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Abstract

Saturated cost partitioning is a general method for admissibly
adding heuristic estimates for optimal state-space search. The
algorithm strongly depends on the order in which it consid-
ers the heuristics. The strongest previous approach precom-
putes a set of diverse orders and the corresponding saturated
cost partitionings before the search. This makes evaluating
the overall heuristic very fast, but requires a long precompu-
tation phase. By diversifying the set of orders online during
the search we drastically speed up the planning process and
even solve slightly more tasks.

Saturated Cost Partitioning
One of the main approaches for solving classical planning
tasks optimally is using the A∗ algorithm (Hart, Nilsson, and
Raphael 1968) with an admissible heuristic (Pearl 1984).
Since a single heuristic usually fails to capture enough de-
tails of the planning task, it is often beneficial to compute
multiple heuristics and to combine their estimates (Holte
et al. 2006). The preferable method for admissibly combin-
ing heuristic estimates is cost partitioning (Haslum, Bonet,
and Geffner 2005; Haslum et al. 2007; Katz and Domsh-
lak 2008, 2010; Pommerening, Röger, and Helmert 2013).
By distributing the original costs among the heuristics, cost
partitioning makes the sum of heuristic estimates (under the
reduced cost functions) admissible.

Saturated cost partitioning (SCP) is one of the strongest
methods for finding cost partitionings (Seipp, Keller, and
Helmert 2020). At the core of the SCP algorithm lies the
insight that we can often reduce the (action) cost function
of a planning task and still obtain the same heuristic esti-
mates. This notion is captured by so-called saturated cost
functions. An (action) cost function scf is saturated for a
heuristic h, an original cost function cost and a subset S′
of states in the planning task, if scf(a) ≤ cost(a) for each
action a and for all states s ∈ S′ the heuristic estimate by h
for s is the same regardless of whether we evaluate h under
cost or scf. We call a function that computes a saturated cost
function for a given heuristic and cost function a saturator.

Algorithm 1 shows how the SCP procedure computes sat-
urated cost functions that form a cost partitioning of a given
cost function cost over an ordered sequence of heuristics ω.
The algorithm starts by computing a saturated cost function
for the first heuristic h in ω, i.e., it lets a saturator saturateh

Algorithm 1 Compute a saturated cost partitioning over an
ordered sequence of heuristics ω for a cost function cost.

1: function SATURATEDCOSTPARTITIONING(ω, cost)
2: C ← 〈〉
3: for all h ∈ ω do
4: scf← saturateh(cost)
5: append scf to C
6: cost(a)← cost(a)− scf(a) for all actions a
7: return C

compute the fraction of the action costs that are needed to
preserve the estimates by h for a subset of states under the
original cost function (line 4). Afterwards, it iteratively sub-
tracts the costs given to h from the original costs (line 6)
and considers the next heuristic until all heuristics have been
treated this way. The sequence of computed saturated cost
functions forms the resulting cost partitioning C. We write
hSCP
ω for the cost partitioning heuristic that results from ap-

plying the SCP algorithm to the heuristic order ω.
The original SCP formulation assumed S′ to always be

the set of all states. This definition has been generalized re-
cently to allow preserving the estimates for a subset of states,
giving rise to new saturator types (Seipp and Helmert 2019).
One of the new saturators is perim, which preserves the es-
timates of all states within a given perimeter of the goal. For
example, for a given heuristic h and a state s we can use
perim to preserve the heuristic estimates of all states s′ with
h(s′) ≤ h(s) (and reduce all higher estimates to h(s)). The
perim saturator often yields higher estimates for a given state
than the all saturator, which preserves all estimates. How-
ever, perim also often ignores costs that could be used to im-
prove the heuristic estimates of other states. Therefore, the
strongest method by Seipp and Helmert (2019), perim?, first
computes a saturated cost partitioning using perim and then
uses the remaining costs to compute a saturated cost parti-
tioning that preserves all estimates under the remaining cost
function. We use perim? in all experiments below.

The quality of an SCP heuristic greatly depends on the
order in which the heuristics are considered. In this work,
we use the greedy ordering method with the h

stolen scoring
function, the best ordering in previous work on saturated
cost partitioning (Seipp, Keller, and Helmert 2020). For each



Algorithm 2 Offline diversification. Find a diverse set of
heuristic orders Ω for SCP before the search.

1: function OFFLINEDIVERSIFICATION
2: Ω← ∅
3: Ŝ ← sample 1000 states
4: repeat
5: s← sample state
6: ω← greedy order for s
7: if ∃s′ ∈ Ŝ : hSCP

ω (s′) > supω′∈Ω hSCP
ω′ (s′) then

8: Ω← Ω ∪ {ω}
9: until time spent in function ≥ T

10: return Ω

heuristic h and a given state s, it computes the fraction of
h(s) over the costs “stolen” by h, i.e., the amount of costs
that h wants to steal from other heuristics for preserving its
estimates. Then the greedy method orders heuristics by their

h
stolen fractions in decreasing order. As in previous work on
SCP, we focus on abstraction heuristics (Helmert, Haslum,
and Hoffmann 2007).

Offline Diversification of SCP Heuristics Most of the
previous work on the topic precomputes SCPs offline, i.e.,
before the search and then computes the maximum over the
SCP heuristic estimates for a given state during the search.
Algorithm 2 shows the strongest offline SCP algorithm from
the literature (Seipp, Keller, and Helmert 2020). It samples
1000 states Ŝ with random walks (line 3) and then itera-
tively samples a new state s (line 5), computes a greedy or-
der ω for s (line 6) and keeps ω if it is diverse, that is, hSCP

ω
yields a higher heuristic estimate for any of the samples in
Ŝ than all previously stored orders (lines 7–8). (The supre-
mum of the empty set is −∞.) The offline diversification
procedure stops and returns the found set of orders Ω af-
ter reaching a given time limit. This last characteristic is the
main drawback of the algorithm: the A∗ search can only start
after the offline diversification finishes and so far there is no
good stopping criterion except for a fixed time limit. Seipp,
Keller, and Helmert (2020) showed that a limit of 1000 sec-
onds leads to solving the highest number of IPC benchmarks
in 30 minutes, but such a high time limit obviously bloats the
solving time for many tasks, especially for those that blind
search would solve instantly.

Online Computation of SCP Heuristics Instead of pre-
computing SCP heuristics before the search, we can also
compute them online, i.e., during the search. This approach,
which we call online-nodiv, computes a greedy order and the
corresponding SCP heuristic for each state evaluated dur-
ing the search. By design, online-nodiv can start the A∗

search immediately and it has access to the states that are
actually evaluated by A∗ and not only to randomly sam-
pled states like the offline diversification procedure. As a
result, the online-nodiv method has been shown to work
well for landmark heuristics (Seipp, Keller, and Helmert
2017). However, computing an SCP over abstraction heuris-

Algorithm 3 Online diversification. Simultaneously diver-
sify a set of orders Ω for SCP and compute the maximum
over all induced SCP heuristic values for a given state s.

1: function COMPUTEHEURISTIC(Ω, s)
2: if SELECT(s) and time spent in function < T then
3: ω← greedy order for s
4: if hSCP

ω (s) > supω∈Ω hSCP
ω (s) then

5: Ω← Ω ∪ {ω}
6: return maxω∈Ω hSCP

ω (s)

tics for each evaluated state slows down the heuristic eval-
uation so much that the online variant solves much fewer
tasks than precomputed SCP heuristics (Seipp, Keller, and
Helmert 2020). This kind of result is typical for optimal clas-
sical planning: more work per evaluated state often results
in better estimates but does not outweigh the slower evalua-
tion speed (e.g., Karpas, Katz, and Markovitch 2011; Seipp,
Pommerening, and Helmert 2015).

Online Diversification of SCP Heuristics
In this work, we combine ingredients of the offline and
online-nodiv variants to obtain the benefits of both, i.e., fast
solving times and high total coverage. More precisely, we
interleave heuristic diversification and the A∗ search: for a
subset of the evaluated states, we compute a greedy order
and store the corresponding SCP heuristic if it yields a more
accurate estimate for the state at hand than all previously
stored SCP heuristics.

Algorithm 3 shows pseudo-code for the approach, which
adapts the COMPUTEHEURISTIC function used to evaluate
a state. Before COMPUTEHEURISTIC is called for the first
time, we initialize the set of heuristic orders Ω for SCP to be
the empty set.1 When evaluating a state s, we let the state se-
lection function SELECT decide whether to use s for diversi-
fying Ω (line 2). We discuss several state selection functions
below, but all of them select the initial state for diversifi-
cation. If s is selected, we compute a greedy order ω for s
(line 3) and check whether ω induces an SCP heuristic hSCP

ω
with a higher estimate for s than all previously stored or-
ders (line 4). If that is the case, we store ω (line 5). Finally,
we return the maximum heuristic value for s over all SCP
heuristics induced by the stored orders (line 6).

Compared to offline diversification, this online diversi-
fication algorithm has the advantage that it allows the A∗

search to start immediately and it doesn’t need to sample
states with random walks, but can judge the utility of storing
an order based on states that are actually evaluated during
the search. Compared to computing a saturated cost parti-
tioning heuristic for each evaluated state (online-nodiv), on-
line diversification evaluates states much faster and conse-
quently solves many more tasks.

1Note that we could initialize Ω with a set of orders diversified
offline. However, preliminary experiments showed that this only
has a mild advantage over pure offline and pure online variants, so
we only consider the pure variants here.



Time Limit
For abstraction heuristics, the offline diversification can per-
form two rather subtle optimizations compared to the on-
line diversification: after precomputing all SCP heuristics,
we can delete all abstract transition systems from memory,
since during the search we only need the abstraction func-
tions, which map from concrete to abstract states. Further-
more, for abstractions that never contribute any heuristic in-
formation under the set of precomputed orders, we can even
delete the corresponding abstraction functions (Seipp 2018).
While both optimizations often greatly reduce the memory
footprint, the latter also speeds up the heuristic evaluation
since we need to map the concrete state to its abstract coun-
terpart for fewer abstractions.

To allow the online diversification to do these two opti-
mizations, we need to stop the diversification eventually. We
therefore introduce a time limit T and only select a state for
diversification (line 2) if the total time spent in COMPUTE-
HEURISTIC is less than T .

State Selection Strategies
We now discuss three instantiations of the SELECT function,
i.e., strategies for choosing the states for which to diversify
the set of orders.

Interval The first strategy selects every i-th evaluated state
for a given value of i. The motivation for this strategy is to
distribute the time for diversification across the state space,
in order to select states for diversification that are differ-
ent enough from each other to let the corresponding SCP
heuristics generalize to many unseen states. Note that for
i=1 this strategy selects all states until hitting the diversifi-
cation time limit T . For i=1 and T=∞ the resulting heuris-
tic dominates the online SCP variant without diversification
(online-nodiv), because both heuristics compute the same
SCP heuristic for the currently evaluated state, but the vari-
ant with diversification also considers all previously stored
orders.

Novelty This strategy makes the notion of “different
states” explicit by building on the concept of novelty
(Lipovetzky and Geffner 2012). Novelty is defined for fac-
tored states spaces, i.e., where each state s is defined by a set
of atoms (atomic propositions) that hold in s. The novelty of
a state s is the size of the smallest conjunction of atoms that
is true in s and false in all states previously evaluated by the
search. For a given value of k, the novelty strategy selects a
state if it has a novelty of at most k.

Bellman The last strategy selects a state s if the maximum
over the currently stored SCP heuristics hSCP

Ω violates the
Bellman optimality equation (1957) for s and its successor
states, i.e., if hSCP

Ω (cost, s) < min
s

a−→s′∈T hSCP
Ω (cost, s′) +

cost(a), where T is the set of transitions in the planning task.
Whenever the Bellman optimality equation is violated for a
state s, we know that the current estimate for s is lower than
the true goal distance of s, in which case it seems prudent to
select s for diversification.

Experiments
We implemented online diversification for saturated cost
partitioning in the Fast Downward planning system
(Helmert 2006) and used the Downward Lab toolkit (Seipp
et al. 2017) for running experiments on Intel Xeon Silver
4114 processors. Our benchmark set consists of all 1827
tasks without conditional effects from the optimal sequen-
tial tracks of the International Planning Competitions 1998–
2018. We limit time by 30 minutes and memory by 3.5 GiB.
All benchmarks, code and experiment data have been pub-
lished online (Seipp 2020).

For the heuristic set on which SCP operates, we use the
combination of pattern databases found by hill climbing
(Haslum et al. 2007), systematic pattern databases of sizes 1
and 2 (Pommerening, Röger, and Helmert 2013) and Carte-
sian abstractions of landmark and goal task decompositions
(Seipp and Helmert 2018). When comparing planning algo-
rithms, we focus on the number of solved tasks, i.e., the cov-
erage of a planner and its time score (used for the agile track
of IPC 2018). The time score of a planner P for a task that
P solves in t seconds is defined as 1− log(t)

log(T ) , where T is the
time limit, i.e., 1800 seconds in our case. The time score is
0 if P fails to solve the task within 1800 seconds. The total
coverage and time score of a planner is the sum of its scores
over all tasks.

Reevaluating States
The offline diversification algorithm finds a set of heuristic
orders and maximizes over the corresponding SCP heuris-
tics during the search. With such a fixed set of orders, the
overall heuristic value of a state never changes. When we
diversify the set of orders online during the search however,
the heuristic estimate of a state s can increase after the time
when s is generated, evaluated and added to the open list.
Consequently, the heuristic estimates of states in the open
list may be too low and it might be beneficial to reeval-
uate each state when retrieving it from the open list and
postponing its expansion if its heuristic value has increased.
To test this, we compare online diversification without and
with state reevaluations in Table 1 (columns on-stable and
online). The results show that reevaluating states increases
the number of solved tasks in three domains (scanalyzer,
tetris and tidybot) and never lets coverage decrease.

Our implementation uses the fact that we only need to
reevaluate a state for the additional orders that we stored
since its last evaluation. This minimizes the overhead in-
curred by the state reevaluations and makes the online vari-
ant solve tasks faster than on-stable in many domains (see
right part of Table 1). Due to these results we let all online
diversification variants reevaluate states in the experiments
below.

State Selection Strategies
In the next experiment, we compare the different instantia-
tions of the SELECT function. The left and middle parts of
Table 2 hold per-domain and overall coverage results for the
interval strategy with different intervals, the novelty strategy
for k=1 and k=2 and the Bellman strategy. All strategies use
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agricola (20) 0 0 0 0 0.0 0.0 0.0 0.0
airport (50) 34 24 34 34 2.5 18.5 26.1 26.1
barman (34) 4 0 4 4 0.3 0.0 2.0 1.8
blocks (35) 28 20 28 28 2.2 19.5 29.1 29.1
childsnack (20) 0 0 0 0 0.0 0.0 0.0 0.0
data-network (20) 14 11 14 14 1.1 7.2 12.1 12.1
depot (22) 13 6 13 13 1.0 3.3 9.6 9.8
driverlog (20) 15 7 15 15 1.1 4.3 10.5 10.7
elevators (50) 44 12 44 44 3.4 2.6 25.9 26.6
floortile (40) 6 0 6 6 0.3 0.0 0.8 0.8
freecell (80) 68 30 68 68 4.8 10.9 35.8 36.1
ged (20) 19 7 19 19 1.5 4.7 12.1 12.2
grid (5) 3 1 3 3 0.2 1.0 2.2 2.3
gripper (20) 8 6 8 8 0.6 4.8 7.0 6.8
hiking (20) 14 8 15 15 1.0 5.1 10.9 10.7
logistics (63) 39 19 39 39 2.8 11.8 25.2 26.0
miconic (150) 144 133 144 144 11.2 80.6 131.6 131.9
movie (30) 30 30 30 30 2.4 42.7 42.4 42.6
mprime (35) 29 24 29 29 2.3 19.1 26.5 26.7
mystery (30) 19 15 19 19 1.5 12.6 17.8 17.8
nomystery (20) 20 12 20 20 1.5 8.0 15.3 15.4
openstacks (100) 53 21 53 53 3.8 12.0 29.8 30.0
organic (20) 7 7 7 7 0.5 6.0 6.1 6.1
organic-split (20) 10 6 10 10 0.7 1.9 4.2 4.2
parcprinter (50) 38 34 38 38 2.9 28.2 34.1 34.2
parking (40) 13 1 13 13 0.9 0.1 5.4 5.4
pathways (30) 5 4 5 5 0.3 5.1 5.5 5.4
pegsol (50) 48 42 48 48 3.7 22.8 35.6 35.4
petri-net (20) 0 0 0 0 0.0 0.0 0.0 0.0
pipes-nt (50) 25 14 25 25 1.8 10.4 19.0 18.7
pipes-t (50) 18 8 18 18 1.3 5.1 12.1 12.0
psr-small (50) 50 49 50 50 3.9 48.2 54.6 54.5
rovers (40) 8 7 8 8 0.6 6.6 8.1 8.1
satellite (36) 7 6 7 7 0.5 5.5 7.3 7.2
scanalyzer (50) 35 7 33 35 2.7 5.7 19.6 21.2
snake (20) 12 6 12 12 0.9 2.5 7.6 7.4
sokoban (50) 50 33 50 50 3.8 19.6 39.5 39.9
spider (20) 15 7 15 15 1.1 2.9 8.6 8.5
storage (30) 16 14 16 16 1.2 12.5 17.1 17.1
termes (20) 12 0 12 12 0.8 0.0 3.2 3.2
tetris (17) 11 3 10 11 0.8 1.3 5.4 5.5
tidybot (40) 25 18 24 25 1.8 5.8 15.3 15.4
tpp (30) 8 7 8 8 0.6 8.0 8.9 8.9
transport (70) 34 20 36 36 2.6 10.4 22.4 22.4
trucks (30) 13 9 13 13 0.9 5.3 8.6 8.8
visitall (40) 30 33 30 30 2.3 27.8 30.3 30.3
woodwork (50) 49 38 49 49 3.8 24.3 40.5 44.7
zenotravel (20) 13 7 13 13 1.0 4.9 8.7 8.8

Sum (1827) 1156 766 1155 1159 86.8 539.8 900.4 908.7

Table 1: Coverage and time scores of four SCP variants:
offline diversification (offline), online computation without
diversification (on-nodiv), and online diversification with-
out (on-stable) and with state reevaluation (online). All di-
versifying variants use a time limit of 1000 seconds, and
on-stable and online use interval selection with i=10K.
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bellman – 7 5 5 4 5 5 4 4 1145 995
novelty-1 7 – 4 7 5 3 6 5 3 1153 1125
interval-1 7 5 – 4 5 4 5 4 2 1153 803
interval-10 7 8 4 – 6 4 4 2 3 1154 957
novelty-2 7 6 7 8 – 6 4 3 4 1157 1058
interval-100K 8 6 7 7 6 – 5 4 1 1156 1137
interval-1K 10 8 9 8 4 5 – 4 2 1157 1106
interval-100 8 8 7 6 5 4 4 – 3 1157 1061
interval-10K 11 8 8 9 6 4 4 6 – 1159 1125

Table 2: Left: per-domain coverage comparisons of differ-
ent state selection strategies. Each variant uses at most 1000
seconds for online diversification. The entry in row r and
column c shows the number of domains in which strategy
r solves more tasks than strategy c. For each strategy pair
we highlight the maximum of the entries (r, c) and (c, r) in
bold. Middle: total number of solved tasks with a time limit
of 1000 seconds for online diversification. Right: solved
tasks without a diversification time limit.

a time limit of 1000 seconds for the online diversification.
We see that overall coverage is similar for all interval and
novelty variants (1153–1159 solved tasks) and that the Bell-
man strategy solves fewer tasks in total than the other strate-
gies. We obtain the highest total coverage by selecting every
ten thousandth evaluated state (interval-10K) and therefore
we use this strategy in all other experiments.

Time Limit
The middle and right parts of Table 2 confirm that we need
a time limit for the online diversification. For all state selec-
tion strategies total coverage decreases when the time limit
of 1000 seconds for the diversification is lifted. The cover-
age loss is higher, the more states we may select for diversi-
fication. For example, the coverage of the novelty-1 variant
only decreases by 28 tasks, because the number of selected
states is limited by the number of atoms A in the planning
task. For novelty-2 coverage decreases by 99 tasks, because
at most |A|2 states can be selected.

Samples
The offline and online diversification algorithms differ in
two main respects: for which states they compute orders and
which states they use to decide whether to store an order. For
both of these decisions, the offline variant uses sample states
obtained with random walks, whereas the online variant uses
states evaluated during the search. In this subsection, we an-
alyze whether online diversification benefits from consider-
ing randomly sampled states.
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samples – 2 2 1158 865.5
both 2 – 1 1158 865.5
state 3 2 – 1159 908.7

Table 3: Comparison of three different online diversifica-
tion methods. All methods limit the time for diversification
to 1000 seconds, compute an order for each ten thousandth
evaluated state and reevaluate states before expanding them.
They differ in the set of states Ŝ for which they diversify the
set of stored orders Ω. For samples the set Ŝ contains 1000
sample states obtained with random walks before the search.
When using the state method Ŝ only contains the currently
evaluated state (as in Algorithm 3). The both method sets Ŝ
to the union of the samples and the evaluated state. For an
explanation of the data, see Table 2.

1s 10s 100s 1000s 1200s 1500s

Coverage offline 1056 1145 1159 1156 1148 1128
online 1102 1135 1153 1159 1154 1146

Time Score offline 791.2 690.7 420.3 86.8 59.2 25.9
online 920.6 929.7 919.1 908.7 906.3 906.6

Table 4: Coverage and time scores for offline and online di-
versification using different time limits for diversification.
The online variants use the interval-10K strategy.

It is unlikely that computing orders for randomly sampled
states is preferable to computing orders for states that the
search actually evaluates. However, it could be beneficial
to use a set of sample states when judging whether an or-
der should be stored. In Table 3, we evaluate this hypothesis
by comparing three different choices for the question which
states to consider when deciding whether an order should be
stored. The data shows that we solve almost the same num-
ber of tasks in total and per domain regardless of whether
we take into account only a single state, a set of 1000 sam-
ples or both. However, storing an order when it improves
the heuristic value for the currently evaluated state results in
shorter runtimes than for the other two variants in Table 3,
which is why we only consider this variant in Algorithm 3
and all other experiments.

Offline vs. Online Diversification
We now evaluate different time limits and compare the
resulting algorithms to their offline counterparts. The top
part of Table 4 confirms the result from Seipp, Keller, and
Helmert (2020) that we cannot simply reduce the time for of-
fline diversification (to 1 or 10 seconds) in order to minimize
overall runtime, without sacrificing total coverage. Offline
diversification solves the highest number of tasks (1159)
with a time limit T of 100 seconds and slightly fewer tasks
(1156) with T=1000s. Using lower or higher time limits
leads to solving much fewer tasks. The results are similar for

100 101 102 103
100

101

102

103

fa
ile

d

failed

offline

on
lin

e

Figure 1: Number of stored orders by offline and online di-
versification. Both variants use a diversification time limit
of 1000 seconds and the online variant uses the interval state
selection strategy with i=10K.

online diversification, which solves the most tasks (1159) for
T=1000s and slightly fewer tasks (1153–1154) for T=100s
and T=1200s. Online diversification is less susceptible to
the chosen time limit than offline diversification: while the
difference between the maximum and minimum coverage
score for offline diversification is 103 tasks, the correspond-
ing value for online diversification is only 57 tasks. Table 1
shows detailed coverage and time score results for the of-
fline and online variants that use at most 1000 seconds for
diversification (among two other variants).

Before we analyze the runtimes of the different variants,
we compare the number of orders stored by offline and on-
line diversification (using 1000 seconds for diversification)
in Figure 1. We can see that the online variant tends to
store fewer orders than the offline counterpart, often by more
than one order of magnitude. More precisely, online diver-
sification stores fewer orders than offline diversification for
1221 tasks, while the opposite is the case for 296 tasks. For
SCP the increased accuracy from using more orders usually
outweighs the increased evaluation time (Seipp, Keller, and
Helmert 2020). Therefore, Figure 1 suggests that the online
diversification stores fewer redundant orders than the offline
diversification, because otherwise the coverage gap between
the two variants (3 tasks) would be larger.

Not only does online diversification select useful orders
and obtain high coverage scores, but it also drastically re-
duces the overall runtime for many tasks compared to offline
diversification. The bottom part of Table 4 reveals that the
time score of all online variants is higher than the best time
score of all offline variants. The time score gap between the
two variants is 129.4 points for T=1s and it grows to 880.7
points for T=1500s.

Figure 2 shows the cumulative number of solved tasks
over time by offline and online diversification (with
T=1000s) and the variant that computes an SCP heuristic
for each evaluated state without storing any orders. The lat-
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Figure 2: Number of solved tasks over time.

ter variant (online-nodiv) solves the simpler tasks quickly,
but only reaches a total coverage of 766 tasks. The offline
variant achieves a much higher total coverage (1156 tasks),
but it can only start finding solutions after its diversification
phase ended.

The online variant with diversification combines the ad-
vantages of the other two approaches and achieves both short
runtimes and high total coverage (1159 tasks). For example,
online-1000s solves 1121 tasks before offline-1000s even
finishes the diversification phase. After reaching the diver-
sification time limit, the online and offline variants solve
roughly the same number of additional tasks per time step.

For all time limits between 1 and 1800 seconds, online
diversification solves more tasks than offline diversification
and the online-nodiv variant. The right part of Table 1 holds
per-domain time scores for the algorithms in Figure 2. The
numbers show that online diversification is faster than offline
diversification in all domains, and usually achieves much
higher time scores (columns offline and online in Table 1).

Related Work
The work that is most closely related to ours simultane-
ously refines a set of Cartesian abstraction heuristics and a
set of SCP heuristics over them during an A∗ search (Eifler
and Fickert 2018). Whenever the maximum over the SCP
heuristics violates the Bellman optimality equation (1957)
for a state s and its successor states, the authors either re-
fine one of the abstractions until the heuristic estimate for s
increases, merge two abstractions or compute a new greedy
order ω for s (using the h scoring function, Seipp, Keller,
and Helmert 2020) and add hSCP

ω to the set of SCP heuris-
tics. Their strongest algorithm compares favorably against
a version that only refines the abstractions offline and only
computes a single SCP heuristic over them. However, both
the online and the offline version are outperformed by the
version that diversifies a set of SCP heuristics over a fixed
set of Cartesian abstraction heuristics, i.e., the offline SCP
variant we describe in Algorithm 2.

The literature contains additional approaches that im-
prove heuristics online during the search. For example, the
SymBA∗ planner repeatedly switches between a symbolic
forward search and symbolic backward searches in one of
multiple abstractions (Torralba, Linares López, and Bor-
rajo 2016). In the setting of satisficing planning, Fickert
and Hoffmann (2017) refine the FF heuristic (Hoffmann and
Nebel 2001) during enforced hill-climbing and greedy best-
first searches.

As a final example, Franco and Torralba (2019) interleave
the precomputation of a symbolic abstraction heuristic and
the symbolic search that uses it, by iteratively switching be-
tween the two phases. In each round they double the amount
of time given to each phase. Our work is orthogonal to theirs
since the two approaches focus on interleaving two different
types of precomputation with the search.

Conclusions
The best previously-known method for computing diverse
SCP heuristics uses a fixed amount of time for sampling
states and computing SCP heuristics for them. It yields
strong heuristics, but needs a long precomputation phase.
Computing an SCP heuristic for each evaluated state yields
even better estimates and needs no precomputation phase,
but it greatly slows down the search. We showed that by
diversifying SCP heuristics online, we can combine the
strengths of both approaches and obtain an algorithm that
needs no sample states nor precomputation phase, evaluates
states quickly and achieves high coverage.

Currently, the strongest optimal classical planners com-
pute multiple cost partitionings over abstraction heuristics
and use them in an A∗ search. There are three steps that
can take long before these planners can start their search:
deciding which abstractions to build (i.e., pattern selection
for pattern database heuristics), building the abstractions and
computing orders for cost partitioning algorithms. Franco
and Torralba (2019) show how to interleave the search with
building an abstraction and our paper shows how to effi-
ciently compute orders online. It will be interesting to see
how we can decide during the search which abstractions to
build and how we can combine all of these techniques.
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