Pattern Selection for Optimal Classical Planning with Saturated Cost Partitioning

Jendrik Seipp August 14, 2019

University of Basel, Switzerland

- optimal classical planning
- + A^* search + admissible heuristic
- pattern databases

- bin packing (Edelkamp 2001)
- genetic algorithms (Edelkamp 2006)
- hill climbing (Haslum et al. 2007)
- CPC (Franco et al. 2017)
- CEGAR (Rovner et al. 2019)
- systematic (Pommerening et al. 2013)

- maximize
- cost partitioning
- saturated cost partitioning

- order heuristics, then for each heuristic h:
 - use minimum costs preserving all estimates of h
 - · use remaining costs for subsequent heuristics

Saturated cost partitioning algorithm

- order heuristics, then for each heuristic h:
 - use minimum costs preserving all estimates of h
 - · use remaining costs for subsequent heuristics

 $\max(h_1(s_2),h_2(s_2))=\max(5,4)=5$

- order heuristics, then for each heuristic h:
 - use minimum costs preserving all estimates of h
 - · use remaining costs for subsequent heuristics

- order heuristics, then for each heuristic h:
 - use minimum costs preserving all estimates of h
 - · use remaining costs for subsequent heuristics

- order heuristics, then for each heuristic h:
 - use minimum costs preserving all estimates of h
 - · use remaining costs for subsequent heuristics

- order heuristics, then for each heuristic h:
 - use minimum costs preserving all estimates of h
 - · use remaining costs for subsequent heuristics

- order heuristics, then for each heuristic h:
 - use minimum costs preserving all estimates of h
 - · use remaining costs for subsequent heuristics

Diversification algorithm

- sample 1000 states Ŝ
- start with empty set of orders
- for 200 seconds:
 - sample a new state s
 - find a greedy order for s
 - if a sample in Ŝ profits from it, keep it
 - otherwise, discard it

- select patterns
- compute diverse saturated cost partitionings over PDBs

- · select patterns with saturated cost partitioning
- compute diverse saturated cost partitionings over PDBs

One Sys-SCP iteration

- start with empty pattern sequence σ
- for each pattern $P \in ORDER(SYS)$:
 - add P to σ if $h_{\sigma}^{\rm SCP}(s) < h_{\sigma \oplus P}^{\rm SCP}(s) < \infty$ for any state s

- repeat until hitting time limit
- return all selected patterns

One Sys-SCP iteration

- start with empty pattern sequence σ
- for each pattern $P \in ORDER(SYS)$:
 - add P to σ if $h_{\sigma}^{SCP}(s) < h_{\sigma \oplus P}^{SCP}(s) < \infty$ for any state s

- repeat until hitting time limit
- return all selected patterns
- problem: testing every state is infeasible

Theorem

$$\begin{aligned} \exists s \in \mathsf{S}(\mathcal{T}) : \mathsf{h}_{\sigma}^{\mathsf{SCP}}(\mathsf{cost},s) < \mathsf{h}_{\sigma \oplus \mathsf{P}}^{\mathsf{SCP}}(\mathsf{cost},s) < \infty \\ \Leftrightarrow \exists s' \in \mathsf{S}(\mathcal{T}_{\mathsf{P}}) : \qquad 0 < \mathsf{h}_{\mathcal{T}_{\mathsf{P}}}^{*}(\mathsf{rem},s') < \infty \end{aligned}$$

- keep track of the remaining cost function
- select a PDB if it has positive finite goal distances

order by increasing pattern size, break ties by:

- random
- states in projection
- active operators
- Fast Downward variable order:
 - up: [7, 5], [8, 2], [8, 5]
 - down: [8, 5], [8, 2], [7, 5]

order by increasing pattern size, break ties by:

- random
- states in projection
- active operators
- Fast Downward variable order:
 - up: [7, 5], [8, 2], [8, 5]
 - down: [8, 5], [8, 2], [7, 5]

LIM: 2M states per PDB, 20M states in collection, 100 seconds

Max pattern size	1	2	3	4	5
Sys	840	986	1057	922	731
Sys-Lim	840	985	1088	1050	1035

	HC	Sys-3-Lim	CPC	CEGAR	Sys-SCF
--	----	-----------	-----	-------	---------

Coverage	966	1088	1055	1098	1168
#domains Sys-SCP better	28	23	21	21	-
#domains Sys-SCP worse	3	2	3	3	-

• test patterns on samples

- new pattern selection algorithm based on saturated cost partitioning
- outperforms all previous pattern selection algorithms