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This planner abstract describes “Scorpion”, the planner
we submitted to the sequential optimization track of the In-
ternational Planning Competition 2018. Scorpion is imple-
mented in the Fast Downward planning system (Helmert
2006). It uses A∗ (Hart, Nilsson, and Raphael 1968) with an
admissible heuristic (Pearl 1984) to find optimal plans. The
overall heuristic is based on component abstraction heuris-
tics that are combined by saturated cost partitioning (Seipp
and Helmert 2018).1

In this abstract we only list the components of Scorpion
and the settings we used for them. For a detailed description
of the underlying algorithms we refer to Seipp (2018).

Abstraction Heuristics
Depending on whether or not a given task contains condi-
tional effects, we use a different set of abstraction heuristics.

Tasks Without Conditional Effects
For tasks without conditional effects we use the combination
of the following heuristics:

• Cartesian abstraction heuristics (CART):
We consider Cartesian abstractions of the landmark and
goal task decompositions (Seipp and Helmert 2018). We
limit the total number of non-looping transitions in all ab-
stractions underlying the Cartesian heuristics by one mil-
lion.

• pattern databases found by hill climbing (HC):
We use the algorithm by Haslum et al. (2007) for search-
ing via hill climbing in the space of pattern collections.
We limit the time for hill climbing by 100 seconds.

• pattern databases for systematic patterns (SYS):
We use a procedure that generates all interesting patterns
up to size 2 (Pommerening, Röger, and Helmert 2013).

Tasks With Conditional Effects
For tasks with conditional effects we compute pattern
database heuristics for systematically generated patterns of
sizes 1, 2 and 3 (Pommerening, Röger, and Helmert 2013).
Since generating these heuristics can take very long for some

1We chose the name “Scorpion” since it contains the letters
s(aturated) c(ost) p(artitioning) in this order.

tasks, we limit the time for generating PDB heuristics by 300
seconds.

Saturated Cost Partitioning
We combine the information contained in the compo-
nent heuristics with saturated cost partitioning (Seipp and
Helmert 2018). Given an ordered collection of heuristics,
saturated cost partitioning iteratively assigns each heuris-
tic h only the costs that h needs for justifying its estimates
and saves the remaining costs for subsequent heuristics. Dis-
tributing the operator costs among the component heuristics
in this way makes the sum of the individual heuristic values
admissible.

The quality of the resulting saturated cost partitioning
heuristic strongly depends on the order in which the com-
ponent heuristics are considered (Seipp, Keller, and Helmert
2017). Additionally, we can obtain much stronger heuris-
tics by maximizing over multiple saturated cost partition-
ing heuristics computed for different orders instead of using
a single saturated cost partitioning heuristic (Seipp, Keller,
and Helmert 2017). We therefore iteratively sample a state
(using the sampling algorithm by Haslum et al. 2007), use
a greedy algorithm for finding an initial order for the state
(more concretely, we use the static greedy ordering algo-
rithm with the q h

stolen
scoring function) and afterwards op-

timize the order with simple hill climbing in the space of
orders for at most two seconds (Seipp 2018). If the the sat-
urated cost partitioning heuristic computed for the resulting
optimized greedy order yields a higher estimate for one of a
set of 1000 sample states than all previously added orders,
we add the order to our set of orders. We limit the time for
finding orders in this way to 200 seconds.

Operator Pruning Techniques
We employ two operator pruning techniques:

• strong stubborn sets:
We use the variant that instantiates strong stubborn sets
for classical planning in a straight-forward way (Alk-
hazraji et al. 2012; Wehrle and Helmert 2014). We com-
pute the interference relation “on demand” during the
search and switch off pruning completely in case the frac-
tion of pruned successor states is less than 20% of the total
successor states after 1000 expansions.
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Agricola (20) 0 4 1 1 0 4 1
Data-Network (20) 14 12 12 14 14 12 14
Organic-Synthesis (20) 7 7 7 7 7 7 7
Organic-Synthesis-Split (20) 13 13 12 13 13 13 13
Petri-Net-Alignment (20) 3 0 7 0 5 0 0
Snake (20) 11 13 13 13 13 13 13
Spider (20) 13 15 15 15 15 15 15
Termes (20) 12 13 12 14 12 14 14
Sum (160) 73 77 79 77 79 78 77

Table 1: Coverage scores of saturated cost partitioning over
different heuristic subsets for IPC 2018 tasks that have no
conditional effects after the translation phase.

• h2 mutexes (Alcázar and Torralba 2015):
This operator pruning method can remove irrelevant op-
erators. We invoke it after translating a given input task to
SAS+ and before starting the search component of Fast
Downward.

Post-IPC Evaluation
After the IPC 2018, we ran an experiment to analyze how
much value each of the three sets of heuristics (CART, HC
and SYS) contributes to the overall heuristic on the IPC 2018
benchmarks that have no conditional effects after the transla-
tion phase. We used a time and memory limit of 30 minutes
and 7 GiB. Table 1 shows coverage results.

The seven different combinations of heuristics lead to
similar total coverage scores (73–79 tasks). Using Carte-
sian heuristics (CART) leads to solving the lowest num-
ber of tasks, whereas using systematic PDBs by them-
selves (SYS) or combined with Cartesian abstractions
(SYS+CART) achieves the maximal total coverage score.
While coverage never decreases when adding systematic
PDBs to the set of heuristics, it varies between domains
whether the other types of heuristics are beneficial.

For the tasks in the Agricola domain, hill climbing PDBs
(HC) are more informative (4 solved tasks) than other
heuristics (0 or 1 solved task). Adding Cartesian abstractions
to the hill climbing PDBs leads to worse heuristics. In prin-
ciple, Scorpion should be able to produce better estimates
given more heuristics, but having a larger set of heuristics
can make finding a good order for saturated cost partition-
ing harder.

In the Data-Network domain it is beneficial to use Carte-
sian abstractions (14 solved tasks vs. 12 solved tasks without
Cartesian abstractions), whereas all heuristic subsets solve
almost the same number of tasks in both variants of Organic-
Synthesis.

When using hill climbing PDB heuristics, Scorpion is un-

able to solve any Petri-Net-Alignment tasks within the given
limits. This is the case since the hill climbing algorithm
starts by computing a PDB for each goal variable and then
calculates the maximal additive subsets of these PDBs. The
latter step runs out of memory for all tasks from the Petri-
Net-Alignment domain, because of the large number of goal
facts.2

The Snake and Spider domains benefit from using PDB
heuristics. With systematic or hill climbing PDBs Scorpion
solves 13 and 15 tasks, in these two domains. Using only
Cartesian abstractions leads to solving two fewer tasks in
each of the two domains.

In the Termes domain hill climbing PDBs with at least
one other type of heuristic solves 14 tasks, whereas the other
configurations solve 12 or 13 tasks.
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