
Pattern Selection for Optimal Classical Planning with
Saturated Cost Partitioning

Jendrik Seipp
August 14, 2019

University of Basel, Switzerland



Setting

• optimal classical planning
• A∗ search + admissible heuristic
• pattern databases

1/14



How to select patterns?

• bin packing (Edelkamp 2001)
• genetic algorithms (Edelkamp 2006)
• hill climbing (Haslum et al. 2007)
• CPC (Franco et al. 2017)
• CEGAR (Rovner et al. 2019)
• systematic (Pommerening et al. 2013)

2/14



How to combine multiple PDB heuristics?

• maximize
• cost partitioning
• saturated cost partitioning

3/14



Saturated cost partitioning

Saturated cost partitioning algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics

s1,s2 s3 s4,s5

4 4

1 1

s1 s2,s3,s4 s5

4 4

1 1

hSCP⟨h1,h2⟩(s2) = 5+ 3 = 8

4/14



Saturated cost partitioning

Saturated cost partitioning algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics

s1,s2 s3 s4,s5

4 4

1 1

s1 s2,s3,s4 s5

4 4

1 1
max(h1(s2),h2(s2)) = max(5, 4) = 5

hSCP⟨h1,h2⟩(s2) = 5+ 3 = 8

4/14



Saturated cost partitioning

Saturated cost partitioning algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics

s1,s2 s3 s4,s5

4 4

1 1

s1 s2,s3,s4 s5

hSCP⟨h1,h2⟩(s2) = 5+ 3 = 8

4/14



Saturated cost partitioning

Saturated cost partitioning algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics

s1,s2 s3 s4,s5

4 1

0 1

s1 s2,s3,s4 s5

hSCP⟨h1,h2⟩(s2) = 5+ 3 = 8

4/14



Saturated cost partitioning

Saturated cost partitioning algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics

s1,s2 s3 s4,s5

4 1

0 1

s1 s2,s3,s4 s5

0 3

1 0

hSCP⟨h1,h2⟩(s2) = 5+ 3 = 8

4/14



Saturated cost partitioning

Saturated cost partitioning algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics

s1,s2 s3 s4,s5

4 1

0 1

s1 s2,s3,s4 s5

0 3

0 0

hSCP⟨h1,h2⟩(s2) = 5+ 3 = 8

4/14



Saturated cost partitioning

Saturated cost partitioning algorithm

• order heuristics, then for each heuristic h:
• use minimum costs preserving all estimates of h
• use remaining costs for subsequent heuristics

s1,s2 s3 s4,s5

4 1

0 1

s1 s2,s3,s4 s5

0 3

0 0
hSCP⟨h1,h2⟩(s2) = 5+ 3 = 8

4/14



Diverse orders for saturated cost partitioning

Diversification algorithm

• sample 1000 states Ŝ
• start with empty set of orders
• for 200 seconds:

• sample a new state s
• find a greedy order for s
• if a sample in Ŝ profits from it, keep it
• otherwise, discard it

5/14



Idea

• select patterns
• compute diverse saturated cost partitionings over PDBs

6/14



Idea

• select patterns with saturated cost partitioning
• compute diverse saturated cost partitionings over PDBs

6/14



Sys-SCP: a new pattern selection algorithm

One Sys-SCP iteration

• start with empty pattern sequence σ

• for each pattern P ∈ Order(Sys):
• add P to σ if hSCPσ (s) < hSCPσ⊕P(s) < ∞ for any state s

• repeat until hitting time limit
• return all selected patterns

• problem: testing every state is infeasible

7/14



Sys-SCP: a new pattern selection algorithm

One Sys-SCP iteration

• start with empty pattern sequence σ

• for each pattern P ∈ Order(Sys):
• add P to σ if hSCPσ (s) < hSCPσ⊕P(s) < ∞ for any state s

• repeat until hitting time limit
• return all selected patterns
• problem: testing every state is infeasible

7/14



Evaluating a pattern using its projection

Theorem

∃s ∈ S(T ) : hSCPσ (cost, s) < hSCPσ⊕P(cost, s) < ∞
⇔ ∃s′ ∈ S(TP) : 0 < h∗TP(rem, s′) < ∞

8/14



Using the theorem

• keep track of the remaining cost function
• select a PDB if it has positive finite goal distances

9/14



Pattern orders

order by increasing pattern size, break ties by:

• random
• states in projection
• active operators
• Fast Downward variable order:

• up: [7, 5], [8, 2], [8, 5]
• down: [8, 5], [8, 2], [7, 5]

10/14



Pattern orders

order by increasing pattern size, break ties by:

• random
• states in projection
• active operators
• Fast Downward variable order:

• up: [7, 5], [8, 2], [8, 5]
• down: [8, 5], [8, 2], [7, 5]

10/14



Systematic patterns with limits

Lim: 2M states per PDB, 20M states in collection, 100 seconds

Max pattern size 1 2 3 4 5

Sys 840 986 1057 922 731
Sys-Lim 840 985 1088 1050 1035

11/14



Sys-SCP vs. other pattern selection algorithms

HC Sys-3-Lim CPC CEGAR Sys-SCP

Coverage 966 1088 1055 1098 1168
#domains Sys-SCP better 28 23 21 21 –
#domains Sys-SCP worse 3 2 3 3 –

12/14



Future work

• test patterns on samples

13/14



Summary

• new pattern selection algorithm based on
saturated cost partitioning

• outperforms all previous pattern selection algorithms

14/14


