
Journal of Artificial Intelligence Research 67 (2020) 129–167 Submitted 08/2019; published 01/2020

Saturated Cost Partitioning for Optimal Classical Planning

Jendrik Seipp JENDRIK.SEIPP@UNIBAS.CH

Thomas Keller THO.KELLER@UNIBAS.CH

Malte Helmert MALTE.HELMERT@UNIBAS.CH

University of Basel
Basel, Switzerland

Abstract
Cost partitioning is a method for admissibly combining a set of admissible heuristic estimators

by distributing operator costs among the heuristics. Computing an optimal cost partitioning, i.e.,
the operator cost distribution that maximizes the heuristic value, is often prohibitively expensive to
compute. Saturated cost partitioning is an alternative that is much faster to compute and has been
shown to yield high-quality heuristics. However, its greedy nature makes it highly susceptible to
the order in which the heuristics are considered. We propose a greedy algorithm to generate orders
and show how to use hill-climbing search to optimize a given order. Combining both techniques
leads to significantly better heuristic estimates than using the best random order that is generated
in the same time. Since there is often no single order that gives good guidance on the whole state
space, we use the maximum of multiple orders as a heuristic that is significantly better informed
than any single-order heuristic, especially when we actively search for a set of diverse orders.

1. Introduction

A∗ search (Hart, Nilsson, & Raphael, 1968) with an admissible heuristic (Pearl, 1984) is one of the
most prominent methods for optimal classical planning (Ghallab, Nau, & Traverso, 2004). Since a
single heuristic is often unable to capture all relevant aspects of a planning task, it is desirable to
combine information from multiple heuristics. One way of doing so admissibly is to maximize over
multiple admissible heuristic estimates in each state (Holte, Felner, Newton, Meshulam, & Furcy,
2006). However, this method does not really combine multiple heuristics but merely selects the
most informative one in each state.

Cost partitioning (Katz & Domshlak, 2008; Yang, Culberson, Holte, Zahavi, & Felner, 2008) is
a more sophisticated way of combining heuristics admissibly that often produces higher estimates
than any single estimator can provide. By distributing operator costs among the heuristics, cost par-
titioning allows to sum heuristic estimates admissibly. An optimal cost partitioning (OCP) can be
computed in polynomial time for abstraction (Katz & Domshlak, 2008, 2010) and landmark (Karpas
& Domshlak, 2009) heuristics. Despite these promising theoretical guarantees, it is often too ex-
pensive to compute even a single optimal cost partitioning in practice (e.g., Pommerening, Röger, &
Helmert, 2013). Therefore, multiple approximations with varying time vs. accuracy tradeoffs have
been proposed, such as zero-one cost partitioning (e.g., Edelkamp, 2006), uniform cost partition-
ing (Katz & Domshlak, 2007), the canonical heuristic (Haslum, Botea, Helmert, Bonet, & Koenig,
2007) for pattern databases, post-hoc optimization (Pommerening et al., 2013) and Lagrangian de-
composition for optimal cost partitioning (Pommerening, Röger, Helmert, Cambazard, Rousseau,
& Salvagnin, 2019). We refer to the literature for a theoretical and experimental comparison of cost
partitioning algorithms (Seipp, Keller, & Helmert, 2017).

c©2020 AI Access Foundation. All rights reserved.

SEIPP, KELLER, & HELMERT

More recently, we introduced the saturated cost partitioning (SCP) algorithm (Seipp & Helmert,
2014, 2018), which exploits that operator costs can sometimes be decreased in a heuristic without
affecting the quality of the heuristic. Given an ordered sequence of admissible heuristics and a
cost function, the saturated cost partitioning algorithm computes all heuristic values under the given
cost function. It then assigns the smallest cost function that preserves these heuristic values to the
heuristic and continues the process with the next heuristic in the sequence and the remaining costs
that have not been assigned to a heuristic so far.

Saturated cost partitioning assigns costs greedily and is therefore susceptible to the order in
which the heuristics are considered. Our analysis reveals that just changing the order of heuristics
for saturated cost partitioning can make the difference between a perfect distance estimate and a
highly inaccurate one. To find good orders, we propose two methods: a greedy algorithm and a hill
climbing search in the space of all orders. The greedy orders and the orders that are optimized by
hill-climbing search significantly improve over random orders, and we obtain the best results using
a combination of both techniques. However, we show that it is often impossible to find a single
order that provides good guidance across the state space: orders that are accurate for some states
often turn out to be poor for others.

Maximizing over saturated cost partitioning heuristics for multiple orders allows us to use accu-
rate heuristics for many different states. Our empirical evaluation of using multiple orders shows a
significant improvement over single-order heuristics. This approach is similar to the one by Karpas,
Katz, and Markovitch (2011), who maximize over multiple precomputed cost partitionings that are
optimized for a set of sample states. Our method has the advantage that it never computes an optimal
cost partitioning, which can be prohibitively expensive even for a single state.

Finally, we show that the sets of saturated cost partitioning heuristics that are derived from
multiple orders often contain heuristics that do not contribute any additional information during the
search. Similarly to other work on heuristic subset selection (e.g., Lelis, Franco, Abisrror, Barley,
Zilles, & Holte, 2016), we try to pick a subset of heuristics that complement each other by actively
searching for multiple diverse orders. The resulting heuristic not only improves over using multiple
non-diverse orders but also compares favorably to the state of the art for optimal classical planning.

2. Transition Systems

Cost partitioning can be applied to any collection of heuristics for state-space search, and therefore
our definitions are not specific to classical planning. We first define transition systems, which are
also known as state spaces.

Definition 1 (transition systems). A transition system T is a directed, labeled graph defined by a
finite set of states S(T), a finite set of labels L(T), a set T (T) of labeled transitions s `−→ s′ with
s, s′ ∈ S(T) and ` ∈ L(T), an initial state s0(T), and a set S?(T) of goal states.

The objective in state-space search is to find a path from the initial state to a goal state.

Definition 2 (paths and goal paths). Let T be a transition system. A path from s ∈ S(T) to s′ ∈
S(T) is a sequence of transitions from T (T) of the form π = 〈s0 `1−→ s1, s1 `2−→ s2, . . . , sn−1 `n−→
sn〉, where s0 = s and sn = s′. The length of π, denoted by |π|, is n. The empty path (of length 0)
is permitted if s = s′.

A goal path from s ∈ S(T) is a path from s to any goal state s′ ∈ S?(T). Goal paths are also
called plans. We write Π?(T , s) for the set of goal paths from s in T .

130

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

So far, we have not introduced a notion of (label or path) cost. This does not mean that we con-
sider the unit-cost setting but rather that cost functions must be provided in addition to the transition
system. This separation makes it easier to consider the same transition system with varying cost
functions, which is a key concept for cost partitioning.

Definition 3 (cost functions). A cost function for transition system T is a function cost : L(T) →
R∪{−∞,∞}. A cost function cost is finite if−∞ < cost(`) <∞ for all labels `. It is non-negative
if cost(`) ≥ 0 for all labels `.

We write C(T) for the set of all cost functions for T .

For brevity, especially in examples, we sometimes use tuple notation for cost functions, writing
cost = 〈cost(l1), . . . , cost(lk)〉, assuming an (arbitrary) order on the labels of the transition system.
We speak of general cost functions when we want to emphasize that a cost function is not required
to be non-negative or finite.

3. Dealing with Negative and Infinite Values

Negative costs were already considered in previous work (Pommerening, Helmert, Röger, & Seipp,
2015). However, allowing infinite costs in cost functions goes beyond previous work and is neces-
sary to cleanly state some of our formal definitions and results. Furthermore, this extension is useful
for subset-saturated cost partitioning (Seipp & Helmert, 2019), a variant of saturated cost partition-
ing that only preserves a subset of heuristic estimates. Note that in this paper, we only consider the
variant that preserves all heuristic estimates.

Allowing infinities means that we must take care in arithmetic expressions that involve both
+∞ and −∞. We will consider two different kinds of addition. Left addition is denoted by the
regular summation operators + (infix) and

∑
(prefix) and handles infinities as ∞ + x = ∞ and

−∞ + x = −∞ for all x, including x ∈ {∞,−∞}. In particular, sums involving both kinds
of infinities evaluate to the leftmost infinite value in the sum. This operation is associative, but
not commutative. We will use left addition to combine multiple heuristic estimates within cost
partitioning.

Path addition is denoted by the operators ⊕ (infix) and
⊕

(prefix) and handles infinities as
x⊕ y =∞ iff x =∞ or y =∞, and x⊕ (−∞) = −∞⊕x = −∞ for all x 6=∞. In other words,
sums involving mixed infinities evaluate to +∞. This operation is associative and commutative.
Path addition is used to combine the costs of multiple transitions along a path. We will interpret
transitions of cost −∞ as “infinitely cheap” and transitions of cost ∞ as “non-existent”, which
explains why −∞⊕∞ = ∞: a path that uses a non-existent transition cannot really be used and
therefore has infinite cost even if it uses an infinitely cheap transition. Of course, this is just an
intuitive interpretation. The formal reason for these definitions is that they allow the usual theorems
on properties of heuristics and cost partitioning to generalize to cases involving infinite costs.

With finite values, both kinds of summation follow the usual rules of addition. Note that both
operations behave identically when at least one of the two operands is finite. In fact, in sums
involving two operands, the only difference is that −∞+∞ = −∞, while −∞⊕∞ =∞.

4. Weighted Transition Systems

By combining transition systems and cost functions, we obtain weighted transition systems.

131

SEIPP, KELLER, & HELMERT

Definition 4 (weighted transition systems). A weighted transition system is a pair 〈T , cost〉 where
T is a transition system and cost is a cost function for T .

As usual, we extend cost functions from labels to paths.

Definition 5 (cost of a path). The cost of a path π = 〈s0 `1−→ s1, . . . , sn−1 `n−→ sn〉 in a weighted
transition system 〈T , cost〉 is defined as cost(π) =

⊕n
i=1 cost(`i).

Note that by our definition of path addition (
⊕

), the cost of any path including a label of cost
∞ is∞, even if the path also includes labels of cost −∞.

We can now define the notion of optimal paths.

Definition 6 (goal distances and optimal paths). The goal distance of a state s ∈ S(T) in a weighted
transition system 〈T , cost〉 is defined as infπ∈Π?(T ,s) cost(π), where Π?(T , s) is the set of goal paths
from s in T . (The infimum of the empty set is∞.)

We write h∗T (cost, s) for the goal distance of s in 〈T , cost〉 and omit T from the notation where
the transition system does not matter or is clear from context.

A goal path π from s is optimal under the given cost function if cost(π) = h∗T (cost, s).

We define the goal distances as an infimum rather than a minimum because it is possible that no
minimum exists if there are negative-cost cycles in the transition system.

In general, we have h∗(cost, s) ∈ R∪{−∞,∞}, so goal distances can be negative or infinite. If
cost is non-negative, then so is h∗. However, finite cost does not imply finite h∗: h∗(cost, s) = −∞
can follow from cycles with negative finite cost and h∗(cost, s) =∞ from lack of goal paths.

In optimal classical planning, we are given a compact description of a transition system and a
finite non-negative cost function, and the objective is to find an optimal goal path for the initial state
or show that no such goal path exists.

5. Heuristics

Heuristics are functions that estimate the distance of a given state to a goal state (Pearl, 1984). The
literature usually defines heuristics as functions only of states, i.e., for a fixed cost function. We
define them as functions of cost functions and states so that we can introduce the notion of cost
partitioning cleanly.

Definition 7 (heuristics, goal-awareness, admissibility and consistency). A heuristic for a transition
system T is a function h : C(T)× S(T)→ R ∪ {−∞,∞}.

• Heuristic h is goal-aware if h(cost, s) ≤ 0 for all cost functions cost ∈ C(T) and goal states
s ∈ S?(T).

• Heuristic h is admissible if h(cost, s) ≤ h∗T (cost, s) for all cost functions cost ∈ C(T) and
all states s ∈ S(T).

• Heuristic h is consistent if h(cost, s) ≤ cost(`)⊕h(cost, s′) for all cost functions cost ∈ C(T)

and all transitions s `−→ s′ ∈ T (T).

132

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

Heuristics are used in heuristic search algorithms like A∗ (Hart et al., 1968) or greedy best-first
search (Doran & Michie, 1966) to find a path from the initial state to a goal. Greedy best-first search
does not guarantee optimality of solutions, and A∗ requires an admissible heuristic to guarantee that
solutions are optimal. Consistency is usually desirable for A∗ to avoid the extra work that is caused
by reopening of states. It is well-known that if only finite non-negative cost functions are permitted,
goal-aware and consistent heuristics are admissible (Russell & Norvig, 1995). In Appendix A.1, we
show that this result continues to hold for general cost functions.

6. Abstraction Heuristics

In all cases where we consider specific heuristics in this paper, these are abstraction heuristics
(e.g., Edelkamp, 2001; Helmert, Haslum, & Hoffmann, 2007; Katz & Domshlak, 2008, 2010).
An abstraction heuristic for a transition system T is defined by a transition system T ′ called the
abstract transition system and a function α : S(T) → S(T ′) called the abstraction function.
The abstraction mapping must preserve goal states and transitions; we refer to the literature for
details (Helmert et al., 2007). Heuristic values are computed by mapping states of T (concrete
states) to states of T ′ (abstract states) and computing the goal distance in the abstract transition
system: h(cost, s) = h∗T ′(cost, α(s)). We introduced goal distances for general cost functions
in Definition 6, so abstraction heuristics for general cost functions are well-defined. Abstraction
heuristics for finite non-negative cost functions are admissible and consistent (e.g., Helmert et al.,
2007). We show in Appendix A that admissibility and consistency generalize to arbitrary cost
functions.

Note, however, that generalizing implementations of abstraction heuristics is more challenging
than generalizing their definition. For non-negative cost functions, abstract goal distances can be
computed with Dijkstra’s algorithm (Dijkstra, 1959), which can be implemented with worst-case
runtime O(N logN + M), where N = |S(T ′)| and M = |T (T ′)| (Cormen, Leiserson, & Rivest,
1990). For possibly negative cost functions, no algorithms are known that substantially outper-
form the Bellman-Ford algorithm (Bellman, 1958) in the worst case, whose worst-case runtime is
O(NM). If we consider a (not particularly large) abstract transition system with N = 10000 states
and at least N logN transitions, this means that the Bellman-Ford algorithm is 10000 times slower
than Dijkstra’s algorithm (ignoring the constant factors hidden in the big-O notation).

General cost functions give rise to another issue: it is well-known that using an admissible
heuristic in an A∗ search results in optimal solutions if only non-negative cost functions are allowed
(Hart et al., 1968). This result does not hold for general cost functions since A∗ (like Dijkstra’s
algorithm) cannot handle negative cost-cycles.

Neither issue is problematic for our work, however. Even though we allow general cost func-
tions in cost partitionings, we only need to compute abstract goal distances under non-negative cost
functions (see Appendix D). As a consequence, all goal distances are non-negative, which in turn
ensures that all cost-partitioned heuristic estimates are non-negative (see Appendix E). Therefore,
we can use Dijkstra’s algorithm to compute abstract goal distances and A∗ to find optimal plans.

7. Cost Partitioning

For finding solutions in huge transition systems, it can be beneficial to use multiple heuristics that
focus on different parts of the state space (e.g., Holte et al., 2006). The question is how to com-

133

SEIPP, KELLER, & HELMERT

s1,s2 s3 s4,s5

o1 o3

o2 o4

s1 s2,s3,s4 s5

o1 o3

o2 o4

Figure 1: Example abstraction heuristics. The cost function is cost = 〈4, 1, 4, 1〉, i.e., operators
o1 and o3 cost 4, whereas o2 and o4 cost 1. In all figures depicting abstraction heuristics, circles
depict concrete states, rounded rectangles are abstract states and dotted arrows stand for abstract
self-loops.

bine admissible heuristics so that the resulting heuristic is both informative and remains admissible.
Maximizing over the heuristic estimates in each state guarantees admissibility if each component
heuristic is admissible, but the resulting heuristic is only as strong as the strongest component heuris-
tic in each state.

In contrast, cost partitioning combines the information contained in the component heuristics
and yields a heuristic that is often much stronger than any of its components. It preserves admissi-
bility by distributing the costs of a task among the component heuristics (Katz & Domshlak, 2008,
2010). Cost partitioning is more general than maximizing over multiple heuristics, as the cost par-
titioning that assigns all costs to the heuristic with the highest estimate yields the same result as a
heuristic that maximizes over all component heuristics.

Definition 8 (cost partitioning). Let T be a transition system. A cost partitioning for a cost function
cost ∈ C(T) is a tuple 〈cost1, . . . , costn〉 ∈ C(T)n whose sum is bounded by cost:

∑n
i=1 costi(`) ≤

cost(`) for all ` ∈ L(T).
A cost partitioning algorithm for a transition system T and a tuple of heuristics H = 〈h1, . . . ,

hn〉 takes a cost function cost as its input and produces a cost partitioning 〈cost1, . . . , costn〉 for
cost as its output. It induces the cost-partitioned heuristic h(cost, s) =

∑n
i=1 hi(costi, s).

Cost-partitioned heuristics derived from admissible (consistent) component heuristics are ad-
missible (consistent). Cost partitioning forms the basis of most state-of-the-art heuristics in optimal
classical planning (e.g., Karpas & Domshlak, 2009; Helmert & Domshlak, 2009; Pommerening
et al., 2013; Seipp & Helmert, 2014; Pommerening et al., 2015; Seipp et al., 2017; Seipp, 2017).

Katz and Domshlak (2008) studied cost partitioning in the case where the overall cost function
cost and component cost functions costi are finite and non-negative. Pommerening et al. (2015)
generalized this by allowing negative costs in costi (but not in cost). We show in Appendices B
and C that the consistency and admissibility results also apply to our more general definition.

Example 1. We illustrate the concept of cost partitioning with the two abstraction heuristics h1

and h2 in Figure 1 and the cost function cost = 〈4, 1, 4, 1〉. We have h1(cost, s1) = 5 and
h2(cost, s1) = 5. Therefore, maximizing over the two estimates also yields a heuristic value of
5. With a suitable cost partitioning we can obtain a more accurate heuristic estimate. For example,
the cost partitioning C = 〈cost1, cost2〉 with cost1 = 〈4, 0, 1, 1〉 and cost2 = 〈0, 0, 3, 0〉 yields the
admissible estimate hC(cost, s1) = 5 + 3 = 8.

134

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

It is possible to compute an optimal cost partitioning for a given state (i.e., a cost partitioning
resulting in the largest possible heuristic value for the given state) in polynomial time for abstraction
(Katz & Domshlak, 2008, 2010) and landmark (Karpas & Domshlak, 2009) heuristics. These results
were initially proved for non-negative cost functions, later generalized to possibly negative cost
functions (Pommerening et al., 2015), and it is not difficult to further generalize them to handle
infinite costs.

Definition 9 (optimal cost partitioning). Let H = 〈h1, . . . , hn〉 be a tuple of heuristics for a
weighted transition system 〈T , cost〉. A cost partitioning C∗ is optimal for cost, H and a state
s ∈ S(T) if hC

∗
(s) is maximal among all cost partitionings for cost andH.

Example 2. For the abstraction heuristics h1 and h2 in Figure 1 the example cost partitioning C
from Example 1 is an optimal cost partitioning: C = 〈cost1, cost2〉 with cost1 = 〈4, 0, 1, 1〉 and
cost2 = 〈0, 0, 3, 0〉 yields hC(cost, s1) = 5 + 3 = 8. However, there are multiple optimal cost
partitionings: for example, the cost partitioning C′ = 〈cost1, cost2〉 with cost1 = 〈3.5, 0, 1, 1〉 and
cost2 = 〈0.5, 1, 3, 0〉 also yields hC

′
(cost, s1) = 4.5 + 3.5 = 8.

Computing optimal cost partitionings for some or even all states encountered during search
has been shown to be a practically viable approach for landmark heuristics and certain classes of
implicit abstraction heuristics (Karpas & Domshlak, 2009; Katz & Domshlak, 2010; Karpas et al.,
2011). However, despite the promising theoretical guarantees, computing optimal cost partitionings
can already be prohibitively expensive for explicit abstractions of modest size (Pommerening et al.,
2013). We give further evidence for the impractical time and memory requirements of optimal cost
partitioning in Section 13.1.

8. Saturated Cost Partitioning

Saturated cost partitioning (Seipp & Helmert, 2014, 2018) is a greedy algorithm that quickly com-
putes suboptimal cost partitionings. It has been shown to perform significantly better experimentally
than other techniques such as optimal cost partitioning, uniform cost partitioning, greedy zero-one
cost partitioning, and the canonical heuristic for pattern databases (Seipp et al., 2017). Saturated
cost partitioning is based on the observation that parts of the costs are “wasted” on a component
heuristic if they do not contribute to its heuristic estimate. In this case, we can obtain the same
heuristic values even if we use lower costs. The unneeded costs can then be “saved” for subsequent
heuristics.

For an example of this situation, consider the abstract transition system T ′ associated with
abstraction heuristic h in Figure 2. The abstract states in T ′ are labeled with their goal distances
(h = X). The cost function cost is depicted in the table to the right of Figure 2. It assigns o1

a cost of 5, but no goal distance changes if the cost of o1 is reduced to 4. Consequently, a part
of the cost for o1 can be “saved” and used for a different heuristic. The cost of o4, which only
occurs as a self loop in the transition system, can even be reduced to 0 without affecting any goal
distance. Similarly, decreasing the cost of operator o6 to −1 does not change any goal distance. In
a subsequent heuristic, o1 can therefore have a cost of 5− 4 = 1, o4 can have a cost of 4 and o6 can
have a cost of 7− (−1) = 8.

135

SEIPP, KELLER, & HELMERT

h = 3 h = 2

h = 1

h = 4

h = 0

o3

o4

o 2

o7

o
6

o5

o7

o
3

o1

o 1

o cost(o) mscf(o)

o1 5 max(4− 0, 2− 0) = 4
o2 2 max(3− 1) = 2
o3 1 max(3− 3, 1− 0) = 1
o4 4 max(1− 1) = 0
o5 1 max(2− 1) = 1
o6 7 max(3− 4) = −1
o7 2 max(3− 2, 4− 2) = 2

Figure 2: (Figure 8 in Seipp & Helmert, 2018) Left: abstract transition system of an example
planning task. Every transition is labeled with an operator. Right: costs and minimum saturated
costs that suffice to preserve all goal distances in the abstract transition system.

8.1 Saturated Cost Functions

The insight that we can use a lower cost function without changing any heuristic values is captured
formally by the concept of saturated cost functions. For a given heuristic h and cost function cost,
we call a cost function saturated if it preserves all heuristic estimates that h yields under cost and
assigns each label ` at most cost cost(`).

Definition 10 (saturated cost function). Consider a transition system T , a heuristic h for T and a
cost function cost ∈ C(T). A cost function scf ∈ C(T) is saturated for h and cost if

1. scf(`) ≤ cost(`) for all labels ` ∈ L(T) and

2. h(scf, s) = h(cost, s) for all states s ∈ S(T).

Note that in addition to these two requirements the original definition of saturated cost functions
(Seipp & Helmert, 2014) required a saturated cost function to be minimal. We drop this requirement
since for some classes of heuristics (e.g., the hmax heuristic by Bonet & Geffner, 2001) it is not
guaranteed that there is a unique minimum. Using Definition 10, a saturated cost function exists for
all heuristics h and cost functions cost, since cost itself is a saturated cost function for h and cost.1

Obviously, only saturated cost functions scf with scf(l) < cost(`) for at least one label ` are use-
ful for partitioning a cost function cost. If scf = cost, no costs are left for other heuristics. Whether
and how we can compute a useful saturated cost function for a given heuristic and cost function
depends on the type of heuristic. We call functions that perform this computation saturators.

Definition 11 (saturators). Consider a transition system T and a heuristic h for T .
A saturator for h is a function saturate : C(T) → C(T) such that saturate(cost) is a saturated

cost function for h and cost.

1. We can also define saturated cost functions for a subset of states in a transition system (Seipp & Helmert, 2019), but
in this work we only consider saturated cost functions that preserve the heuristic values of all states.

136

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

Saturators have not previously been introduced in the literature: earlier work exploited results
on the uniqueness of minimal saturated cost functions for abstraction heuristics to simply speak of
“the” minimal saturated cost function. We introduce the concept of saturators here to generalize
the definition of saturated cost partitioning to heuristics without a unique minimum saturated cost
function.

Saturated cost partitioning considers an ordered sequence of heuristics.

Definition 12 (heuristic orders). LetH be a finite non-empty set of heuristics. An order ω ofH is a
sequence of heuristics that contains each heuristic in H exactly once. We write Ω(H) for the set of
all orders ofH.

We can now formally define saturated cost partitioning. The main differences to earlier defini-
tions (e.g., Seipp & Helmert, 2018) are that we consider general cost functions and parameterize the
definition by saturators.

Definition 13 (saturated cost partitioning). Consider a weighted transition system 〈T , cost〉, a
heuristic order ω = 〈h1, . . . , hn〉 ∈ Ω(H) for T and a sequence 〈saturate1, . . . , saturaten〉 such
that saturatei is a saturator for hi for all 1 ≤ i ≤ n.

The saturated cost partitioning 〈cost1, . . . , costn〉 of the cost function cost for order ω induced
by the sequence of saturators 〈saturate1, . . . , saturaten〉 is defined as:

remain0 = cost

costi = saturatei(remaini−1) for all 1 ≤ i ≤ n
remaini = remaini−1 − costi for all 1 ≤ i ≤ n,

where the auxiliary cost functions remaini represent the remaining costs after processing the first i
heuristics in ω.

We write hSCP
ω for the heuristic that is cost-partitioned by saturated cost partitioning for order

ω.

The subtraction in the definition of remaini follows the rules of left addition and the definition
a − b := a + (−b). Hence, if remaini−1(`) is (positively or negatively) infinite, then we always
obtain remaini(`) = remaini−1(`). In particular, when the leftover costs for a label are∞, we may
allocate cost∞ to all further cost functions because∞−∞ =∞ under left addition.

It is easy to see that the saturated cost partitioning is indeed a cost partitioning (Definition 8),
i.e.,

∑n
i=1 costi(`) ≤ cost(`) for all labels `. For labels ` with cost(`) = ∞ this holds trivially.

For labels ` with cost(`) = −∞, we must have remaini(`) = −∞ for all 0 ≤ i ≤ n because
−∞ − x = −∞ for all x ∈ R ∪ {−∞,∞}. Hence we get costi(`) = −∞ for all 1 ≤ i ≤ n
because costi is bounded by remaini−1 by the definition of saturated cost functions. With n ≥ 1,
this shows

∑n
i=1 costi(`) = −∞ = cost(`).

It remains to consider the case where cost(`) is finite. If all costi(`) are finite or −∞, the cost
partitioning property is easy to show, so consider the case where costi(`) =∞ for some 1 ≤ i ≤ n.
Let i0 be the smallest index with this property. Then we must have remaini0−1(`) =∞. With finite
cost(`), this is only possible if costj(`) = −∞ for some j < i0, which implies

∑n
i=1 costi(`) =

−∞ < cost(`) due to the rules of left addition (there must be a −∞ before∞ in the sum).
The quality of the resulting saturated cost partitioning strongly depends on the choice of satu-

rators. For example, if we only use the identity function, all costs are assigned to the first heuristic,

137

SEIPP, KELLER, & HELMERT

leaving no costs for subsequent heuristics. Ideally, we want saturators which return minimal sat-
urated cost functions. However, it is an open research question which properties a heuristic must
have for it to possess a saturator that always returns a minimum saturated cost function.

8.2 Minimum Saturated Cost Function for Abstraction Heuristics

We showed in previous work that for an abstraction heuristic h and a cost function cost there is
always a saturator that computes the unique minimum saturated cost function mscf for h and cost
(Seipp & Helmert, 2018). The key idea is to make sure that for each label `, the consistency
constraint h(mscf, s) ≤ mscf(`) + h(mscf, s′) is tight for at least one state transition s `−→ s′. This
can be enforced by setting

mscf(`) = sup

a
`−→b∈T (T ′)

(h∗T ′(cost, a)	 h∗T ′(cost, b)), (1)

where T ′ is the abstract transition system underlying h. The 	 operator behaves like regular sub-
traction for finite values and handles infinities as x 	 y = −∞ iff x = −∞ or y = ∞, and
x 	 y = ∞ iff x = ∞ 6= y or x 6= −∞ = y. We prove in Appendix F that mscf is the minimum
saturated cost function even for general cost functions.

The minimum saturated cost function can be computed with negligible overhead during the
construction of pattern databases (Culberson & Schaeffer, 1998; Edelkamp, 2001), Cartesian ab-
stractions (Ball, Podelski, & Rajamani, 2001; Seipp & Helmert, 2013) and merge-and-shrink ab-
stractions not using label reduction (Sievers, Wehrle, & Helmert, 2014).2

Figure 2 demonstrates how to compute the minimum saturated cost function (shown in the table
on the right) for an abstraction heuristic (the underlying abstract transition system is depicted on the
left). For example, since operator o4 only induces a self-looping transition in the abstract transition
system, its minimum saturated cost is 0, reflecting the intuition that o4 contributes nothing to the
solution under this abstraction. In contrast, operator o1 induces two transitions and we need to
take both of them into account when computing the minimum saturated cost to ensure that no goal
distance changes.

For all abstraction heuristics h and cost functions cost, we use Equation 1 to obtain a saturator
saturate-abstractionh which returns the minimum saturated cost function for h and cost.

Example 3. We use the two abstraction heuristics h1 and h2 from Figure 1 to show a complete
run of the saturated cost partitioning algorithm. We choose the order 〈h1, h2〉 and the saturators
〈saturate-abstractionh1 , saturate-abstractionh2〉. The first remaining cost function is remain0 =
cost = 〈4, 1, 4, 1〉. Under remain0 the abstract goal distances of the three abstract states in Th1
are 5, 1 and 0. The minimum saturated cost function saturate-abstractionh1(remain0) = 〈4, 0, 1, 1〉

2. Computing the minimum saturated cost function is more expensive for merge-and-shrink heuristics using label reduc-
tion. In the final abstract transition system T of a merge-and-shrink heuristic using label reduction all transitions with
the same weight share the same label. Consequently, T does not hold the information which original label induces
which abstract transitions. To compute the minimum saturated cost function for T we therefore need to compute the
set of transitions that each original label induces in T . This requires knowing the preimage of each abstract state
in T . For merge-and-shrink heuristics using linear merge strategies, we can represent the preimage of an abstract
state as a binary decision diagram (BDD). Computing whether there is a transition with a given label between two
abstract states represented as BDDs is expensive, but polynomial. For non-linear merge strategies we can represent
each preimage as a sentential decision diagram (SDD), but it is unknown whether the corresponding test runs in
polynomial time.

138

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

Algorithm 1 Interleaved saturated cost partitioning algorithm. Given a weighted transition system,
it computes a set of abstraction heuristics and corresponding minimum saturated cost functions that
form a cost partitioning.

1: procedure INTERLEAVEDSATURATEDCOSTPARTITIONING(〈T , cost〉)
2: while not TERMINATIONCONDITION do
3: T ′← compute abstraction of T using cost
4: h← abstraction heuristic corresponding to T ′
5: mscf← minimum saturated cost function for h and cost
6: cost← cost− mscf

tells us that we can decrease the cost for operators o2 and o3 in h1 without affecting any goal
distances. Subtracting the saturated costs from remain0 yields our new remaining cost function
remain1 = 〈0, 1, 3, 0〉. Under remain1 the goal distances in Th2 are 3, 3 and 0 and we have
saturate-abstractionh2(remain1) = 〈0, 0, 3, 0〉. The two saturated cost functions form a cost parti-
tioning and we have hSCP

〈h1,h2〉(cost, s1) = 5 + 3 = 8. Note that the cost of operator o2 is not needed
to justify this estimate (i.e., remain2 = 〈0, 1, 0, 0〉) and we could use it for other heuristics.

9. Implementation and Evaluation Details

Before we describe the main contributions of this paper, we briefly discuss some details concerning
the implementation and evaluation of our work.

9.1 Interleaved Saturated Cost Partitioning Algorithm

In earlier work (Seipp & Helmert, 2018), we exploited the fact that saturated cost partitioning only
needs to hold one abstract transition system in memory at a time by interleaving abstraction com-
putation and cost partitioning. Algorithm 1 shows in pseudo-code how this approach computes
abstraction heuristics for a weighted transition system 〈T , cost〉 that are cost-partitioned with sat-
urated cost partitioning: starting with cost, it iteratively creates an abstract transition system T ′
using cost, obtains the corresponding abstraction heuristic h, computes the minimum saturated cost
function mscf for h and cost, subtracts mscf from cost and proceeds to the next iteration with the
remaining costs.

The procedure terminates after computing a given number of abstractions or once no further use-
ful abstractions can be found. The sequence of saturated cost functions computed by the procedure
then forms a cost partitioning.

In this procedure, we compute the abstractions “just-in-time”, guiding the computation of ab-
stractions by the current remaining cost function. In the present work, we want to evaluate the
impact of different heuristic orderings on saturated cost partitioning. Therefore, we need to ensure
that all ordering algorithms work on the same heuristics. Consequently, in contrast to our origi-
nal approach, we fix the set of heuristics before computing saturated cost partitionings. We never
encountered memory problems in our experimental evaluation because of the fact that we have to
maintain all abstractions in memory until the search starts.

139

SEIPP, KELLER, & HELMERT

0 100 200 300 400 500 600 700 800 900 1,000

0

200

400

600

∞

678

427

263

85 72
37 30 33 15 16

136

Abstraction heuristics

Ta
sk

s

Figure 3: Number of abstraction heuristics computed for the tasks from our benchmark set.

9.2 Storing Only Useful Lookup Tables

As is common, we make the evaluation of an abstraction heuristic h with abstract transition system
T ′ efficient by precomputing all goal distances in T ′ under the given cost function cost and storing
them in a lookup table before the A∗ search starts. If we compute saturated cost partitioning heuris-
tics for n abstraction heuristics and m orders, we need to store n ·m lookup tables. To reduce the
memory usage and the time needed for looking up goal distances in the tables, we only store useful
lookup tables.

A lookup table is useful if it contains at least one positive finite goal distance. To see this,
first note that all distances in the lookup tables are non-negative, since the remaining cost function
is always non-negative. Second, if a lookup table contains only 0-values, we can ignore the table
without changing any heuristic estimates. Finally, if the original cost function is finite and non-
negative, the remaining cost function only assigns∞ to a label ` if ` can never be on a goal path.
Therefore, whether a heuristic h yields h(cost, s) =∞ does not depend on cost. Consequently, we
can store infinite estimates once for each abstraction, instead of once per lookup table.

9.3 Experimental Setup

Since the techniques we introduce build upon one another, we interleave theoretical and experimen-
tal analyses. Before starting with the first analysis, we briefly describe our setup for all experiments
in the paper. We use all 1827 tasks without conditional effects from the optimization tracks of the
1998–2018 International Planning Competitions (IPC) and limit time to 30 minutes and memory to
3.5 GiB. As our set of heuristics we use the combination of pattern databases found by hill climbing
in the space of pattern collections (Haslum et al., 2007), systematic pattern databases of sizes 1 and
2 (Pommerening et al., 2013) and Cartesian abstractions of landmark and goal task decompositions
(Seipp & Helmert, 2018). We choose the combination of these heterogeneous heuristics instead of
a homogeneous subset, because having more (and different) heuristics makes ordering them more
difficult, which increases the impact of the ordering algorithms and therefore makes their evaluation

140

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

s1 s2 sn sn+1
o1 . . . on

s1 s2 sn sn+1
o1 . . . on

s1 s2 snsn+1
o1 . . .

on

Figure 4: Concrete transition system T (top) with abstraction heuristics h1 (middle) and h2 (bot-
tom). All labels have cost 1.

easier. Figure 3 shows that the number of heuristics varies a lot between tasks. For 678 tasks we
compute at most 100 heuristics, but there is also one task for which we obtain more than 45 000
heuristics.

All algorithms are implemented in the Fast Downward planning system (Helmert, 2006) and
we use the Downward Lab toolkit (Seipp, Pommerening, Sievers, & Helmert, 2017) to conduct
experiments. All benchmarks3, code4 and experimental data5 have been published online.

10. Single Orders

The order in which saturated cost partitioning considers the heuristics is very important for the
accuracy of the resulting cost-partitioned heuristic: two orders of the same heuristics can lead to
different heuristic estimates for the same state.

Theorem 1 (importance of good orders). There exist weighted transition systems 〈T , cost〉, sets of
heuristics H for T and states s ∈ S(T) such that hSCP

ω (cost, s) > hSCP
ω′ (cost, s) for two orders

ω, ω′ ∈ Ω(H).

Proof. Consider the example in Figure 1. For the two abstraction heuristics h1 and h2, we have
hSCP
〈h1,h2〉(s2, cost) = 8 > hSCP

〈h2,h1〉(s2, cost) = 7.

Note that we can easily enlarge the accuracy gap between two heuristics resulting from two
different orders. For the example in Figure 1, it suffices to raise the cost of labels o1 and o2 si-
multaneously to increase the difference between hSCP

〈h1,h2〉(cost, s2) and hSCP
〈h2,h1〉(cost, s2). Similar

instances can also be constructed for unit-cost tasks, and Figure 4 shows an example: for the con-
crete transition system 〈T , cost〉 with cost(`) = 1 for all labels ` ∈ L(T) and the two abstraction
heuristics h1 and h2 for T , we have hSCP

〈h1,h2〉(cost, s1) = n and hSCP
〈h2,h1〉(cost, s1) = 0. Note that this

3. Benchmarks: https://doi.org/10.5281/zenodo.2616479
4. Code: https://doi.org/10.5281/zenodo.3497367
5. Experimental data: https://doi.org/10.5281/zenodo.3497396

141

SEIPP, KELLER, & HELMERT

example also works if the abstraction underlying h1 does not map each concrete state to a different
abstract state.

Although Theorem 1 highlights the importance of choosing good orders, previous work on satu-
rated cost partitioning (Seipp & Helmert, 2014) only considered two non-random ordering methods
based on the hadd heuristic (Bonet & Geffner, 2001). Seipp and Helmert showed experimentally
that neither order consistently outperforms the other nor the random order. Due to this disappoint-
ing result and the fact that both orders only work for the landmark and goal task decompositions
by Seipp and Helmert (2014) and not for other abstraction heuristics, we do not investigate these
orders further and present more general approaches for finding good orders instead.

There are two challenges when trying to find good orders for saturated cost partitioning: first,
we need to deal with a combinatorial search space of n! possible orders for a set of n heuristics.
Second, we are looking for orders that provide good guidance in all states visited during search and
not only in a single state. We will deal with the second challenge later and focus on finding a good
order for a single state for now.

Formally, given a weighted transition system 〈T , cost〉, a set of n heuristicsH for T and a state
s ∈ S(T), our goal is to find an order ω ∈ Ω(H) which yields a heuristic with an accurate estimate
hSCP
ω (s). Except for very small n, it is obviously impossible to consider all n! orders. Instead, we

use hill climbing, a well-known local search technique (Russell & Norvig, 1995), to actively search
in the space of orders.

10.1 Greedy Orders

Before we can start the search, however, we need to address one of the most important questions
for local search: where do we start searching? Using a good initial solution is a key ingredient for
finding high-quality solutions fast via local search and many problems allow finding a good initial
solution greedily (e.g., Korte & Vygen, 2001). We use the same approach here and propose an
algorithm that starts with an empty order ω and iteratively appends an unordered heuristic to ω until
ω contains all heuristics.

But how do we decide which heuristic to append next in each iteration? We could prefer to
append heuristics with high estimates for the given state first. This makes it more likely that an
accurate heuristic is offered all of the costs it needs for justifying its estimate. However, we also
have to keep in mind that usually only the first heuristic is allowed to use all the costs it can ex-
ploit. Subsequent heuristics operate on the costs that have not already been consumed by previous
heuristics. To preserve costs for as many heuristics as possible, we could let orders begin with the
heuristics that “steal” the lowest amount of costs from other heuristics. Finally, we could also prefer
heuristics that yield high heuristic estimates and steal few costs. To measure the importance of each
objective we introduce three scoring functions and we order heuristics by their assigned scores in
descending order.

Definition 14 (heuristic scoring functions). Let T be a transition system and let H be a set of
admissible heuristics for T , where each h ∈ H has a corresponding saturator saturateh. A scoring
function for T andH is a function q : H× C(T)× S(T)→ R.

142

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

cost(`) wanted(h′, cost, `) free(h, cost, `) wanted(h, cost, `) stolen(h, cost, `)

20 5 20− 5 = 15 10 max(0, 10− 15) = 0
20 15 20− 15 = 5 10 max(0, 10− 5) = 5
20 5 20− 5 = 15 −2 max(0,−2− 15) = 0
20 25 20− 25 = −5 10 max(10,−5) = 10
20 25 20− 25 = −5 −2 max(−2,−5) = −2
20 25 20− 25 = −5 −10 max(−10,−5) = −5

Table 1: Examples showing how to compute stolen(h, cost, `), i.e., the amount of costs for label `
that heuristic h steals from heuristic h′ under cost function cost.

We define three scoring functions

qh(h, cost, s) = h(cost, s),

qstolen(h, cost, s) = −
∑

`∈L(Th)

stolen(h, cost, l), and

q h
stolen

(h, cost, s) =
h(cost, s)

max(1,
∑

`∈L(Th) stolen(h, cost, `))
,

where

wanted(h, cost, `) = saturateh(cost)(`),

free(h, cost, `) = cost(`)−
∑

h′∈H\{h}

wanted(h′, cost, `), and

stolen(h, cost, `) =

{
max(0,wanted(h, cost, `)− free(h, cost, `)) if free(h, cost, `) ≥ 0

max(wanted(h, cost, `), free(h, cost, `)) otherwise.

The scoring function qh assigns high scores to heuristics with high estimates for the given state,
while qstolen gives high scores to heuristics stealing few costs from other heuristics. The function
q h

stolen
measures how well a heuristic balances the two objectives of having high heuristic value and

stealing low costs. We ensure that the divisor is at least 1 to guarantee that the division is always
defined.

We now explain the definitions of wanted, free and stolen costs for a heuristic h with saturator
saturateh, a cost function cost and a label `. We say that the saturated costs saturateh(cost)(`) form
the part of cost(`) that h wants. Then free(h, cost, `) are the costs of ` that remain for h after giving
all other heuristics the costs of ` that they want.

The costs of label ` that a heuristic h steals from the other heuristics, i.e., stolen(h, cost, `),
mainly depends on free(h, cost, `), i.e., the part of the label cost that no other heuristic wants. If the
amount of free costs is non-negative, h steals the costs it wants minus the costs no other heuristic
wants. If there are more free costs than h wants, it steals no costs. If all costs are wanted by the
other heuristics, the second case applies. When h wants costs≥ 0, the stolen costs equal the wanted
costs, since free(h, cost, `) ≤ 0. Otherwise, the amount of stolen costs is the maximum over the two
negative values of wanted and free costs. This implies that h steals negative costs, i.e., it provides

143

SEIPP, KELLER, & HELMERT

Algorithm 2 Dynamic greedy ordering algorithm. Given a set of admissible heuristics H with
corresponding saturators, a cost function cost, a state s and a scoring function q, it computes a
dynamic greedy order by iteratively appending the heuristic with the highest score and updating the
estimates and saturated costs for each unordered heuristic.

1: function DYNAMICGREEDYORDER(H, cost, s, q)
2: ω← 〈〉
3: whileH 6= ∅ do
4: h← arg maxh′∈H q(h

′, cost, s)
5: ω← ω ⊕ 〈h〉
6: H←H \ {h}
7: cost← cost− saturateh(cost)
8: return ω

random h stolen h
stolen

random – 390 548 108
h 1068 – 717 291
stolen 892 495 – 83

h
stolen 1347 677 923 –

Table 2: Pairwise comparison of random orders and dynamic greedy orders using different scoring
functions. The entry in row r and column c holds the number of tasks in which order r yields a
heuristic with a higher heuristic estimate for the initial state than order c. For each comparison we
highlight the order with more such tasks in bold. The results for random are averaged over 10 runs.

costs for other heuristics that want them. Table 1 holds several examples that show how to compute
stolen(h, cost, `).

10.1.1 DYNAMIC GREEDY ORDERS

We can plug any of the scoring functions into Algorithm 2 to greedily compute a heuristic order.
Given a set of admissible heuristics H, a cost function cost, a state s and a scoring function q, the
greedy algorithm starts with an empty order ω and then iteratively appends the heuristic with the
highest score under q and updates the remaining cost function cost until all heuristics are part of
ω. If there are multiple heuristics with the same score, we break ties randomly. Results from an
experiment not reported here in detail show that breaking ties with a second scoring function has a
negligible influence on the quality of the resulting heuristic.

10.1.2 COMPARISON OF SCORING FUNCTIONS

We evaluate Algorithm 2 and the three scoring functions in a small experiment. For each task in
our benchmark set we compute the three different dynamic greedy orders for the initial state and 10
random orders. Table 2 shows a pairwise comparison of the algorithms in terms of the number of
tasks where one heuristic computes a higher heuristic estimate for the initial state than the other. The
heuristic estimate for random corresponds to the average over the 10 random orders. We see that qh
(maximizing heuristic values) and qstolen (minimizing the sum of stolen costs) usually yield better

144

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

Algorithm 3 Static greedy ordering algorithm. Given a set of admissible heuristics H, a cost func-
tion cost, a state s and a scoring function q, it sorts the heuristics by their respective scores in
descending order.

1: function STATICGREEDYORDER(H, cost, s, q)
2: return 〈h1, . . . , hn〉 ∈ Ω(H) with q(hi, cost, s) ≥ q(hi+1, cost, s) for 1 ≤ i < n

orders than random orders for the initial state, but there are also many tasks where using random
orders is preferable to using qh or qstolen. No clear conclusion can be drawn from comparing qh to
qstolen: qh compares better to random orders, while qstolen compares favorably in a direct comparison
between the two orders. However, combining the two functions in q h

stolen
leads to higher estimates in

the vast majority of tasks compared to all other scoring functions and random orders. Due to these
results, we only use the scoring function q h

stolen
in subsequent experiments.

The dynamic ordering algorithm has the drawback that all heuristic estimates and all minimum
saturated cost functions have to be recomputed for all remaining heuristics H in each iteration.
For each heuristic, this entails running a uniform cost search in the associated abstract transition
system, which can take seconds for very large abstractions. Since ordering n heuristics involves
running n(n−1)/2 uniform cost searches, this quadratic scaling behavior can lead to one algorithm
run taking minutes.

10.1.3 STATIC GREEDY ORDERS

By removing line 7 from Algorithm 2 we obtain a static version of the ordering algorithm. It
precomputes the heuristic estimate and saturated cost function for each heuristic under the original
cost function once. Since the algorithm does not iteratively update the cost function, we can rewrite
it without using a while loop as shown in Algorithm 3.

We compare dynamic and static greedy orders empirically by computing both orders for the
initial state of each task in our benchmark set. The dynamic version yields an order that results in
a higher heuristic estimate for the initial state for 539 tasks, while the opposite is the case for only
124 tasks.

As noted above, the higher heuristic values come at a price though. Figure 5 shows that static
greedy orders are found much faster than dynamic greedy orders for almost all evaluated tasks,
often by a margin of several orders of magnitude. There are 9 tasks for which both methods run
out of memory while computing an order. For all of the remaining tasks we can compute a static
greedy order in less than 100 seconds. In contrast, there are 47 tasks for which we fail to compute
a dynamic greedy order in 30 minutes.

The slow computation time for dynamic orders is also a problem when we run an A∗ search
using the saturated cost partitioning heuristics computed for the initial state. While the static variant
solves 1013 tasks, the dynamic version only solves 1002 tasks.

Since static orders are much faster to compute and lead to solving more tasks than dynamic
orders, we only consider static orders in subsequent experiments and often refer to them simply as
“greedy orders”.

145

SEIPP, KELLER, & HELMERT

10−3 10−1 101 103

10−3

10−1

101

103

fa
ile

d

failed

seconds for dynamic order

se
co

nd
s

fo
rs

ta
tic

or
de

r

Figure 5: Time in seconds for computing a single dynamic greedy and static greedy order and the
corresponding saturated cost partitioning. Each cross corresponds to a task from the benchmark set.

10.2 Optimized Orders

When solving an optimization problem, finding a greedy order is often just the first step. To further
optimize an order ω for a given state s and cost function cost, we propose a hill-climbing search
in the space of orders. Starting from the incumbent order ω, we generate neighboring orders by
switching any two positions in ω. More precisely, we switch positions 1 and 2, 1 and 3, . . . , 1 and
n, 2 and 3, 2 and 4, . . . , n− 1 and n. This two-exchange neighborhood is common for local search
optimization algorithms (Pisinger & Ropke, 2010) and guarantees that all orders can be reached
from any initial order. The first neighbor ω′ with hSCP

ω′ (cost, s) > hSCP
ω (cost, s) becomes the new

incumbent. We repeat this procedure until no neighbor is better than the incumbent or until a timeout
is reached.

In addition to this simple hill climbing version, we also experimented with steepest-ascent hill
climbing. The difference between the two versions is that the former commits to the first improving
neighbor immediately, while the latter evaluates all neighbors before choosing the best neighbor.
The quality of the resulting orders is roughly the same for both hill climbing variants, but steepest-
ascent hill climbing usually needs more time to find them. This is not surprising since it has to
evaluate

(
n
2

)
= n(n− 1)/2 neighbors in each iteration, where n is the number of heuristics. Due to

this result, we only use simple hill climbing below.

Example 4. Figure 6 shows an example run of the hill climbing algorithm optimizing the order of
three heuristics h1, h2 and h3. In our example the first incumbent order is 〈h2, h3, h1〉 with a heuris-
tic value of 5 for the given state s and cost function cost. Its first neighboring order 〈h3, h2, h1〉
yields a lower heuristic value, so we turn to the next neighbor 〈h1, h3, h2〉. This order yields a
higher heuristic value (hSCP

〈h1,h3,h2〉(cost, s) = 7) than the incumbent order, so we make 〈h1, h3, h2〉
the new incumbent.6 In the next round, the first neighbor 〈h3, h1, h2〉 becomes the new incumbent.

6. Notice that this leads to skipping the third neighbor 〈h2, h1, h3〉. In contrast, steepest-ascent hill climbing would
evaluate all neighbors.

146

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

ω = 〈h2, h3, h1〉, hSCP
ω (s) = 5

ω = 〈h3, h2, h1〉, hSCP
ω (s) = 4 ω = 〈h1, h3, h2〉, hSCP

ω (s) = 7

ω = 〈h3, h1, h2〉, hSCP
ω (s) = 8

ω = 〈h1, h3, h2〉, hSCP
ω (s) = 7 ω = 〈h2, h1, h3〉, hSCP

ω (s) = 5 ω = 〈h3, h2, h1〉, hSCP
ω (s) = 4

Figure 6: Example run of the hill climbing algorithm optimizing the order of three heuristics. We
highlight the incumbent order in each iteration of the hill climbing algorithm.

Time limit X 0s 10s 100s 1000s 1500s

max-random-Xs 943 1006 1014 1013 1005
random-opt-Xs 943 980 1007 1012 1003
greedy-opt-Xs 1013 1031 1037 1041 1035

Table 3: Number of solved tasks by saturated cost partitioning using different ordering algorithms
and optimization time limits. The time limits include the time for computing the initial greedy order.

Afterwards, none of the neighbors improves upon the incumbent, so we abort the procedure and
return the incumbent 〈h3, h1, h2〉.

Table 3 compares the number of solved tasks for a random (random-opt-Xs) and (static) greedy
(greedy-opt-Xs) initial order that is optimized with the proposed simple hill climbing algorithm us-
ing different time limits. In addition, the table holds results for a simple baseline (max-random-Xs)
that repeatedly computes random orders for X seconds and returns the generated order with the
highest estimate for the initial state. The purpose of the baseline is to ensure that it is the combina-
tion of initial order and search that leads to improved heuristic estimates and not the large amount
of orders that is considered in the available time.

All three methods benefit from a larger time limit and, as expected, the variants based on random
orders profit more from it than the greedy orders. Total coverage increases from 943 tasks to 1007–
1014 tasks for max-random-Xs and random-opt-Xs when going from a single unoptimized random
order to 100–1000 seconds of optimization. Optimizing greedy orders incurs a smaller increase in
coverage since a single greedy order already solves 70 more tasks than a single random order and
is already on par with the best optimized random orders. Still, the best variant in this experiment
optimizes a greedy order for 1000 seconds and solves 1041 tasks, an improvement of 28 tasks
compared to a single unoptimized greedy order. This shows that the best orders can be obtained by
starting with a greedy order and optimizing it afterwards.

11. Online Orders

So far, we have focused on finding an order for a single state. However, as stated above, we need an
order that provides good guidance for all states encountered during search. Unfortunately, such an
order does not always exist.

147

SEIPP, KELLER, & HELMERT

104 105

10−5

10−4

10−3

10−2

10−1

100

hSCP
greedy-opt-1000s

h
SC

P
on

lin
e

(a) Evaluations per second.

100 101 102 103 104 105 106 107

10−2

10−1

100

101

102

hSCP
greedy-opt-1000s

h
SC

P
on

lin
e

(b) Expansions before the last f layer.

Figure 7: Comparison of hSCP
greedy-opt-1000s and hSCP

online. Each 〈x, y〉 point corresponds to a task for
which hSCP

greedy-opt-1000s returns a value of x and hSCP
online returns x · y. Therefore, points below y = 1

correspond to tasks where hSCP
online yields a lower value than hSCP

greedy-opt-1000s. We exclude tasks for
which any of the two algorithms needs less than 1000 evaluations. Note that all axes use a log scale.

Theorem 2 (multiple states need multiple orders). There exist weighted transition systems 〈T , cost〉,
sets of heuristics H for T and states s, s′ ∈ S(T) such that hSCP

ω (cost, s) > hSCP
ω′ (cost, s), and

hSCP
ω (cost, s′) < hSCP

ω′ (cost, s′) for two orders ω 6= ω′ ∈ Ω(H).

Proof. Consider the abstraction heuristics h1 and h2 and the cost function cost in Figure 1 on
page 134. We have hSCP

〈h1,h2〉(cost, s2) = 8, hSCP
〈h2,h1〉(cost, s2) = 7, hSCP

〈h1,h2〉(cost, s4) = 3, and
hSCP
〈h2,h1〉(cost, s4) = 4.

Theorem 2 implies that there are sets of heuristics where no single order yields accurate heuristic
estimates for all states. One approach to overcome this problem is to compute a greedy order and the
corresponding saturated cost partitioning in every evaluated state. (We hypothesize that computing
a saturated cost partitioning for every evaluated state is quite expensive by itself, so we do not spend
additional time to optimize the greedy orders.)

The resulting heuristic, called hSCP
online, solves 709 tasks in total, 332 fewer tasks than the best

saturated cost partitioning heuristic we have seen so far, hSCP
greedy-opt-1000s. The difference in coverage

stems from the fact that computing a saturated cost partitioning indeed slows down the evaluation
significantly. Figure 7a compares the number of evaluations per second between hSCP

greedy-opt-1000s

and hSCP
online. The evaluation is always at least ten times slower for the online version and for many

tasks it is more than three orders of magnitude slower. The online version produces somewhat more
accurate estimates, as shown in Figure 7b, but this is not enough to compensate for the reduced
evaluation speed.

Memory, on the other hand, is not a limiting factor for hSCP
online. Even though the algorithm has to

hold all abstract transition systems in memory during search, hSCP
online never fails to find a plan due to

running out of memory.
Our findings for hSCP

online are in line with other results from the literature which already contains
many examples where increased heuristic accuracy does not compensate for the additional compu-

148

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

Orders N 1 10 100 1000

N -greedy 1013 1114 1120 1023
N -greedy-opt-10s 1031 1134 1136 –
N -greedy-opt-100s 1037 1141 – –
N -greedy-opt-1000s 1041 – – –

Table 4: Number of solved tasks when maximizing over saturated cost partitioning heuristics for N
unoptimized and optimized greedy orders.

tation time spent at every evaluated state (e.g., Karpas et al., 2011; Seipp, Pommerening, & Helmert,
2015).

12. Multiple Orders

Since Section 11 showed that computing saturated cost partitionings online for every evaluated state
is too slow in practice, we pursue an alternative with a good tradeoff between heuristic accuracy and
computation time by generating heuristics for multiple orders and using the maximum over their
estimates in each state.

To obtain N greedy orders, we sample N states and compute a greedy order for each of them.
We use the sampling procedure by Haslum et al. (2007), using hSCP

greedy to estimate the plan cost
and to avoid using samples s with hSCP

greedy(cost, s) = ∞. A slight modification of the sampling
procedure turned out to have a noticeable effect in our experiments: the resulting heuristics were
much stronger in a few domains if we ensured that the initial state was part of the samples. This
makes sense if we consider that a state-sampling procedure should ideally return states that are
similar to the ones expanded during search. Since the initial state is guaranteed to be expanded, it is
beneficial to include it in the set of sample states, and we do so in all experiments below.

The optimization time limit does not include the time for computing the final cost partitioning.
This extra time is negligible if we only compute a single order, but can become relevant if N is
large and the task contains many large abstractions. We therefore only consider configurations in
the following where the total time spent computing orders and cost partitionings can be limited to at
most 1000 seconds (e.g., we consider a configuration where 1 order is optimized for 1000 seconds
as well as one where 10 orders are optimized for 100 seconds each, but not the configuration where
10 orders are optimized for 1000 seconds).

12.1 Evaluation of Using Multiple Orders

Table 4 shows the total coverage scores of saturated cost partitioning heuristics maximizing over
N orders optimized for at most X seconds for various values of N and X . We analyze the two
dimensions N and X in isolation before looking at their interaction.

12.1.1 NUMBER OF ORDERS

First, we investigate the impact of changing the number of orders (x axis in Table 4). The number
of solved tasks increases from 1013 to 1120 when going from 1 to 100 unoptimized greedy orders.
This striking difference in coverage of 107 tasks underlines the importance of Theorem 2: we need

149

SEIPP, KELLER, & HELMERT

103 104 105
0

0.25

0.5

0.75

1

1.25

hSCP
100-greedy

h
SC

P
1
0
0
0

-g
re

ed
y

(a) Evaluations per second.

101 103 105 107
0

0.25

0.5

0.75

1

1.25

hSCP
100-greedy

h
SC

P
1
0
0
0

-g
re

ed
y

(b) Expansions before last f layer.

Figure 8: Comparison of 100 and 1000 saturated cost partitioning heuristics using greedy orders.
Each 〈x, y〉 point corresponds to a task for which hSCP

100-greedy has a value of x and hSCP
1000-greedy has

a value of x · y. Therefore, points below y = 1 correspond to tasks where hSCP
100-greedy has a higher

value than hSCP
1000-greedy. We exclude tasks for which any of the two algorithms needs less than 1000

evaluations. Note that the x axis uses a log scale in both plots.

multiple orders to cover multiple states. Coverage decreases to a value close to the coverage score
of a single greedy order if 1000 instead of 100 orders are used. See Section 12.1.4 for an in-depth
analysis of this result. The results are similar for optimized greedy orders: using more than one
optimized order is highly beneficial for all tested optimization time limits.

12.1.2 OPTIMIZATION

Next, we look at the influence of optimization on the quality of the resulting heuristics (y axis in
Table 4). The first column repeats the values from the greedy-opt-Xs row in Table 3. As we saw
there, optimizing a single order increases the coverage score. This is also true for the optimization
of multiple orders, however the difference in coverage is smaller. This is no surprise, since multiple
unoptimized orders already solve many more tasks than a single order. Starting with 10 greedy
orders and optimizing them for 10 and 100 seconds raises the number of solved tasks from 1114 to
1134 and 1141, respectively.

12.1.3 OPTIMIZATION VS. NUMBER OF ORDERS

Last, we inspect how the number of orders and the optimization time limit interact. The results show
that using multiple orders is much more important than optimizing them. For example, if we want
to use 100 seconds for computing optimized greedy orders, we can optimize 1 order for 100 seconds
and solve 1037 tasks, or 10 orders for 10 seconds and solve 1134 tasks. Overall, the configuration
with the highest total coverage (of 1141 tasks) uses 10 greedy orders that are optimized for 100
seconds each.

150

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

12.1.4 ACCURACY VS. EVALUATION TIME

We saw above that using 1000 instead of 100 greedy orders leads to solving fewer tasks. Since
adding an order to an existing set of orders can only increase the accuracy of the resulting heuristic,
the gain in accuracy from including additional orders must be outweighed by the increased compu-
tational and memory cost. To test this hypothesis, we compare hSCP

100-greedy and hSCP
1000-greedy in more

detail. For the 101 tasks solved by hSCP
100-greedy but not by hSCP

1000-greedy, hSCP
1000-greedy runs out of memory

while computing cost partitionings in 53 cases and it runs out of memory during the search in 1
case. For the remaining 47 tasks, the A∗ search runs out of time. We see the reason for this last
finding in Figure 8. The left plot (Figure 8a) shows the number of evaluations hSCP

1000-greedy makes per
second, relative to the number of evaluations per second by hSCP

100-greedy. The evaluation speed drops
visibly for the vast majority of tasks when multiplying the number of optimized greedy orders by 10.
The evaluation speed of hSCP

1000-greedy drops below 75% of the speed of hSCP
100-greedy for 577 of the 595

commonly solved tasks with at least 1000 evaluations. One might expect that evaluating hSCP
1000-greedy

takes roughly ten times as long as evaluating hSCP
100-greedy for all tasks, but often a significant amount

of time is used to look up the abstract states that a given concrete state is mapped to. The time for
these computations is independent of the number of orders.

Figure 8b reveals that the number of expansions excluding the last f layer remains the same or
roughly the same for the majority of tasks and only for 75 of the 595 commonly solved tasks with
at least 1000 evaluations the number of expansions decreases by more than 75%. Together, the two
plots in Figure 8 show that indeed the increase in accuracy does not compensate for the additional
evaluation time.

12.2 Probably Useful Orders

This analysis suggests that many orders do not contribute to the overall heuristic once the set of
orders Ω reaches a certain size. To test this hypothesis, we keep track of the sets of orders that
induce the highest heuristic estimates for each encountered state. We say that all orders in the
minimal hitting set7 of these sets are useful for the search, and all others are useless. The intuition
behind this definition is that a search with a heuristic that discards all useless orders evaluates exactly
the same states to the same heuristic values as a search that considers all orders.

As the computation of a minimum hitting set is NP-complete (Karp, 1972), we approximate
it by using a greedy algorithm that treats the set of orders Ω as a sequence 〈ω1, . . . , ωn〉 (any or-
der suffices). Let 〈T , cost〉 be a weighted transition system. Then an order ωi is probably useful
for state s ∈ S(T) if it is the first order in the sequence that maximizes the heuristic value, i.e.,
hSCP
ωi

(cost, s) > hSCP
ωj

(cost, s) for all j < i, and hSCP
ωi

(cost, s) ≥ hSCP
ωj

(cost, s) for all j > i. We call
all orders that are probably useful for at least one state encountered during search probably useful.
The set of probably useful orders is a hitting set, but not necessarily a minimal one. It therefore
serves as an upper bound on the number of orders that contribute to the search.

Figure 9 compares the percentage of probably useful orders for two different heuristics. For
the moment, we are only interested in the hSCP

10-greedy-opt-100s heuristic on the x-axis, which shows
the percentage of probably useful orders out of 10 optimized greedy orders. As we can see, even
one of the strongest saturated cost partitioning heuristics we have described so far, hSCP

10-greedy-opt-100s,
contains many useless orders. In only 25% of the commonly solved tasks at least 80% of the orders

7. We can break ties arbitrarily, so for the sake of simplicity, we assume that there is exactly one minimal hitting set.

151

SEIPP, KELLER, & HELMERT

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

hSCP
10-greedy-opt-100s

h
SC

P
di

v

Figure 9: Percentage of probably useful orders for 10 optimized greedy orders (hSCP
10-greedy-opt-100s)

and diverse orders with a diversification time limit of 1000 seconds (hSCP
div). We exclude tasks for

which any of the two heuristics uses fewer than 1000 expansions. The area of each circle is propor-
tional to the number of tasks that it represents. Note that hSCP

10-greedy-opt-100s uses fewer than 10 orders
for 5 tasks because the total preprocessing time is limited by 1000 seconds and computing the final
cost partitionings takes too long.

are probably useful. If we take into account that the number of probably useful orders is an upper
bound on the real number of useful orders, we can confirm that it is rarely useful to add another
order to an already sufficiently large set of orders. This raises the question of how to choose a good
number of orders, which we focus on next.

12.3 Diverse Orders

The analysis of probably useful orders not only explains why additional orders lead to a lower
coverage once Ω reaches a certain size, but it also shows that the convincing results by using multiple
greedy orders are obtained despite having a large number of useless orders in Ω. Removing the
useless orders from Ω would result in faster heuristic evaluation without loss of information, and
replacing them with useful orders would result in a more accurate heuristic.

Unfortunately, we can only decide whether an order is useful once the search has terminated. We
therefore generate a set Ŝ of 1000 sample states with the previously described sampling procedure
from Haslum et al. (2007), which serves as a proxy for the real set of states encountered during the
search and is used to decide if an order is probably useful or not.

12.3.1 DIVERSIFICATION ALGORITHM

We propose the following algorithm for finding a diverse set of useful orders Ω: first, we initialize
Ω to be the empty set. Afterwards, until a given time limit T is reached, we iteratively generate a
new order ω, add it to Ω if hSCP

ω (cost, s) > maxω′∈Ω h
SCP
ω′ (cost, s) for at least one state s ∈ Ŝ and

the original cost function cost, and discard it otherwise.
This diversification approach has the drawback that it keeps early-found orders with higher prob-

ability, even if they are dominated on all sample states by a later-found order. We also experimented
with more sophisticated methods but the resulting heuristics were weaker than the ones produced

152

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

Diversification time 0s 1s 10s 20s 50s 100s 200s 500s 1000s 1200s 1500s

Coverage 1013 1038 1121 1128 1132 1134 1136 1136 1133 1128 1105

Table 5: Number of solved tasks by diverse saturated cost partitioning heuristics for unoptimized
greedy orders using different diversification time limits. The configuration in the left-most column
uses a single (non-diverse) order.

op
t-

0
s

op
t-

1
s

op
t-

1
0s

op
t-

1
00

s

op
t-

1
00

0s

Coverage

opt-0s – 1 1 3 13 1133
opt-1s 4 – 1 5 15 1137
opt-10s 5 3 – 5 14 1142
opt-100s 7 6 5 – 14 1145
opt-1000s 3 1 1 0 – 1098

Table 6: Coverage comparison of saturated cost partitioning heuristics diversified for 1000 seconds
using different optimization time limits. Each (x, y) cell holds the number of domains in which
configuration y solves more tasks than configuration x. We highlight the maximum of the entries in
(x, y) and (y, x) in bold. Right: Total number of solved tasks.

by the diversification procedure above. For example, when we only kept the orders that were part of
a greedily-approximated minimal hitting set for Ŝ, the resulting set often contained too few orders.
These orders are enough to cover the set of sample states, but other orders which do not have any
benefit on the sample set may actually be useful during search.

12.3.2 NUMBER OF DIVERSE ORDERS

During the diversification process we do not impose any limit on the number of orders kept and
instead let the algorithm find a good size for Ω automatically. In principle, this could lead to using
too many orders and therefore slowing down the evaluation too much. However, we hypothesize
that if we find another diverse order for the relatively small set of samples, chances are high that it
will prove useful during the A∗ search as well. We confirmed this hypothesis in a simple experiment
by limiting the number of orders that the diversification method produces. For all tested values of
|Ω| ≥ 20 the total coverage was almost identical to the number of solved tasks without any size
limit on Ω.

12.3.3 EVALUATION OF DIVERSE ORDERS

We evaluate the diversification procedure using unoptimized greedy orders. Table 5 shows the total
number of tasks solved by the resulting heuristic for various diversification time limits T . It solves
more tasks with increasing T until it reaches the peak of 1136 solved tasks at T = 200 and T = 500
seconds. Afterwards, coverage decreases again.

153

SEIPP, KELLER, & HELMERT

We saw in Table 4 that the best configuration using multiple unoptimized greedy orders solves
1120 tasks. By diversifying unoptimized greedy orders we are able to raise the total coverage by up
to 16 tasks, showing that diversifying the set of orders is useful.

In the next experiment, we evaluate whether optimized greedy orders also benefit from diversifi-
cation. We use a fixed diversification time limit of 1000 seconds, but vary the time for hill climbing
in the space of orders. Table 6 holds a per-domain coverage comparison and total coverage results.
The setting that yields the strongest heuristic uses 100 seconds of hill-climbing optimization. We
use the name hSCP

div for this configuration (1000 seconds of diversification and at most 100 seconds
of optimization for each greedy order). It solves 1145 of the 1827 tasks in our benchmark set, 4
tasks more than hSCP

10-greedy-opt-100s, the best configuration using a fixed number of non-diverse greedy
orders optimized for 100 seconds. In addition, hSCP

div has the advantage over hSCP
10-greedy-opt-100s that we

do not need to find a good value for the number of orders when given a new task.
We believe that one of the reasons for hSCP

div solving more tasks than hSCP
10-greedy-opt-100s is that

the selected orders are more diverse, and hence there are fewer relevant states where the heuristic
guidance of hSCP

div is poor. This is true even though the average size of Ω is lower for hSCP
div (arithmetic

mean: 6.9 orders, standard deviation: 7.87), compared to 10 optimized greedy orders. For 170 tasks,
only a single order is chosen, and there is only one task for which more than 100 orders are selected
during diversification (107 orders). Even though the percentage of useful orders can be expected
to be larger if Ω is smaller, the difference does not make up for the vastly superior impression
that can be seen in Figure 9: the percentage of probably useful orders of hSCP

div is higher than for
hSCP

10-greedy-opt-100s in almost all tasks. Moreover, for 98% of the analyzed tasks at least 60% of the
orders of hSCP

div are probably useful, and there is even a large percentage of tasks (87%) where almost
all orders of hSCP

div (at least 95%) are probably useful.

12.4 Summary of Improvements

The preceding experiments have shown four major improvements in quality for heuristics based on
saturated cost partitioning: first, by computing a greedy order of heuristics; second, by optimizing
the order of heuristics; third, by considering multiple orders; and finally, by explicitly searching for
diversity among orders. Table 7a shows per-domain and total coverage results for the heuristics that
correspond to these improvements. Using a greedy order instead of a random one and using multiple
orders instead of a single one led to the biggest changes in total coverage: 86.7 and 100 additionally
solved tasks, respectively. In comparison, optimization and diversification were responsible for
smaller differences in coverage and led to solving 28 and 4 additional tasks, respectively. These
improvements are already impressive by themselves, but even more so, given that each of them is
able to raise the total number of solved tasks even after applying the other changes. The strongest
heuristic, hSCP

div , is a huge improvement over the saturated cost partitioning heuristic we started with,
hSCP

random. hSCP
div solves as many or more tasks than hSCP

random in all domains and raises the total coverage
score by 218.7 tasks. This increase in coverage is remarkable, since task difficulty tends to scale
exponentially in optimal classical planning.

13. Comparison to Other Approaches

The strong results for hSCP
div raise the question how close it approximates the optimal cost partitioning

heuristic and how it compares to other admissible heuristics and state-of-the-art optimal planners.

154

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

hSCP
random hSCP

greedy hSCP
greedy-
opt-1000s

hSCP
10-greedy-
opt-100s

hSCP
div

agricola (20) 0.0 0 0 0 0
airport (50) 24.3 24 24 25 25
barman (34) 4.0 4 4 4 4
blocks (35) 26.7 28 28 28 28
childsnack (20) 0.0 0 0 0 0
data-network (20) 13.0 13 14 14 14
depot (22) 11.4 11 12 13 13
driverlog (20) 12.9 14 15 15 15
elevators (50) 34.9 37 42 44 45
floortile (40) 3.8 6 6 6 6
freecell (80) 36.6 65 65 66 66
ged (20) 15.7 15 15 19 19
grid (5) 2.6 3 3 3 3
gripper (20) 8.0 8 8 8 8
hiking (20) 13.0 13 13 14 14
logistics (63) 25.4 27 29 36 39
miconic (150) 85.4 91 91 143 144
movie (30) 30.0 30 30 30 30
mprime (35) 26.2 28 29 30 30
mystery (30) 18.0 18 19 19 19
nomystery (20) 16.7 20 20 20 20
openstacks (100) 49.4 51 51 51 51
organic (20) 7.0 7 7 7 7
organic-split (20) 10.0 10 10 10 10
parcprinter (50) 26.0 30 30 39 39
parking (40) 12.4 13 13 14 14
pathways (30) 4.0 4 4 5 5
pegsol (50) 46.4 48 48 48 48
petri-net (20) 0.0 0 0 0 0
pipes-nt (50) 21.2 22 23 25 24
pipes-t (50) 15.2 16 17 17 17
psr-small (50) 50.0 50 50 50 50
rovers (40) 8.0 8 8 8 8
satellite (36) 6.0 7 7 7 7
scanalyzer (50) 23.2 23 27 33 33
snake (20) 12.3 13 11 12 13
sokoban (50) 50.0 50 50 50 50
spider (20) 14.2 15 15 15 15
storage (30) 16.0 16 16 16 16
termes (20) 11.5 12 12 13 12
tetris (17) 11.0 11 11 11 11
tidybot (40) 23.6 25 25 25 25
tpp (30) 6.6 7 7 8 8
transport (70) 29.4 32 33 35 35
trucks (30) 10.6 12 13 13 13
visitall (40) 13.0 30 30 30 30
woodwork (50) 28.4 34 44 49 49
zenotravel (20) 12.3 12 12 13 13

Sum (1827) 926.3 1013 1041 1141 1145

(a) A∗ search with variants of hSCP.

Comp1 Comp2 PPDBs Scorpion

agricola (20) 6 6 6 2
airport (50) 21 23 23 37
barman (34) 11 11 11 4
blocks (35) 30 30 30 28
childsnack (20) 0 1 4 0
data-network (20) 13 13 13 14
depot (22) 7 7 7 14
driverlog (20) 14 13 14 15
elevators (50) 37 37 37 44
floortile (40) 34 34 34 16
freecell (80) 22 26 27 70
ged (20) 16 19 19 19
grid (5) 2 2 2 3
gripper (20) 20 20 20 8
hiking (20) 15 18 18 13
logistics (63) 26 28 28 36
miconic (150) 105 104 104 143
movie (30) 30 30 30 30
mprime (35) 19 21 20 31
mystery (30) 13 15 16 19
nomystery (20) 12 18 18 20
openstacks (100) 74 74 74 51
organic (20) 7 7 7 7
organic-split (20) 13 13 13 13
parcprinter (50) 38 41 40 50
parking (40) 2 2 5 15
pathways (30) 5 4 4 5
pegsol (50) 48 48 48 50
petri-net (20) 16 18 18 0
pipes-nt (50) 15 20 18 25
pipes-t (50) 13 16 16 18
psr-small (50) 50 50 50 50
rovers (40) 14 13 13 11
satellite (36) 11 10 11 9
scanalyzer (50) 21 21 23 33
snake (20) 10 12 11 13
sokoban (50) 47 48 48 50
spider (20) 10 11 11 16
storage (30) 15 15 15 16
termes (20) 14 15 15 13
tetris (17) 10 12 11 13
tidybot (40) 24 29 29 32
tpp (30) 9 14 8 8
transport (70) 26 28 28 35
trucks (30) 11 10 10 15
visitall (40) 16 20 20 30
woodwork (50) 45 46 46 50
zenotravel (20) 13 13 13 13

Sum (1827) 1030 1086 1086 1207

(b) IPC 2018 optimal planners.

Table 7: Number of solved tasks by different algorithms. We average over 10 runs for hSCP
random.

155

SEIPP, KELLER, & HELMERT

101 103 105 107

101

103

105

107

un
s.

unsolved

hOCP
10h

h
SC

P
di

v

Figure 10: Number of expansions before the last f layer for hOCP
10h and hSCP

div .

13.1 Optimal Cost Partitioning

We compare hSCP
div against the algorithm that computes an optimal cost partitioning in every state

evaluated during the search (hOCP). Since hSCP
div is much faster to evaluate than hOCP, hSCP

div solves
significantly more tasks than hOCP. While hSCP

div solves 1145 tasks in 30 minutes, hOCP finds a
solution for only 291 tasks in the same amount of time. Even if we raise the time limit for optimal
cost partitioning to 10 hours (hOCP

10h), it solves only 374 tasks.
Figure 10 compares the number of expansions needed by hSCP

div and hOCP
10h . The 1827 benchmark

tasks can be divided into the following groups: 665 tasks are solved by neither heuristic. For 7 tasks
both heuristics detect unsolvability and for 4 tasks only hOCP

10h is able to do so. There are 777 tasks
solved by hSCP

div which hOCP
10h fails to solve and for 6 tasks the opposite is the case. For 253 commonly

solved tasks, both heuristics are perfect, i.e., they need no expansions before the last f layer. There
are 42 commonly solved tasks for which hOCP

10h is perfect, but hSCP
div is not and 73 commonly solved

tasks for which neither heuristic is perfect.
For the 777 tasks solved by hSCP

div but not by hOCP
10h , hOCP

10h runs out of time and memory while
computing the optimal cost partitioning for the initial state in 215 and 314 cases, respectively. For
the remaining 248 tasks hOCP

10h runs out of time during the A∗ search.
hSCP

div needs more expansions than hOCP
10h in 104 of the 368 commonly solved tasks, revealing that

hSCP
div is often not as accurate as hOCP. This shows that one can still hope to find better approxi-

mations of optimal cost partitionings. Pommerening et al. (2019) recently introduced an anytime
approximation algorithm that eventually converges to an optimal cost partitioning. Their algorithm
can be seeded with any cost partitioning and they showed that it is able to increase the heuristic value
of saturated cost partitioning heuristics. However, so far their method has not been used as part of
a planning algorithm and it remains to be seen whether or not the increase in heuristic accuracy
outweighs the additional computation cost.

13.2 Other Admissible Heuristics

We refer to the literature for an experimental comparison between saturated cost partitioning and
other cost partitioning algorithms (Seipp et al., 2017). In the following, we compare hSCP

div to some

156

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

hSCP
div hBJOLP hiPDB

900s hLM-cut hSEQ +
LM-cut hpot hM&S hSEQ

Coverage 1145 979 960 958 957 937 866 784
#Domains hSCP

div better – 30 24 32 31 30 29 34
#Domains hSCP

div worse – 4 5 5 7 6 3 3

Table 8: Overall and per-domain comparison of hSCP
div to some of the strongest admissible heuristics

from the literature.

of the strongest admissible heuristics from the literature, namely the hBJOLP landmark heuristic
(Domshlak, Helmert, Karpas, & Markovitch, 2011), hiPDB (Haslum et al., 2007), hLM-cut (Helmert
& Domshlak, 2009), the operator counting heuristic with the state equation and LM-Cut con-
straints hSEQ +

LM-cut (Pommerening, Röger, Helmert, & Bonet, 2014), the diverse potentials heuristic
hpot (Seipp et al., 2015), merge-and-shrink (hM&S) using bisimulation and the SCC-DFP merge
strategy (Helmert, Haslum, Hoffmann, & Nissim, 2014; Sievers, Wehrle, & Helmert, 2016), and
the state-equation heuristic hSEQ (Bonet, 2013). The approach by Karpas et al. (2011), which pre-
computes multiple optimal cost partitionings, is inapplicable in our setting, as there are already 604
tasks solved by hSCP

div for which we fail to compute even a single optimal cost partitioning within 30
minutes and 3.5 GiB.

Table 8 shows the total coverage scores and also compares the algorithms to hSCP
div on a per-

domain basis. The hSCP
div heuristic significantly outperforms all other heuristics, solving 166 more

tasks than the heuristic with the second-highest coverage score in this comparison, hBJOLP. Beyond
total coverage, hSCP

div also has an edge over the other heuristics in most individual domains. For
example, out of the 48 tested domains, hSCP

div solves more tasks than hLM-cut in 32 domains, while
the opposite is true in only 5 domains.

13.3 IPC 2018 planners

Diverse saturated cost partitioning heuristics also competed in the sequential optimization track of
IPC 2018 as the main ingredient of the Scorpion planner (Seipp, 2018). Scorpion and hSCP

div both
compute diverse saturated cost partitioning heuristics over hill climbing PDBs, systematic PDBs
up to size 2 and Cartesian abstractions. The main difference between the two planners is that
Scorpion uses h2 mutexes to prune irrelevant operators (Alcázar & Torralba, 2015), an important
preprocessing technique used by all top performers in IPC 2018. Another difference is that the
two planners employ different time limits for diversification and optimization: hSCP

div uses 1000
seconds and 100 seconds, whereas Scorpion uses 200 seconds and 2 seconds, respectively. Also, in
contrast to hSCP

div , Scorpion uses strong stubborn sets to prune successor states (Alkhazraji, Wehrle,
Mattmüller, & Helmert, 2012; Wehrle & Helmert, 2014).

Table 7b compares Scorpion to the three strongest non-portfolio planners from IPC 2018: Com-
plementary 1 (Franco, Lelis, Barley, Edelkamp, Martines, & Moraru, 2018), Complementary 2
(Franco, Torralba, Lelis, & Barley, 2017) and Planning-PDBs (Moraru, Edelkamp, Martinez, &
Franco, 2018). Scorpion solves more tasks than the other three planners in 29 domains, while the
opposite is the case in only 12–13 domains. Scorpion also has an edge over the other three planners
in terms of total coverage: it solves 121 more tasks than the strongest contender.

157

SEIPP, KELLER, & HELMERT

14. Conclusion

We showed both theoretically and in experiments that the order in which saturated cost partitioning
considers a set of component heuristics greatly influences the quality of the resulting cost-partitioned
heuristic. Greedy orders result in significantly more accurate heuristics than those obtained with
random orders. In addition, greedy orders greatly benefit from optimization via a hill-climbing
search. Maximizing over heuristics from multiple orders leads to further improvements, especially
when explicitly diversifying the set of orders to include only those that prove useful on a set of
sample states.

Acknowledgments

We have received funding for this work from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation programme (grant agreement no. 817639).

Appendix A. Abstraction Heuristics with General Cost Functions are Admissible
and Consistent

We state in Section 5 that all abstraction heuristics are admissible and consistent even if we allow
negative and infinite costs. We now show this result.

First, we recall the definition of goal distances for a transition system T , cost function cost ∈
C(T) and state s ∈ S(T):

h∗T (cost, s) = inf
π∈Π?(T ,s)

cost(π),

where Π?(T , s) is the set of goal paths from s in T and inf ∅ is defined as∞. We write h∗ for h∗T
where T is clear from context or does not matter.

We first show that all heuristics that are goal-aware and consistent are admissible, and then we
conclude the proof by showing that abstraction heuristics (with general cost functions) are goal-
aware and consistent.

A.1 Goal-Aware + Consistent =⇒ Admissible

It is well-known that in the setting of finite non-negative cost functions, a heuristic that is both
goal-aware and consistent is admissible. We now show that this result also holds for general cost
functions.

Let T be a transition system, and let h be a heuristic for T that is goal-aware and consistent.
We show that h is admissible.

Let s ∈ S(T) and cost ∈ C(T). We must show h(s) ≤ h∗(s). Because h∗(s) is defined as the
infimum of the costs of all goal paths for s, it is sufficient to show that h(s) ≤ cost(π) for all goal
paths π for s.

Let π = 〈s `1−→ s1, . . . , sn−1 `n−→ sn〉 be such a goal path from s to a goal state sn. Because h
is consistent we have h(s) ≤ cost(`1) ⊕ h(s1) ≤ cost(`1) ⊕ cost(`2) ⊕ h(s2) ≤ · · · ≤ cost(`1) ⊕
. . . cost(`n) ⊕ h(sn) = cost(π) ⊕ h(sn). Since h is goal-aware, we have h(sn) ≤ 0 and therefore
h(s) ≤ cost(π).

158

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

A.2 Abstraction Heuristics with General Cost Functions are Goal-Aware

Let h be an abstraction heuristic for transition system T with abstraction mapping α and abstract
transition system T ′. Let cost ∈ C(T) and s ∈ S?(T). We must show h(cost, s) ≤ 0.

By definition of abstraction heuristics, we have h(cost, s) = h∗T ′(cost, α(s)). Because s is a
goal state of T , α(s) is a goal state of T ′. (This is one of the properties required of abstraction
mappings; cf. Helmert et al., 2007.) Because the empty path is a goal path for α(s) with cost 0, we
have h∗T ′(cost, α(s)) ≤ 0, showing that h is goal-aware.

A.3 Abstraction Heuristics with General Cost Functions are Consistent

Let h be an abstraction heuristic for transition system T with abstract transition system T ′. Let
cost ∈ C(T) and s `−→ s′ ∈ T (T). We must show h(cost, s) ≤ cost(`)⊕ h(cost, s′).

Since abstractions preserve transitions (Helmert et al., 2007), we have α(s)
`−→ α(s′) ∈ T (T ′).

Therefore, h(cost, s) = h∗T ′(cost, α(s)) = infπ∈Π?(T ′,α(s)) cost(π) ≤ infπ′∈Π?(T ′,α(s′))(cost(`) ⊕
cost(π′)) = cost(`) ⊕ infπ′∈Π?(T ′,α(s′)) cost(π′) = cost(`) ⊕ h(s′), where the inequality holds
because for every goal path π′ ∈ Π?(T ′, α(s′)) the path π that consists of ` followed by π′ is a goal
path for α(s). This proves the result.

Appendix B. Cost Partitioning with General Cost Functions: Consistency

Let h1, . . . , hn be consistent heuristics for transition system T , let cost ∈ C(T), and let cost1, . . . ,
costn ∈ C(T) such that

∑n
i=1 costi(`) ≤ cost(`) for all ` ∈ L(T). We must show that the cost-

partitioned heuristic h for T is consistent under cost function cost, i.e., h(cost, s) ≤ cost(`) ⊕
h(cost, s′) for all s `−→ s′ ∈ T (T), where h(cost, s) :=

∑n
i=1 hi(costi, s). We emphasize that we

place no restrictions on the cost functions cost, cost1, . . . , costn, i.e., negative and (positively or
negatively) infinite costs are permitted.

We obtain

h(cost, s) =
n∑
i=1

hi(costi, s) (definition of h)

≤
n∑
i=1

(costi(`)⊕ hi(costi, s′)) (consistency of hi)

≤
n∑
i=1

costi(`)⊕
n∑
i=1

hi(costi, s
′) (main step of the proof, see below)

≤ cost(`)⊕
n∑
i=1

hi(costi, s
′) (cost partitioning condition)

= cost(`)⊕ h(s′) (definition of h),

which proves the result.

159

SEIPP, KELLER, & HELMERT

It remains to show the main step of the proof: we must demonstrate LHS ≤ RHS, where

LHS =
n∑
i=1

(costi(`)⊕ hi(costi, s′)) and

RHS =
n∑
i=1

costi(`)⊕
n∑
i=1

hi(costi, s
′).

If costi(`) and hi(costi, s′) are finite for all 1 ≤ i ≤ n, then all terms in the definition of LHS
and RHS are finite, in which case it is easy to see LHS = RHS. Otherwise, let i0 ∈ {1, . . . , n} be
the smallest index for which at least one of costi0(`) and hi0(costi0 , s

′) is (positively or negatively)
infinite.

If costi0(`) =∞, then
∑n

i=1 costi(`) =∞ and hence RHS =∞. Similarly, if hi0(costi0 , s
′) =

∞, we get
∑n

i=1 hi(costi, s′) =∞ and again RHS =∞. In both cases LHS ≤ RHS holds trivially
because x ≤ ∞ for all x.

So it remains to consider the case where neither costi0(`) nor hi0(costi0 , s
′) equals ∞, but

at least one of them is infinite. Then this must be a negative infinity, and we obtain costi0(`) ⊕
hi0(costi0 , s

′) = −∞. Because i0 is the first index for which we get infinities, we also know that
costj(`) ⊕ hj(costj , s′) is finite for all j < i0. Together, these two facts show LHS = −∞, from
which LHS ≤ RHS follows trivially because −∞ ≤ x for all x. This concludes the proof.

Appendix C. Cost Partitioning with General Cost Functions: Admissibility

Let h1, . . . , hn be admissible heuristics for transition system T , let cost ∈ C(T), and let cost1, . . . ,
costn ∈ C(T) such that

∑n
i=1 costi(`) ≤ cost(`) for all ` ∈ L(T). We must show that the cost-

partitioned heuristic h for T is admissible under cost function cost, i.e., h(cost, s) ≤ h∗(cost, s) for
all s ∈ S(T), where h(cost, s) :=

∑n
i=1 hi(costi, s). Again, no restrictions are placed on the cost

functions.
We define

h′(cost, s) :=

n∑
i=1

h∗(costi, s)

and view h′ as a cost-partitioned heuristic under cost function cost whose component heuristics are
all h∗. The heuristic h′ is clearly goal-aware, and from Appendix B, it is consistent (because h∗ is
consistent). As shown in Appendix A.1, h′ is therefore admissible.

We get:

h(cost, s) =
n∑
i=1

hi(costi, s) (definition of h)

≤
n∑
i=1

h∗(costi, s) (because all hi are admissible)

= h′(cost, s) (definition of h′)

≤ h∗(cost, s) (because h′ is admissible),

proving that h is admissible.

160

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

Appendix D. Remaining Cost Functions are Non-Negative if Original Cost Function
is Non-Negative

Consider a transition system T and a sequence of heuristics H = 〈h1, . . . , hn〉 for T . Let 〈cost1,
. . . , costn〉 be a saturated cost partitioning over H of a non-negative cost function cost ∈ C(T) and
let 〈remain0, . . . , remainn〉 be the sequence of remaining cost functions produced by the saturated
cost partitioning algorithm. Then all remaining cost functions are non-negative.

Since remain0 = cost by Definition 13 and cost ≥ 0, we have remain0 ≥ 0. By requirement 1
for saturated cost functions in Definition 10, we have costi ≤ remaini−1 and therefore remaini =
remaini−1 − costi ≥ 0 for 1 ≤ i ≤ n.

Appendix E. Cost-Partitioned Heuristic Values are Non-Negative if Original Cost
Function is Non-Negative

Consider a transition system T and a sequence of abstraction heuristics H = 〈h1, . . . , hn〉 for
T . Let 〈cost1, . . . , costn〉 be a saturated cost partitioning over H of a non-negative cost function
cost ∈ C(T) and let 〈remain0, . . . , remainn〉 be the sequence of remaining cost functions produced
by the saturated cost partitioning algorithm. Then

∑n
i=1 h(costi, s) ≥ 0 for all s ∈ S(T).

To see this, consider any i ∈ {1, . . . , n}. By Appendix D we have remaini−1 ≥ 0. Therefore,
h∗Thi

(remaini−1, s
′) ≥ 0 for all abstract states s′ ∈ S(Thi) and consequently hi(remaini−1, s) ≥ 0

for all concrete states s ∈ S(T). Together with requirement 2 for saturated cost functions in
Definition 10, we obtain hi(costi, s) = hi(remaini−1, s) ≥ 0 for all s ∈ S(T) and therefore∑n

i=1 h(costi, s) ≥ 0 for all s ∈ S(T).

Appendix F. Minimum Saturated Cost Function for Abstraction Heuristics

Consider a weighted (concrete) transition system 〈T , cost〉 and an abstraction heuristic h for T with
underlying (abstract) transition system T ′. We first show that the minimum saturated cost function
mscf for h and cost, as defined in Equation 1, satisfies the two properties of saturated cost functions
from Definition 10 and then show that mscf is minimal among all saturated cost functions for h and
cost:

Prop. 1. We must show mscf(`) ≤ cost(`) for all labels ` ∈ L(T). We distinguish between four
cases:

(1) If mscf(`) = −∞ or cost(`) =∞, the inequality holds trivially. (2) We have mscf(`) =

∞ if there is a transition a `−→ b ∈ T (T ′) such that one of the following conditions holds:

• h∗T ′(cost, a) is finite and h∗T ′(cost, b) = −∞
• h∗T ′(cost, a) =∞ and h∗T ′(cost, b) is finite

• h∗T ′(cost, a) =∞ and h∗T ′(cost, b) = −∞

By the definition of path addition and the triangle inequality for shortest paths in graphs,
cost(`) must be∞ in all three conditions and therefore mscf(`) = cost(`) =∞.

(3) For the last case involving infinities, we show by contradiction that cost(`) = −∞
implies mscf(`) = −∞ for all labels ` ∈ L(T). Assume there is a label ` ∈ L(T) with

161

SEIPP, KELLER, & HELMERT

cost(`) = −∞ and mscf(`) > −∞. Then there is a transition a `−→ b ∈ T (T ′), such that
h∗T ′(cost, a) 6= −∞ and h∗T ′(cost, b) 6= ∞. However, if h∗T ′(cost, b) 6= ∞, we must have
h∗T ′(cost, a) = −∞, since b is reachable from a via ` with cost −∞, which leads to a
contradiction.

Otherwise, mscf(`) and cost(`) are finite and there exists a transition a `−→ b ∈ T (T ′) such
that h∗T ′(cost, a) and h∗T ′(cost, b) are finite and mscf(`) = h∗T ′(cost, a) − h∗T ′(cost, b) ≤
cost(`)+h∗T ′(cost, b)−h∗T ′(cost, b) = cost(`), where we use that h∗T ′(cost, a) ≤ cost(`)+
h∗T ′(cost, b) by the triangle inequality.

Prop. 2. We must show h(mscf, s) = h(cost, s) for all states s ∈ S(T).

From mscf(`) ≤ cost(`) for all ` ∈ L(T), we get that h(mscf, s) ≤ h(cost, s) for all
states s ∈ S(T) since lowering the weights in a transition system can only decrease goal
distances.

It remains to show h(mscf, s) ≥ h(cost, s) for all concrete states s ∈ S(T). Since
changing the cost function does not affect the abstraction mapping, this is the case if
h∗T ′(mscf, a) ≥ h∗T ′(cost, a) for all abstract states a ∈ S(T ′).

Let a0 be any abstract state in S(T ′). If there is no goal path for a0, we get h∗T ′(mscf, a0) =
h∗T ′(cost, a0) =∞.

If all goal paths for a0 use a transition with label cost∞, we also have h∗T ′(cost, a0) =∞.

We need to show that h∗T ′(mscf, a0) =∞ in this case as well. Let a `−→ bwith cost(`) =∞
be one of the transitions that is part of a shortest goal path for a0. Since the transition is part
of the shortest goal path, we know that h∗T ′(cost, a) = ∞. If h∗T ′(cost, b) 6= ∞, we have
h∗T ′(cost, a) 	 h∗T ′(cost, b) = ∞ and therefore mscf(`) = ∞ and h∗T ′(mscf, a0) = ∞. If
h∗T ′(cost, b) =∞, then b is not a goal state and the shortest goal path for b uses a transition
with cost∞. Therefore, we have h∗T ′(cost, a) 	 h∗T ′(cost, b) = −∞ but h∗T ′(mscf, a0) is
still∞.

Otherwise, we know that there is a goal path for a0 that only uses labels ` with cost(`) <

∞. Let π = 〈a0
`1−→ a1, . . . , ak−1

`k−→ ak〉 be such a goal path. If cost(`i) = −∞
for a label `i on the path, we have h∗T ′(cost, a0) = −∞. Since mscf(`i) ≤ cost(`i) by
the first requirement for saturated cost functions, we have mscf(`i) = −∞ and therefore
h∗T ′(mscf, a0) = −∞.

Otherwise, all label costs on π are finite. However, the goal distance h∗T ′(cost, a0) is
still −∞ if there is a negative-cost cycle on π. Since reducing label costs preserves all
negative-cost cycles, we have h∗T ′(cost, a0) = h∗T ′(mscf, a0) = −∞ in this case.

162

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

If all label costs on π and all goal distances under cost are finite, we can bound the cost of
π under mscf by

k∑
i=1

mscf(`i)
(1)

≥
k∑
i=1

(h∗T ′(cost, ak−1)− h∗T ′(cost, ak))

(2)
=

k−1∑
i=0

h∗T ′(cost, ak)−
k∑
i=1

h∗T ′(cost, ak)

(3)
= h∗T ′(cost, a0)− h∗T ′(cost, ak)
(4)
= h∗T ′(cost, a0)− 0

= h∗T ′(cost, a0),

where (1) uses that mscf(`) ≥ h∗T ′(cost, a)	h∗T ′(cost, b) for all transitions a `−→ b ∈ T (T ′),
(2) and (3) are basic arithmetic, and (4) uses that ak is a goal state.

This shows that the cost of any plan for a0 under mscf is never lower than h∗T ′(cost, a0),
the cost of an optimal plan under cost. This proves h∗T ′(mscf, a) ≥ h∗T ′(cost, a) for all
abstract states a ∈ S(T ′) with finite goal distances under cost, concluding this part of the
proof.

Finally, we show by contradiction that mscf is minimal among all saturated cost functions for
h and cost. Let cost′ be a cost function with h(cost′, s) = h(cost, s) for all concrete states s ∈
S(T) and cost′(`) < mscf(`) for some label ` ∈ L(T). Since cost′(`) can only be lower than

mscf(`) if mscf(`) 6= −∞, this means that there exists a transition a `−→ b ∈ T (T ′) with cost′(`) <
h∗T ′(cost, a) − h∗T ′(cost, b). Because h(cost′, s) = h(cost, s) for all concrete states s ∈ S(T),
we also have h∗T ′(cost′, c) = h∗T ′(cost, c) for all abstract states c ∈ S(T ′). With this, we obtain
cost′(`) < h∗T ′(cost′, a) − h∗T ′(cost′, b), which violates the triangle inequality for shortest paths in
graphs.

References

Alcázar, V., & Torralba, Á. (2015). A reminder about the importance of computing and exploit-
ing invariants in planning. In Brafman, R., Domshlak, C., Haslum, P., & Zilberstein, S.
(Eds.), Proceedings of the Twenty-Fifth International Conference on Automated Planning and
Scheduling (ICAPS 2015), pp. 2–6. AAAI Press.

Alkhazraji, Y., Wehrle, M., Mattmüller, R., & Helmert, M. (2012). A stubborn set algorithm for
optimal planning. In De Raedt, L., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz,
F., & Lucas, P. (Eds.), Proceedings of the 20th European Conference on Artificial Intelligence
(ECAI 2012), pp. 891–892. IOS Press.

Ball, T., Podelski, A., & Rajamani, S. K. (2001). Boolean and Cartesian abstraction for model
checking C programs. In Proceedings of the 7th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS 2001), pp. 268–283.

Bellman, R. E. (1958). On a routing problem. Quarterly of Applied Mathematics, 16, 87–90.

163

SEIPP, KELLER, & HELMERT

Bonet, B. (2013). An admissible heuristic for SAS+ planning obtained from the state equation. In
Rossi, F. (Ed.), Proceedings of the 23rd International Joint Conference on Artificial Intelli-
gence (IJCAI 2013), pp. 2268–2274. AAAI Press.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129(1), 5–33.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to Algorithms. The MIT Press.

Culberson, J. C., & Schaeffer, J. (1998). Pattern databases. Computational Intelligence, 14(3),
318–334.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik,
1, 269–271.

Domshlak, C., Helmert, M., Karpas, E., & Markovitch, S. (2011). The SelMax planner: Online
learning for speeding up optimal planning. In IPC 2011 planner abstracts, pp. 108–112.

Doran, J. E., & Michie, D. (1966). Experiments with the graph traverser program. Proceedings of
the Royal Society A, 294, 235–259.

Edelkamp, S. (2001). Planning with pattern databases. In Cesta, A., & Borrajo, D. (Eds.), Proceed-
ings of the Sixth European Conference on Planning (ECP 2001), pp. 84–90. AAAI Press.

Edelkamp, S. (2006). Automated creation of pattern database search heuristics. In Edelkamp, S.,
& Lomuscio, A. (Eds.), Proceedings of the 4th Workshop on Model Checking and Artificial
Intelligence (MoChArt 2006), pp. 35–50.

Franco, S., Lelis, L. H. S., Barley, M., Edelkamp, S., Martines, M., & Moraru, I. (2018). The
Complementary1 planner in the IPC 2018. In Ninth International Planning Competition
(IPC-9): planner abstracts, pp. 28–31.

Franco, S., Torralba, Á., Lelis, L. H. S., & Barley, M. (2017). On creating complementary pattern
databases. In Sierra, C. (Ed.), Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI 2017), pp. 4302–4309. IJCAI.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: Theory and Practice. Morgan
Kaufmann.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.

Haslum, P., Botea, A., Helmert, M., Bonet, B., & Koenig, S. (2007). Domain-independent construc-
tion of pattern database heuristics for cost-optimal planning. In Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence (AAAI 2007), pp. 1007–1012. AAAI Press.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelligence Re-
search, 26, 191–246.

Helmert, M., & Domshlak, C. (2009). Landmarks, critical paths and abstractions: What’s the dif-
ference anyway?. In Gerevini, A., Howe, A., Cesta, A., & Refanidis, I. (Eds.), Proceedings
of the Nineteenth International Conference on Automated Planning and Scheduling (ICAPS
2009), pp. 162–169. AAAI Press.

Helmert, M., Haslum, P., & Hoffmann, J. (2007). Flexible abstraction heuristics for optimal sequen-
tial planning. In Boddy, M., Fox, M., & Thiébaux, S. (Eds.), Proceedings of the Seventeenth
International Conference on Automated Planning and Scheduling (ICAPS 2007), pp. 176–
183. AAAI Press.

164

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

Helmert, M., Haslum, P., Hoffmann, J., & Nissim, R. (2014). Merge-and-shrink abstraction: A
method for generating lower bounds in factored state spaces. Journal of the ACM, 61(3),
16:1–63.

Holte, R. C., Felner, A., Newton, J., Meshulam, R., & Furcy, D. (2006). Maximizing over multiple
pattern databases speeds up heuristic search. Artificial Intelligence, 170(16–17), 1123–1136.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E., & Thatcher, J. W.
(Eds.), Complexity of Computer Computations, pp. 85–103. Plenum Press.

Karpas, E., & Domshlak, C. (2009). Cost-optimal planning with landmarks. In Boutilier, C.
(Ed.), Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJ-
CAI 2009), pp. 1728–1733. AAAI Press.

Karpas, E., Katz, M., & Markovitch, S. (2011). When optimal is just not good enough: Learning
fast informative action cost partitionings. In Bacchus, F., Domshlak, C., Edelkamp, S., &
Helmert, M. (Eds.), Proceedings of the Twenty-First International Conference on Automated
Planning and Scheduling (ICAPS 2011), pp. 122–129. AAAI Press.

Katz, M., & Domshlak, C. (2007). Structural patterns of tractable sequentially-optimal planning.
In Boddy, M., Fox, M., & Thiébaux, S. (Eds.), Proceedings of the Seventeenth International
Conference on Automated Planning and Scheduling (ICAPS 2007), pp. 200–207. AAAI Press.

Katz, M., & Domshlak, C. (2008). Optimal additive composition of abstraction-based admissible
heuristics. In Rintanen, J., Nebel, B., Beck, J. C., & Hansen, E. (Eds.), Proceedings of the
Eighteenth International Conference on Automated Planning and Scheduling (ICAPS 2008),
pp. 174–181. AAAI Press.

Katz, M., & Domshlak, C. (2010). Optimal admissible composition of abstraction heuristics. Arti-
ficial Intelligence, 174(12–13), 767–798.

Korte, B., & Vygen, J. (2001). Combinatorial Optimization: Theory and Algorithms (2nd edition).
Springer.

Lelis, L. H. S., Franco, S., Abisrror, M., Barley, M., Zilles, S., & Holte, R. C. (2016). Heuristic
subset selection in classical planning. In Kambhampati, S. (Ed.), Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 3185–3191. AAAI
Press.

Moraru, I., Edelkamp, S., Martinez, M., & Franco, S. (2018). Planning-PDBs planner. In Ninth
International Planning Competition (IPC-9): planner abstracts, pp. 69–73.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley.

Pisinger, D., & Ropke, S. (2010). Large neighborhood search. In Gendreau, M., & Potvin, J.-Y.
(Eds.), Handbook of Metaheuristics, pp. 399–419. Springer.

Pommerening, F., Helmert, M., Röger, G., & Seipp, J. (2015). From non-negative to general op-
erator cost partitioning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI 2015), pp. 3335–3341. AAAI Press.

Pommerening, F., Röger, G., & Helmert, M. (2013). Getting the most out of pattern databases for
classical planning. In Rossi, F. (Ed.), Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI 2013), pp. 2357–2364. AAAI Press.

165

SEIPP, KELLER, & HELMERT

Pommerening, F., Röger, G., Helmert, M., & Bonet, B. (2014). LP-based heuristics for cost-optimal
planning. In Chien, S., Fern, A., Ruml, W., & Do, M. (Eds.), Proceedings of the Twenty-
Fourth International Conference on Automated Planning and Scheduling (ICAPS 2014), pp.
226–234. AAAI Press.

Pommerening, F., Röger, G., Helmert, M., Cambazard, H., Rousseau, L.-M., & Salvagnin, D.
(2019). Lagrangian decomposition for optimal cost partitioning. In Lipovetzky, N., On-
aindia, E., & Smith, D. E. (Eds.), Proceedings of the Twenty-Ninth International Conference
on Automated Planning and Scheduling (ICAPS 2019), pp. 338–347. AAAI Press.

Russell, S., & Norvig, P. (1995). Artificial Intelligence — A Modern Approach. Prentice Hall.

Seipp, J. (2017). Better orders for saturated cost partitioning in optimal classical planning. In
Fukunaga, A., & Kishimoto, A. (Eds.), Proceedings of the 10th Annual Symposium on Com-
binatorial Search (SoCS 2017), pp. 149–153. AAAI Press.

Seipp, J. (2018). Fast Downward Scorpion. In Ninth International Planning Competition (IPC-9):
planner abstracts, pp. 77–79.

Seipp, J., & Helmert, M. (2013). Counterexample-guided Cartesian abstraction refinement. In
Borrajo, D., Kambhampati, S., Oddi, A., & Fratini, S. (Eds.), Proceedings of the Twenty-
Third International Conference on Automated Planning and Scheduling (ICAPS 2013), pp.
347–351. AAAI Press.

Seipp, J., & Helmert, M. (2014). Diverse and additive Cartesian abstraction heuristics. In Chien,
S., Fern, A., Ruml, W., & Do, M. (Eds.), Proceedings of the Twenty-Fourth International
Conference on Automated Planning and Scheduling (ICAPS 2014), pp. 289–297. AAAI Press.

Seipp, J., & Helmert, M. (2018). Counterexample-guided Cartesian abstraction refinement for clas-
sical planning. Journal of Artificial Intelligence Research, 62, 535–577.

Seipp, J., & Helmert, M. (2019). Subset-saturated cost partitioning for optimal classical planning.
In Lipovetzky, N., Onaindia, E., & Smith, D. E. (Eds.), Proceedings of the Twenty-Ninth
International Conference on Automated Planning and Scheduling (ICAPS 2019), pp. 391–
400. AAAI Press.

Seipp, J., Keller, T., & Helmert, M. (2017). A comparison of cost partitioning algorithms for optimal
classical planning. In Barbulescu, L., Frank, J., Mausam, & Smith, S. F. (Eds.), Proceedings of
the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS
2017), pp. 259–268. AAAI Press.

Seipp, J., Pommerening, F., & Helmert, M. (2015). New optimization functions for potential heuris-
tics. In Brafman, R., Domshlak, C., Haslum, P., & Zilberstein, S. (Eds.), Proceedings of
the Twenty-Fifth International Conference on Automated Planning and Scheduling (ICAPS
2015), pp. 193–201. AAAI Press.

Seipp, J., Pommerening, F., Sievers, S., & Helmert, M. (2017). Downward Lab. https://doi.
org/10.5281/zenodo.790461.

Sievers, S., Wehrle, M., & Helmert, M. (2014). Generalized label reduction for merge-and-shrink
heuristics. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence
(AAAI 2014), pp. 2358–2366. AAAI Press.

166

SATURATED COST PARTITIONING FOR OPTIMAL CLASSICAL PLANNING

Sievers, S., Wehrle, M., & Helmert, M. (2016). An analysis of merge strategies for merge-and-shrink
heuristics. In Coles, A., Coles, A., Edelkamp, S., Magazzeni, D., & Sanner, S. (Eds.), Pro-
ceedings of the Twenty-Sixth International Conference on Automated Planning and Schedul-
ing (ICAPS 2016), pp. 294–298. AAAI Press.

Wehrle, M., & Helmert, M. (2014). Efficient stubborn sets: Generalized algorithms and selection
strategies. In Chien, S., Fern, A., Ruml, W., & Do, M. (Eds.), Proceedings of the Twenty-
Fourth International Conference on Automated Planning and Scheduling (ICAPS 2014), pp.
323–331. AAAI Press.

Yang, F., Culberson, J., Holte, R., Zahavi, U., & Felner, A. (2008). A general theory of additive
state space abstractions. Journal of Artificial Intelligence Research, 32, 631–662.

167

