimate of the solu-
tion cost for s0 and states close to it, whereas it might not be as informed for states
closer to the goal. This let us to try finding arbitrary concrete states with a random
walk from the initial state and starting the search from there. Experiments showed
however, that always starting from the initial state leads to better heuristic estimates
than alternatingly starting from a random and the initial state or always starting from
random states.

4.4 Variable selection strategies
As noted in Chapter 3 sometimes there may be multiple variables that we could po-
tentially use for splitting an abstract state. In this case our algorithm calls the function
ChooseVariable and passes it the abstract state [s] that will be split and a list of m
distinct candidate variables {vi | 1 ≤ i ≤ m} adhering to the task’s arbitrary variable
ordering. The domain partitions each variable’s abstract domain should be split into
are not taken into account for the decision. We implemented the following selection
methods:

• Random selects an arbitrary variable.

• First selects v1.

• Goal and no-goal select variable vi with the smallest index i for which s?(vi) is
defined/undefined. If there is no such variable, the methods selects a variable
vi randomly.

• Min- and max-constrained select the variable vi with the largest/smallest set
of remaining values, i. e., arg max/minvi

|D[s](vi)|.

• Min- and max-refined select the variable that has been refined the least/most
in [s], i. e. arg max/minvi

|D[s](vi)|
|D(vi)| .
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• Min- and max-predecessors make the decision based on an ordering of the
variables in the task’s causal graph (Helmert 2004). We create this ordering by
iteratively appending the variable with the smallest number of incoming edges
to the ordering and deleting it and its adjacent edges from the causal graph. We
break ties by selecting nodes with higher numbers of outgoing edges before
nodes with less successors. The strategies min- and max-predecessors use this
ordering by selecting the variable vi that occurs first/last in the list.

In order to avoid overfitting our implementation for a single ChooseVariable
method, we conducted the experiments judging our code base with the random strat-
egy. Although regardless of which split is chosen, the refinement loop will advance,
the choice has a noticeable influence on the quality of the resulting abstraction. Ta-
ble 4.4 shows that the resulting values for h(s0) are quite different for the individual
ChooseVariable strategies. From the results it becomes clear that any principled
way of selecting a variable is better than a random approach while the max-refined
strategy yields the best estimates on average. Apart from the random andmin-refined
policies each strategy has a better estimate of the solution cost than the others on at
least one domain, so it seems that some planning domains favor a specific selection
method as shown in Figure 4.2. The plots exhibit the typical appearance of the graphs
for some domains where one strategy significantly dominates the others.

Interestingly, the inherent symmetry in the Gripper domain (McDermott 2000)
entails that the choice of the variable does not influence h(s0) there. However, the
resulting abstractions are nonetheless different as can be seen in Table 4.5 showing
the relative number of expansions. Even on domains for which the different selection
methods had very similar h(s0) values, the number of expanded nodes during search
varies greatly in between the individual strategies. Again, max-refined yields the best
values overall.
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h(0) relative rand first goal no min max min max min max
goal con con ref ref pre pre

airport (33) 1.18 1.38 1.83 1.05 2.11 1.33 1.29 1.71 1.31 2.30
blocks (35) 1.03 1.04 1.19 1.02 1.22 1.04 1.03 1.10 1.17 1.08
depot (21) 1.08 1.04 1.32 1.07 1.36 1.03 1.05 1.30 1.27 1.24
driverlog (20) 1.12 1.27 1.25 1.11 1.08 1.24 1.06 1.21 1.21 1.15
elevators-08 (30) 1.18 2.54 2.03 1.55 1.97 1.07 1.27 2.05 2.21 1.76
freecell (78) 1.07 1.07 1.14 1.10 1.08 1.22 1.09 1.17 1.19 1.08
grid (5) 1.32 1.31 1.21 1.31 1.18 1.38 1.18 1.45 1.31 1.01
gripper (20) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
logistics-00 (28) 1.12 1.05 1.17 1.11 1.16 1.05 1.04 1.17 1.05 1.25
logistics-98 (35) 1.19 1.09 2.00 1.14 1.94 1.09 1.08 1.98 1.09 1.89
miconic (150) 1.02 1.03 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03
mprime (32) 1.08 1.20 1.15 1.16 1.15 1.05 1.11 1.31 1.05 1.17
mystery (23) 1.09 1.26 1.20 1.15 1.21 1.00 1.14 1.33 1.14 1.17
openstacks-06 (30) 1.08 1.20 1.18 1.04 1.20 1.07 1.19 1.19 1.12 1.12
openstacks-08 (30) 1.16 1.20 1.25 1.18 1.26 1.20 1.21 1.19 1.00 1.26
parcprinter-08 (30) 1.16 1.54 1.49 1.23 1.54 1.52 1.52 1.55 1.61 1.35
pathways (30) 1.06 1.16 1.09 1.18 1.16 1.16 1.15 1.16 1.13 1.13
pegsol-08 (30) 1.01 1.02 1.02 1.16 1.23 1.02 1.02 1.21 1.03 1.12
pipesworld-nt (50) 1.10 1.18 1.20 1.08 1.14 1.19 1.18 1.19 1.06 1.13
pipesworld-t (35) 1.08 1.18 1.20 1.12 1.19 1.14 1.14 1.27 1.14 1.16
psr-small (50) 1.02 1.02 1.03 1.01 1.02 1.01 1.00 1.03 1.02 1.03
rovers (35) 1.33 1.12 1.23 1.09 1.12 1.32 1.23 1.13 1.04 1.66
satellite (34) 1.03 1.33 1.25 1.36 1.28 1.56 1.34 1.32 1.21 1.43
scanalyzer-08 (30) 1.20 1.01 1.01 1.20 1.03 1.22 1.04 1.02 1.06 1.29
sokoban-08 (30) 1.10 1.04 1.11 1.04 1.03 1.26 1.11 1.03 1.14 1.11
tpp (30) 1.14 1.04 1.19 1.03 1.10 1.27 1.09 1.19 1.09 1.24
transport-08 (30) 1.06 2.18 1.45 1.77 1.58 1.04 1.27 1.98 2.19 1.35
trucks (30) 1.04 1.02 1.05 1.02 1.02 1.05 1.04 1.03 1.03 1.05
wood-08 (30) 1.10 1.25 1.27 1.10 1.20 1.17 1.24 1.27 1.31 1.05
zenotravel (20) 1.07 1.09 1.23 1.03 1.14 1.11 1.08 1.22 1.09 1.28
Geom. mean (1064) 1.10 1.20 1.24 1.14 1.23 1.15 1.14 1.27 1.18 1.24

Table 4.4: h(s0) of each strategy relative to the lowest h(s0) of all strategies. Each
number is the geometric mean of all such measures for a given domain. In turn the
last row reports the geometric mean over all domain aggregates.
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Figure 4.2: h(s0) subject to an increasing number of abstract states for different
ChooseVariable strategies on four example tasks. From left to right and top to
bottom the tasks are elevators-08 #23, mprime #24, pegsol-08 #12 and rovers #38.
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Relative rand first goal no min max min max min max
expansions goal con con ref ref pre pre
airport (19) 2.15 2.19 1.20 2.28 1.28 2.16 2.29 1.67 2.10 1.33
blocks (18) 1.93 2.05 1.40 2.01 1.27 2.01 2.20 1.69 1.50 1.60
depot (4) 1.55 1.51 1.03 1.51 1.35 1.58 1.54 1.09 1.07 1.10
driverlog (9) 5.89 1.80 2.12 4.72 5.57 5.18 2.71 1.98 4.58 2.31
elevators-08 (11) 19.69 1.46 6.58 13.18 8.27 23.36 18.78 7.03 6.87 4.57
freecell (15) 1.63 1.67 1.69 1.90 1.73 1.37 1.87 1.39 1.41 1.42
grid (2) 4.64 3.81 2.66 6.18 9.86 3.57 11.46 1.00 5.80 11.35
gripper (7) 1.21 1.29 1.28 1.22 1.28 1.28 1.28 1.29 1.28 1.00
logistics-00 (11) 2.63 2.33 2.05 2.92 2.17 2.33 2.83 1.81 2.33 1.38
logistics-98 (2) 485.7 1132.0 2.95 809.8 2.45 1170.3 789.2 2.84 1132.0 1.00
miconic (50) 1.43 1.40 1.47 1.41 1.40 1.32 1.38 1.40 1.40 1.34
mprime (21) 14.82 3.97 3.32 10.89 3.72 31.34 14.76 1.15 8.52 6.38
mystery (16) 7.33 2.25 2.83 5.29 4.16 23.12 6.64 1.36 6.82 3.05
openstacks-06 (7) 3.89 3.89 2.20 2.32 3.98 2.31 2.80 3.89 2.99 1.38
openstacks-08 (18) 1.04 1.04 1.07 1.05 1.05 1.04 1.04 1.02 1.06 1.03
parcprinter-08 (11) 2.46 2.23 2.55 1.79 2.28 2.32 2.31 2.24 2.22 1.50
pathways (4) 5.40 2.71 5.42 1.78 2.71 4.69 2.71 2.71 3.27 4.55
pegsol-08 (27) 2.01 1.63 1.63 1.48 1.15 1.63 1.63 1.29 1.84 1.68
pipesworld-nt (14) 1.73 1.42 1.51 1.92 1.41 1.41 1.42 1.42 2.07 2.42
pipesworld-t (11) 6.46 3.38 3.14 4.49 1.89 4.49 3.21 2.41 2.74 2.27
psr-small (49) 1.94 1.63 1.48 1.90 1.65 1.89 2.12 1.51 1.42 1.56
rovers (6) 1.92 1.93 1.79 1.87 1.64 1.88 2.12 1.74 1.87 1.62
satellite (6) 2.77 1.32 1.86 2.38 1.53 1.36 1.30 1.34 1.59 2.88
scanalyzer-08 (12) 1.07 1.05 1.05 1.07 1.05 1.05 1.05 1.05 1.05 1.00
sokoban-08 (20) 1.19 1.29 1.19 1.29 1.24 1.10 1.09 1.28 1.12 1.19
tpp (6) 2.74 1.28 2.49 3.10 1.28 1.28 1.28 1.28 1.28 2.24
transport-08 (11) 2.34 1.36 1.85 1.89 2.17 2.63 1.94 1.52 1.38 2.30
trucks (6) 2.39 5.79 4.53 2.87 5.31 5.09 5.01 3.82 6.23 1.34
wood-08 (7) 7.37 11.28 10.27 9.42 5.07 11.68 9.09 9.70 1.83 8.30
zenotravel (8) 3.21 2.77 1.83 4.67 2.61 2.72 2.94 1.97 2.73 1.13
Geom. mean (408) 3.39 2.55 2.13 3.16 2.21 3.43 3.16 1.82 2.75 1.97

Table 4.5: Number of expansions of each strategy relative to the lowest number of
expansions needed by any of the strategies. Each number is the geometric mean of
all such measures for a given domain. In turn the last row reports the geometric mean
over all domain aggregates.



Chapter 5

Comparison to similar heuristics

In this chapter we compare CEGAR abstractions with state-of-the-art abstraction
heuristics already implemented in the Fast Downward planning framework: hiPDB

(Haslum et al. 2007; Sievers, Ortlieb, and Helmert 2012) and the two hm&s config-
urations of IPC 2011 (Nissim, Hoffmann, and Helmert 2011). For this comparison
we let our hCEGAR heuristic use max-refined, the ChooseVariable strategy with the
least number of expansions in the experiment that compares the different selection
methods (Table 4.5). We apply a time limit of 30 minutes and a memory limit of 2
GB and let hCEGAR refine for at most 15 minutes.

Table 5.1 shows the number of solved instances for a number of IPC domains.
While the total coverage of hCEGAR is not as high as for hiPDB and hm&s

2 , we solve
much more tasks than hm&s

1 and the h0 (blind) baseline. We remark that hCEGAR is
much less optimized than the other abstraction heuristics, some of which have been
polished for years. Nevertheless, hCEGAR outperforms them on some domains. In
a direct comparison we solve more tasks than hiPDB, hm&s

1 and hm&s
2 on 5, 9 and 7

domains. While hCEGAR is never the single worst performer on any domain, the other
heuristics often perform even worse than h0. Only one task is solved by h0 but not by
hCEGAR, while the other heuristics fail to solve 30, 68, 40 tasks solved by h0. We note
that the Mystery domain includes 11 unsolvable tasks. The heuristics h0, hCEGAR,
hiPDB, hm&s

1 and hm&s
2 can prove for 3, 7, 6, 3 and 5 tasks that there is no plan for these

problems and we add the numbers to the total coverage. Overall, the coverage results
show that hCEGAR is more robust than the other approaches.

40
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Coverage h0 hCEGAR hiPDB hm&s
1 hm&s

2
airport (50) 19 19 (13) 20 22 15
blocks (35) 18 18 (11) 28 28 20
depot (22) 4 4 (2) 7 7 6
driverlog (20) 7 10 (6) 13 12 12
elevators-08 (30) 11 16 (2) 20 1 12
freecell (80) 14 15 (6) 20 16 3
grid (5) 1 2 (1) 3 2 3
gripper (20) 7 7 (4) 7 7 20
logistics-00 (28) 10 14 (10) 20 16 20
logistics-98 (35) 2 3 (2) 4 4 5
miconic (150) 50 55 (40) 45 50 74
mprime (35) 19 27 (23) 22 23 11
mystery (30) 18 24 (15) 22 19 12
openstacks-08 (30) 19 18 (9) 19 8 19
openstacks (30) 7 7 (5) 7 7 7
parcprinter-08 (30) 10 11 (9) 11 15 17
pathways (30) 4 4 (4) 4 4 4
pegsol-08 (30) 27 27 (8) 3 2 29
pipesworld-nt (50) 14 15 (8) 16 15 8
pipesworld-t (50) 10 12 (5) 16 16 7
psr-small (50) 49 49 (46) 49 50 49
rovers (40) 5 6 (4) 7 6 8
satellite (36) 4 6 (4) 6 6 7
scanalyzer-08 (30) 12 12 (6) 13 6 12
sokoban-08 (30) 19 19 (4) 28 3 23
tpp (30) 5 6 (5) 6 6 7
transport-08 (30) 11 11 (6) 11 11 11
trucks (30) 6 7 (4) 8 6 8
woodworking-08 (30) 7 8 (7) 6 14 9
zenotravel (20) 8 9 (8) 9 9 11
Sum (1116) 397 441 (277) 450 391 449

Table 5.1: Number of solved tasks by domain. For hCEGAR, tasks solved during re-
finement are shown in brackets. Best values are highlighted in bold.
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Figure 5.1: Initial state heuristic values for transport-08 #23.

Although hCEGAR typically uses far fewer abstract states, its initial plan cost esti-
mates are often best among all approaches. On commonly solved tasks the estimates
are 38%, 134% and 21% higher than those of hiPDB, hm&s

1 and hm&s
2 on average when

examining the geometric mean of all mean domain ratios. Figure 5.1 shows how the
cost estimate for s0 grows with the number of abstract states on an example task.
The hCEGAR estimates are generally higher than those of hiPDB and grow much more
smoothly towards the perfect estimate. This behavior can be observed in many do-
mains. Figure 5.2 shows a comparison of initial state estimates made by hCEGAR and
hiPDB for a subset of domains.
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Chapter 6

Multiple abstractions

The observation from Section 4.4 that typically each domain prefers a specific flaw se-
lection strategy suggests combining multiple abstractions found by different methods
in a suitable way. We chose to calculate multiple abstractions and use the maximum
of their heuristic estimates for each state during search. In order to evaluate such an
approach we order the strategies ascendingly by their respective number of relative
expansions in the last experiment (Table 4.5) and form 6 combinations of the best 1,
2, 3, 4, 5 and 6 methods. Afterwards we let each strategy in the combination build
an abstraction containing at most 10 000 states and assign a time limit of 30 minutes
and a memory limit of 2 GB for the refinement plus the search. Table 6.1 shows the
number of solved tasks for each of the resulting heuristics. The biggest improvement
results from the combination of themax-refined andmax-predecessors strategies, but
the addition of more methods increases the number of solved tasks even more.

As expected, the number of expanded nodes during search continuously decreases
when the number of employed strategies increases. Table 6.2 confirms that adding
the max-predecessors strategy achieves the biggest drop in the number of expansions
(41%) while the additional four selection methods need 25% less expansions than the
pair of methods.

44
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Coverage max-ref max-ref max-ref max-ref max-ref max-ref
max-pre max-pre max-pre max-pre max-pre

goal goal goal goal
min-con min-con min-con

first first
min-pre

airport (50) 19 19 19 21 21 21
blocks (35) 18 18 18 18 18 18
depot (22) 4 4 4 4 4 4
driverlog (20) 10 10 10 10 10 10
elevators-08 (30) 16 16 16 16 19 19
freecell (80) 15 15 15 15 15 15
grid (5) 2 2 2 2 2 2
gripper (20) 7 7 7 7 7 7
logistics-00 (28) 12 14 14 14 14 14
logistics-98 (35) 3 3 3 3 3 3
miconic (150) 50 53 53 53 53 53
mprime (35) 27 26 26 26 26 25
mystery (30) 24 24 23 23 22 23
openstacks-06 (30) 7 7 7 7 7 7
openstacks-08 (30) 19 19 19 19 19 18
parcprinter-08 (30) 11 11 11 11 11 11
pathways (30) 4 4 4 4 4 4
pegsol-08 (30) 27 27 27 27 27 27
pipesworld-nt (50) 15 15 15 15 15 15
pipesworld-t (50) 12 12 12 12 12 12
psr-small (50) 49 49 49 49 49 49
rovers (40) 6 7 7 7 7 7
satellite (36) 6 6 6 6 6 6
scanalyzer-08 (30) 12 12 12 12 12 12
sokoban-08 (30) 20 21 21 21 20 20
tpp (30) 6 6 6 6 6 6
transport-08 (30) 11 11 11 11 11 11
trucks (30) 6 6 6 6 6 6
wood-08 (30) 7 8 8 8 8 9
zenotravel (20) 8 8 8 8 8 8
Sum (1116) 433 440 439 441 442 442

Table 6.1: Number of solved tasks per domain for different combinations of Choo-
seVariable strategies. Best values are highlighted in bold.
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Expansions max-ref max-ref max-ref max-ref max-ref max-ref
relative to max-ref max-pre max-pre max-pre max-pre max-pre

goal goal goal goal
min-con min-con min-con

first first
min-pre

airport (19) 1.00 0.74 0.60 0.55 0.55 0.54
blocks (18) 1.00 0.69 0.60 0.54 0.53 0.52
depot (4) 1.00 0.84 0.78 0.77 0.77 0.74
driverlog (10) 1.00 0.45 0.40 0.33 0.34 0.29
elevators-08 (16) 1.00 0.41 0.38 0.36 0.13 0.13
freecell (15) 1.00 0.67 0.60 0.55 0.55 0.51
grid (2) 1.00 0.85 0.85 0.83 0.80 0.80
gripper (7) 1.00 0.68 0.67 0.67 0.67 0.67
logistics-00 (12) 1.00 0.34 0.34 0.34 0.33 0.33
logistics-98 (3) 1.00 0.34 0.31 0.31 0.31 0.31
miconic (50) 1.00 0.58 0.58 0.58 0.58 0.58
mprime (25) 1.00 0.80 0.73 0.72 0.66 0.66
mystery (17) 1.00 0.82 0.73 0.64 0.49 0.49
openstacks-06 (7) 1.00 0.41 0.41 0.39 0.39 0.39
openstacks-08 (18) 1.00 0.98 0.98 0.97 0.97 0.97
parcprinter-08 (11) 1.00 0.41 0.41 0.41 0.41 0.38
pathways (4) 1.00 0.57 0.55 0.55 0.55 0.33
pegsol-08 (27) 1.00 0.91 0.79 0.68 0.68 0.67
pipesworld-nt (15) 1.00 0.73 0.57 0.57 0.57 0.50
pipesworld-t (12) 1.00 0.46 0.41 0.31 0.31 0.28
psr-small (49) 1.00 0.80 0.67 0.61 0.61 0.54
rovers (6) 1.00 0.48 0.47 0.46 0.46 0.46
satellite (6) 1.00 0.73 0.68 0.65 0.63 0.47
scanalyzer-08 (12) 1.00 0.92 0.91 0.91 0.91 0.91
sokoban-08 (20) 1.00 0.92 0.88 0.87 0.87 0.78
tpp (6) 1.00 0.69 0.69 0.69 0.69 0.69
transport-08 (11) 1.00 0.79 0.70 0.67 0.54 0.52
trucks (6) 1.00 0.15 0.14 0.14 0.14 0.14
wood-08 (7) 1.00 0.42 0.33 0.20 0.20 0.06
zenotravel (8) 1.00 0.49 0.47 0.47 0.46 0.46
Geom. mean (423) 1.00 0.59 0.55 0.51 0.48 0.44

Table 6.2: Number of expansions for different combinations of ChooseVariable
strategies relative to the number of expansions for the single strategy. Each number
is the geometric mean of all such measures for a given domain. In turn the last row
reports the geometric mean over all domain aggregates. Best values are highlighted
in bold.
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Online learning

As we stated in the introduction, we use A∗ search with an admissible heuristic for
finding optimal plans. Normally, the search function is strictly separated from the
heuristic and the latter is used as a black box that returns estimates for given states. In
this chapter we demonstrate how we can lift this restriction and actively improve the
heuristic during search. We accomplish this by letting the A∗ algorithm detect when
the heuristic makes an error and fix it before we continue searching.

A∗ maintains a list of states that may be visited next while traversing the state
space. For each state s in the so called open list the algorithm records a value f(s) =

g(s) + h(s) which is the sum of the incumbent cost of reaching this state from s0,
g(s) and the heuristic estimate of its goal distance h(s). Initially, this list contains
only the initial state s0 with f(s0) = g(s0) + h(s0) = h(s0). Until the list is empty,
in each iteration A∗ removes the state s with the lowest value for f(s) from the list
and expands it, i. e.. adds all states that can be reached from s by applying a single
operator to the open list. The algorithm finishes when a goal state is expanded or
when there are no more new states to visit.

An error is made during the expansion of state s if h(s) < h(t) + costo for all
states t that can be reached by applying a single operator o in s. This follows from
the admissibility of the heuristic. If we could already prove that the cost to reach the
goal from t is at least h(t), we know that the distance from s to the goal must be at
least h(t) plus the cost from s to t, costo, if going over t is the cheapest path from s.

In case we detect that the heuristic value for state s is too low, we refine the ab-
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straction until its value rises by repeatedly finding and breaking abstract solutions that
start from [s].

Analogously to the offline refinement, we allow limiting the number of abstract
states in the abstraction. In order to evaluate the effectiveness of online refinements,
we compare five different hCEGAR configurations using themax-refined selection strat-
egy with at most 10 000 abstract states. The heuristics differ only in the way they
divide the number of refinements between the off- and online phase. Table 7.1 shows
the number of expansions each configuration uses relative to the one with the lowest
number of expanded nodes. According to the results, the usefulness of online refine-
ments varies greatly in between different domains. Only a few domains prefer either
only off- or online refinements. In most domains a mix of the two kinds leads to the
fewest expansions. Overall, splitting most states offline and using some additional
states online seems to be the best strategy. However, a smaller number of expansions
does not indicate that more tasks will be solved since all five configurations have
roughly the same coverage.

Raising the maximum total number of states in the abstraction to 20 000 gives a
clearer picture. As shown in Table 7.2 splitting all states already offline results in the
largest number of problems solved and it is clearly not a good strategy to only refine
online. This is confirmed when we examine the relative number of expansions in
Table 7.3. Again, creating the largest amount of states during offline refinement with
a small number of online refinements yields the smallest relative number of expanded
nodes across all domains.
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Expansions (relative) 10K-0K 8K-2K 5K-5K 2K-8K 0K-10K
airport (19) 1.07 1.02 1.10 1.42 1.58
blocks (18) 1.32 1.19 1.09 1.08 1.96
depot (4) 1.19 1.13 1.09 1.07 1.34
driverlog (9) 2.16 1.75 1.71 1.96 1.30
elevators-08 (12) 1.07 1.04 1.05 1.04 1.20
freecell (15) 1.28 1.25 1.10 1.17 1.18
grid (2) 1.16 1.43 1.07 1.56 1.22
gripper (7) 1.13 1.00 1.12 1.17 2.57
logistics-00 (12) 1.65 1.15 1.70 2.12 4.00
logistics-98 (2) 1.28 1.07 1.23 1.02 1.06
miconic (50) 1.18 1.05 1.20 1.65 3.93
mprime (22) 3.40 1.71 2.26 1.88 1.84
mystery (17) 1.79 1.42 1.36 1.47 1.63
openstacks-06 (7) 1.30 1.08 2.30 5.58 6.71
openstacks-08 (19) 1.08 1.06 1.05 1.03 1.02
parcprinter-08 (10) 1.09 1.04 1.10 2.67 5.81
pathways (4) 1.15 1.12 1.08 1.09 1.67
pegsol-08 (27) 1.17 1.09 1.06 1.12 1.30
pipesworld-nt (14) 1.59 1.39 1.31 1.30 1.33
pipesworld-t (11) 1.84 1.67 1.43 1.36 1.31
psr-small (49) 1.28 1.08 1.14 1.64 3.08
rovers (6) 1.14 1.11 1.10 1.04 2.37
satellite (6) 1.27 1.12 1.12 1.61 4.36
scanalyzer-08 (12) 1.01 1.01 1.01 1.01 1.24
sokoban-08 (19) 1.04 1.04 1.07 1.16 1.46
tpp (6) 1.04 1.06 1.14 1.17 2.02
transport-08 (11) 1.12 1.01 1.14 1.17 1.59
trucks (6) 1.15 1.35 1.94 2.99 4.50
wood-08 (7) 1.99 1.36 2.63 2.66 5.31
zenotravel (8) 1.85 1.73 2.64 2.26 2.77
Geom. mean (411) 1.07 1.55 1.85 2.31 4.05

Table 7.1: Number of expanded nodes relative to the configuration with the least
number of expansions. The header shows the maximum number of off- and online
refinements for the individual configurations.
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Coverage 20K-0K 16K-4K 12K-8K 4K-16K 0K-20K
airport (50) 19 19 19 19 19
blocks (35) 18 18 18 18 18
depot (22) 4 4 4 4 4
driverlog (20) 10 10 10 10 10
elevators-08 (30) 13 13 12 12 12
freecell (80) 15 15 15 15 15
grid (5) 2 2 2 2 2
gripper (20) 7 7 7 7 7
logistics-00 (28) 13 13 13 13 13
logistics-98 (35) 2 2 2 2 2
miconic (150) 52 52 52 52 52
mprime (35) 23 23 23 23 22
mystery (30) 19 19 19 19 20
openstacks-06 (30) 7 7 7 7 7
openstacks-08 (30) 19 19 19 19 19
parcprinter-08 (30) 11 11 11 11 10
pathways (30) 4 4 4 4 4
pegsol-08 (30) 27 27 27 27 27
pipesworld-nt (50) 14 14 14 14 14
pipesworld-t (50) 11 11 11 11 11
psr-small (50) 49 49 49 49 49
rovers (40) 6 6 6 6 6
satellite (36) 6 6 6 5 6
scanalyzer-08 (30) 12 12 12 12 12
sokoban-08 (30) 21 20 21 21 19
tpp (30) 6 6 6 6 6
transport-08 (30) 11 11 11 11 11
trucks (30) 6 6 6 6 6
wood-08 (30) 10 10 10 10 7
zenotravel (20) 8 8 8 8 8
Sum (1116) 425 424 424 423 418

Table 7.2: Number of solved tasks for different hCEGAR configurations differing only
in the maximum number of states during off- and online refinement.
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Expansions (relative) 20K-0K 16K-4K 12K-8K 4K-16K 0K-20K
airport (19) 1.11 1.03 1.05 1.25 1.68
blocks (18) 1.33 1.06 1.11 1.15 2.18
depot (4) 1.15 1.10 1.06 1.02 1.33
driverlog (10) 2.49 1.60 1.67 1.85 1.75
elevators-08 (12) 1.08 1.05 1.04 1.06 1.22
freecell (15) 1.71 1.54 1.17 1.66 1.77
grid (2) 1.17 1.41 1.45 1.42 1.22
gripper (7) 1.03 1.00 1.36 1.51 3.45
logistics-00 (13) 1.31 2.10 3.01 3.68 6.75
logistics-98 (2) 1.00 7.75 14.41 15.96 17.97
miconic (52) 1.16 1.27 1.36 2.10 5.40
mprime (22) 2.67 1.49 1.44 1.91 1.67
mystery (17) 1.84 1.63 1.57 1.49 1.73
openstacks-06 (7) 1.36 1.13 1.00 5.34 6.99
openstacks-08 (19) 1.10 1.08 1.07 1.05 1.03
parcprinter-08 (10) 1.14 1.11 1.09 1.55 6.11
pathways (4) 1.06 1.26 1.93 2.82 4.75
pegsol-08 (27) 1.17 1.06 1.13 1.15 1.41
pipesworld-nt (14) 2.04 1.49 1.31 1.46 1.67
pipesworld-t (11) 1.93 1.92 1.38 1.89 1.93
psr-small (49) 1.41 1.13 1.20 1.24 3.47
rovers (6) 1.23 1.05 1.05 1.13 2.37
satellite (5) 1.45 1.33 1.21 1.00 6.42
scanalyzer-08 (12) 1.02 1.01 1.02 1.01 1.26
sokoban-08 (19) 1.02 1.05 1.04 1.10 1.47
tpp (6) 1.11 1.01 1.02 1.47 2.62
transport-08 (11) 1.14 1.04 1.02 1.17 1.65
trucks (6) 1.16 1.07 1.08 2.62 3.53
wood-08 (7) 2.33 1.81 1.84 2.96 4.70
zenotravel (8) 1.81 1.55 1.68 2.49 2.80
Geom. mean (414) 1.36 1.34 1.38 1.73 2.60

Table 7.3: Number of expanded nodes relative to the configuration with the mini-
mum number of expansions. The hCEGAR configurations differ only in the maximum
number of states created during off- and online refinement.
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Conclusion

We introduced a CEGAR approach for classical planning and showed that it deliv-
ers promising performance. We believe that further performance improvements are
possible throughmore space-efficient abstraction representations and speed optimiza-
tions in the refinement loop, which will enable larger abstractions to be generated in
reasonable time. One way of trying to achieve this is to break not one but all opti-
mal solutions in one iteration. This should shift a big proportion of the time needed
to build the abstraction from looking for abstract solutions to actually refining the
abstraction.

We showed that using the maximum of the heuristic estimates made by multiple
CEGAR abstractions can lead to more informed heuristics. Another promising direc-
tion is the exploitation of additive CEGAR abstractions, borrowing one of the major
strengths of the hiPDB approach.

Additionally, we demonstrated how we can refine the abstraction online and in
this way improve the heuristic while searching.

All in all, we believe that Cartesian abstraction and counterexample-guided ab-
straction refinement are useful concepts that can contribute to the further development
of strong abstraction heuristics for automated planning.
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