Correlation Complexity of Classical Planning Domains

Jendrik Seipp

Florian Pommerening Malte Helmert

Gabriele Röger

University of Basel

June 13, 2016

J. Seipp, F. Pommerening, G. Röger, M. Helmert (Basel)

Correlation Complexity

Some Planning Tasks are Easy

- Domain independent planning is (PSPACE) hard.
- But some domains are easy.
- How can we quantify this?

Related Concepts

Width

- (macro-)persistent Hamming width (Chen and Giménez, 2007; 2009)
- serialized iterated width (Lipovetzky and Geffner, 2012; 2014)

Search space topology

• Fixing the heuristic, how do search algorithms behave (Hoffmann, 2005)

Our approach

 Fixing the behavior of search algorithms, how complex does the heuristic need to be?

sults Exampl

Main Question

• What does "guide directly to the goal" mean?

- What does "guide directly to the goal" mean?
- How can we measure the complexity of a heuristic?

- What does "guide directly to the goal" mean?
- How can we measure the complexity of a heuristic?

Heuristic Properties

- alive state: reachable + solvable + non-goal
- descending: all alive states have an improving successor
- dead-end avoiding: all improving successors of alive states are solvable

Main Question

- What does "guide directly to the goal" mean?
 → descending and dead-end avoiding
- How can we measure the complexity of a heuristic?

Main Question

- What does "guide directly to the goal" mean?
 → descending and dead-end avoiding
- How can we measure the complexity of a heuristic?

sults Exampl

Potential Heuristics

States factored into facts Features: conjunction of facts

Weights for features

$$w\left(\begin{array}{c}\bullet\\ \hline A\end{array}\right) = 8; \ w\left(\begin{array}{c}\bullet\\ \hline B\end{array}\right) = 1; \ w\left(\begin{array}{c}\bullet\\ \hline \end{array}\right) = 4$$

Heuristic value

Potential Heuristics

States factored into facts Features: conjunction of facts

Weights for features

$$w\left(\stackrel{\bullet}{\underset{A}{\longrightarrow}}\right) = 8; \ w\left(\stackrel{\bullet}{\underset{B}{\longrightarrow}}\right) = 1; \ w\left(\stackrel{\bullet}{\underset{B}{\longrightarrow}}\right) = 4; \ w\left(\stackrel{\bullet}{\underset{B}{\longrightarrow}}\right) = -2$$

Heuristic value

Potential Heuristics

States factored into facts Features: conjunction of facts

Weights for features

$$w\left(\stackrel{\bullet}{\underset{A}{\longrightarrow}}\right) = 8; \ w\left(\stackrel{\bullet}{\underset{B}{\longrightarrow}}\right) = 1; \ w\left(\stackrel{\bullet}{\underset{B}{\longrightarrow}}\right) = 4; \ w\left(\stackrel{\bullet}{\underset{B}{\longrightarrow}}\right) = -2$$

Heuristic value

$$h\left(\underbrace{\begin{array}{c}}\\\bullet\bullet\\ A\end{array}\right) = 8 + 8 + 1 + 4 - 2 = 19$$

Dimension: number of facts in largest feature

- What does "guide directly to the goal" mean?
 → descending and dead-end avoiding
- How can we measure the complexity of a heuristic?

- What does "guide directly to the goal" mean?
 → descending and dead-end avoiding
- How can we measure the complexity of a heuristic?
 → dimension of potential heuristics

Correlation Complexity

Definition (correlation complexity of a planning **task**)

minimum dimension of a descending, dead-end avoiding potential heuristic for the task

Definition (correlation complexity of a planning **domain**)

maximal correlation complexity of all tasks in the domain

Results E

Correlation Complexity of Some Domains

Correlation Complexity 2

- Blocksworld without an arm
- Gripper
- Spanner
- VisitAll

Correlation Complexity 3

Conclusion and Future Work

- New measure for the complexity of classical planning tasks.
- Measures how interrelated the task's variables are.
- All studied benchmark domains have correlation complexity 2.
- Next: find good features and weights automatically.

Extra Slides

J. Seipp, F. Pommerening, G. Röger, M. Helmert (Basel)

Correlation Complexity

sults Exam

Gripper has Correlation Complexity 2

Weight Function

$$w(r-in-B) = 1$$

 $w(b-in-A) = 8$
 $w(b-in-G) = 4$
 $w(r-in-B \land b-in-G) = -2$

J. Seipp, F. Pommerening, G. Röger, M. Helmert (Basel)

Pick-up-in-A

$$w(\mathsf{r-in-B}) = 1, w(\mathsf{b-in-A}) = 8, w(\mathsf{b-in-G}) = 4, w(\mathsf{r-in-B} \land \mathsf{b-in-G}) = -2$$

Move-to-B

$$w(\mathsf{r-in-B}) = 1, w(\mathsf{b-in-A}) = 8, w(\mathsf{b-in-G}) = 4, w(\mathsf{r-in-B} \land \mathsf{b-in-G}) = -2$$

Drop-in-B

$$w(\mathsf{r-in-B}) = 1, w(\mathsf{b-in-A}) = 8, w(\mathsf{b-in-G}) = 4, w(\mathsf{r-in-B} \land \mathsf{b-in-G}) = -2$$

Move-to-A

$$w(\mathsf{r-in-B}) = 1, w(\mathsf{b-in-A}) = 8, w(\mathsf{b-in-G}) = 4, w(\mathsf{r-in-B} \land \mathsf{b-in-G}) = -2$$

sults Examp

Example Task with Correlation Complexity 3

• 3-bit Gray code:

J. Seipp, F. Pommerening, G. Röger, M. Helmert (Basel)