Background	Fluent Merging	Fluent Selection	Same object method	Mutex threshold

Fluent Merging for Classical Planning Problems

Jendrik Seipp Malte Helmert

Albert-Ludwigs-Universität Freiburg, Germany

ICAPS 2011 Workshop on Knowledge Engineering for Planning and Scheduling June 12th, 2011

- $in(ball, room1) \in {True, False}$
- $in(ball, room2) \in {True, False}$
- $carry(ball, arm) \in {True, False}$

- $in(ball, room1) \in {True, False}$
- $in(ball, room2) \in {True, False}$
- $carry(ball, arm) \in {True, False}$
- ball_pos $\in \{in(ball, room1), in(ball, room2), carry(ball, arm)\}$

- $in(ball, room1) \in {True, False}$
- in(ball, room2) \in {True, False}
- $carry(ball, arm) \in {True, False}$
- ball_pos $\in \{in(ball, room1), in(ball, room2), carry(ball, arm)\}$
- $robby_pos \in \{robby_in(room1), robby_in(room2)\}$
- state_arm \in {free(arm), full(arm)}

Background ●0			
Backgrou	und		

- Paper by van den Briel, Kambhampati and Vossen at ICAPS 2007 Heuristics workshop
- Mutex groups in Fast Downward

Background

00

Fast Downward Planning System

- Translation
- Knowledge compilation
- Search

Background ○●

luent Merging

Iuent Selection

Same object method

Mutex threshold

Fast Downward Planning System

- Translation
- Fluent Merging
- Knowledge compilation
- Search

	Fluent Merging ●0000000		
Merging t	two variables		

Definition (SAS⁺ planning task)

$$\Pi = \langle \mathcal{V}, \mathcal{O}, s_0, s_\star \rangle$$

• Merging also generalized for conditional effects.

	Fluent Merging 0000000		
Variables			

• $\mathcal{V} = \{ \text{ball_pos, robby_pos, arm} \}$

- $\mathcal{D}_{ball_{pos}} = \{in(ball, room1), in(ball, room2), carry(ball, arm)\}$
- $\mathcal{D}_{robby_pos} = \{robby_in(room1), robby_in(room2)\}$
- $\mathcal{D}_{\text{state_arm}} = \{\text{free}(\text{arm}), \text{full}(\text{arm})\}$

	Fluent Merging 0●000000		
Variables			

- $\mathcal{V} = \{ \text{ball_pos, robby_pos, arm} \}$
 - $\mathcal{D}_{ball_{pos}} = \{in(ball, room1), in(ball, room2), carry(ball, arm)\}$
 - $\mathcal{D}_{robby-pos} = \{robby-in(room1), robby-in(room2)\}$
 - $\mathcal{D}_{\text{state}_arm} = \{\text{free}(\text{arm}), \text{full}(\text{arm})\}$
- New variable: $ball_{pos} \otimes state_{arm}$

$\mathcal{D}_{\mathrm{ball_pos}\otimes\mathrm{state_arm}}$	
$in(ball, room1) \otimes free(arm)$	$in(ball, room1) \otimes full(arm)$
$in(ball, room2) \otimes free(arm)$	$in(ball, room2) \otimes full(arm)$
$\operatorname{carry(ball, arm)} \otimes \operatorname{free(arm)}$	$\operatorname{carry(ball, arm)} \otimes \operatorname{full(arm)}$

	Fluent Merging 0000000		
Variables			

- $\mathcal{V} = \{ \text{ball_pos, robby_pos, arm} \}$
 - $\mathcal{D}_{ball_{pos}} = \{in(ball, room1), in(ball, room2), carry(ball, arm)\}$
 - $\mathcal{D}_{robby-pos} = \{robby-in(room1), robby-in(room2)\}$
 - $\mathcal{D}_{\text{state}_arm} = \{\text{free}(\text{arm}), \text{full}(\text{arm})\}$
- New variable: $ball_{pos} \otimes state_{arm}$

$\mathcal{D}_{\mathrm{ball_pos}\otimes\mathrm{state_arm}}$	
in(ball, room1) \otimes free(arm)	in(ball, room1) \otimes full(arm)
$in(ball, room2) \otimes free(arm)$	in(ball, room2) \otimes full(arm)
	$\operatorname{carry(ball, arm)} \otimes \operatorname{full(arm)}$

	Fluent Merging 0●000000		
Variables			

- $\mathcal{V} = \{ \text{ball_pos, robby_pos, arm} \}$
 - $\mathcal{D}_{ball_{pos}} = \{in(ball, room1), in(ball, room2), carry(ball, arm)\}$
 - $\mathcal{D}_{robby-pos} = \{robby-in(room1), robby-in(room2)\}$
 - $\mathcal{D}_{\text{state}_arm} = \{\text{free}(\text{arm}), \text{full}(\text{arm})\}$
- New variable: $ball_{pos} \otimes state_{arm}$

	Fluent Merging 00●00000		
Operator	1		

• move-room1-room2 = $\langle \{ robby-in(room1) \}, \\ \{ robby-in(room2) \} \rangle$

	Fluent Merging 0000000		
Operato	or 2		

 pick-ball-in-room1 =
 {{robby-in(room1), in(ball, room1), free(arm)},
 {carry(ball, arm), full(arm)}

	Fluent Merging 0000000		
Operato	or 2		

• pick-ball-in-room1 = $\langle \{robby-in(room1), in(ball, room1) \otimes free(arm) \}, \{carry(ball, arm) \otimes full(arm) \} \rangle$

	Fluent Merging 00000000		
Operator	3		

 drop-ball-in-room1 =
 {{robby-in(room1), carry(ball, arm)},
 {in(ball, room1), free(arm)}
 }

	Fluent Merging 00000000		
Operator	3		

	ackground Fluent Merging o oooooooo		
Operator	3		

• drop-ball-in-room1-with-full(arm) = $\langle \{robby-in(room1), carry(ball, arm) \otimes full(arm) \}, \{in(ball, room1) \otimes free(arm) \} \rangle$

	Fluent Merging 00000000		
Initial s	tate		

• $s_0 = \text{robby-in(room1)} \land \text{in(ball, room1)} \land \text{free(arm)}$

	Fluent Merging 0000000		
Initial s	tate		

• $s_0 = \text{robby-in(room1)} \land \text{in(ball, room1)} \otimes \text{free(arm)}$

	Fluent Merging 000000●0		
Goal			

- $s_{\star} = in(ball, room2)$
- in(ball, room2) \otimes free(arm) \rightarrow in(ball, room2)?

	Fluent Merging 000000●0		
Goal			

- $s_{\star} = in(ball, room2)$
- in(ball, room2) \otimes free(arm) \rightarrow in(ball, room2)?
- pseudo-op = $\langle \{in(ball, room2) \otimes free(arm)\}, \{in(ball, room2)\} \rangle$
- $\mathcal{D}_{ball_pos\otimes state_arm} \leftarrow \mathcal{D}_{ball_pos\otimes state_arm} \cup \{in(ball, room2)\}$

 Background
 Fluent Merging
 Fluent Selection
 Same object method
 Mutex threshold

 Why is Fluent Merging interesting for KEPS?

• Fluent Merging as an attempt to show that the underlying representation is not set in stone

		Fluent Selection ●00		
Fluent S	Selection			

- Random variables
- Number of mutexes
- Minimize total domain size
- Heavily connected variables in causal graph
- Two-cycle pairs in causal graph
- Goal variables
- Minimize number of operators

	Fluent Selection 0●0		

Experiments - Settings

- 5 merges, only variable pairs
- Worse performance with bigger values
- 30 minutes, 2 GB memory
- \bullet Greedy best-first search with deferred evaluation and $h^{\rm cea}$ $_{\rm (Helmert and Geffner, 2008)}$

kground	

Fluent Selection

Same object method

Mutex threshold 00

Experiments - Results

Domain	no-merge	rand	mutex	size	conn	cycles	goals	ops
depot (22)	17	11	14	12	15	15	13	14
freecell (80)	78	75	77	76	72	72	57	37
pathways (30)	15	14	<u>16</u>	<u>17</u>	14	14	13	15
pipes-nt (50)	38	5	8	16	14	14	9	16
pipes-t (50)	24	9	3	17	11	8	9	15
rovers (40)	34	31	34	<u>35</u>	34	34	34	24
schedule (150)	60	58	59	59	54	52	39	60
tpp (30)	28	20	24	24	22	24	23	16
trucks (30)	17	15	14	16	14	14	16	6
Total (880)	709	616	625	660	619	608	583	548

- Each method best in at least one domain
- No method comes close to reference

			Same object method ●00	
Same ob	iect method	J		

- First-order PDDL representation
- Examples:
 - $\mathcal{D}_v = \{ \text{painted}(\text{chair1}), \text{not-painted}(\text{chair1}) \}$

		Same object method ●00	
Same of	piect method		

- First-order PDDL representation
- Examples:
 - $\mathcal{D}_v = \{ \text{painted}(\text{chair1}), \text{not-painted}(\text{chair1}) \}$

Background Fluent Merging 00 0000000			Same object method ●00	
Same of	oject method	1		

- First-order PDDL representation
- Examples:
 - $\mathcal{D}_v = \{ \text{painted}(\text{chair1}), \text{not-painted}(\text{chair1}) \}$
 - $\mathcal{D}_u = \{ \operatorname{at}(\operatorname{c2} \operatorname{loc1}), \operatorname{at}(\operatorname{c2} \operatorname{loc2}), \operatorname{at}(\operatorname{c2} \operatorname{loc3}) \}$

			Same object method ●00	
Same o	hiect method	1		

- First-order PDDL representation
- Examples:
 - $\mathcal{D}_v = \{ \text{painted}(\text{chair1}), \text{not-painted}(\text{chair1}) \}$
 - $\mathcal{D}_u = \{ \operatorname{at}(\operatorname{c2} \operatorname{loc1}), \operatorname{at}(\operatorname{c2} \operatorname{loc2}), \operatorname{at}(\operatorname{c2} \operatorname{loc3}) \}$

		Same object method ●00	
Same of	viect method		

- First-order PDDL representation
- Examples:
 - $\mathcal{D}_v = \{ \text{painted}(\text{chair1}), \text{not-painted}(\text{chair1}) \}$
 - $\mathcal{D}_u = \{ \operatorname{at}(\operatorname{c2} \operatorname{loc1}), \operatorname{at}(\operatorname{c2} \operatorname{loc2}), \operatorname{at}(\operatorname{c2} \operatorname{loc3}) \}$
- Merge only variables that speak about the same object

erging

Fluent Selection

Same object method

Experiments - Settings

- Discouraging results with optimal configurations
- Greedy best-first search with deferred evaluation and
 - h^{cea} : Context-enhanced additive heuristic (Helmert and Geffner, 2008)
 - h^{CG} : Causal graph heuristic (Helmert 2004)
 - h^{FF} : FF/additive heuristic (Hoffmann and Nebel, 2001)

Background	

Fluent Merging

Fluent Selection

Same object method ○○●

Mutex threshold

Experiments - Results

	Merges h ^{FF}						
Domain	0	2	5	10	15	20	30
depot (22)	19	18	19	20	20	20	20
freecell (80)	76	80	78	77	79	78	75
miconic (150)	150	150	150	150	150	80	80
pprinter (30)	23	22	22	22	22	22	22
pipes-nt (50)	43	41	42	42	43	42	42
pipes-t (50)	38	39	38	37	39	37	37
rovers (40)	40	40	40	40	40	40	37
schedule (150)	150	149	149	149	149	149	148
sokoban-sat (30)	24	28	29	28	28	28	28
storage (30)	20	20	20	20	19	19	19
trucks (30)	19	17	17	18	18	18	18
wood-sat (30)	29	29	28	28	28	28	29
Total (908)	820	822	821	820	824	750	744

			Mutex threshold ●0
Mutex th	nreshold		

- Suggested by reviewer
- $\frac{|\mathcal{D}_{a\otimes b}|}{|\mathcal{D}_{a}|\cdot|\mathcal{D}_{b}|} < x$?
- For gripper example: $\frac{(3\cdot 2)-3}{3\cdot 2}=0.5$

Jent Merging

Fluent Selection

Same object method

Mutex threshold - Experiments

			70%			80%			90%	
# Merges \rightarrow	0	2	5	10	2	5	10	2	5	10
depot (22)	17	18	17	18	19	17	18	20	18	19
freecell (80)	76	76	76	75	76	76	75	76	76	76
trucks-strips (30)	18	21	17	17	21	17	17	21	17	17
Total (132)	111	115	110	110	116	110	110	117	111	112

Table: Greedy best-first search with deferred evaluation and $h^{\rm FF}$

 $\bullet\,$ Other domains: No mutexes or no change compared to $h^{\rm FF}$

Future W	ork		

- Inspect impact on heuristics in detail
- Fluent merging with boolean fluents
- Use automatic parameter configuration methods

Summary		

- First general implementation and experimental evaluation
- Improvements in some domains
- Find out which and how many fluents to merge