Correlation Complexity of Classical Planning Domains

Jendrik Seipp Florian Pommerening Gabriele Röger
Malte Helmert
University of Basel
June 13, 2016

Some Planning Tasks are Easy

- Domain independent planning is (PSPACE) hard.
- But some domains are easy.
- How can we quantify this?

Related Concepts

Width

- (macro-)persistent Hamming width (Chen and Giménez, 2007; 2009)
- serialized iterated width
(Lipovetzky and Geffner, 2012; 2014)

Search space topology

- Fixing the heuristic, how do search algorithms behave (Hoffmann, 2005)

Our approach

- Fixing the behavior of search algorithms, how complex does the heuristic need to be?

Main Question

How complex must a heuristic be to guide a forward search directly to the goal?

Main Question

How complex must a heuristic be to guide a forward search directly to the goal?

- What does "guide directly to the goal" mean?

Main Question

How complex must a heuristic be to guide a forward search directly to the goal?

- What does "guide directly to the goal" mean?
- How can we measure the complexity of a heuristic?

Main Question

How complex must a heuristic be to guide a forward search directly to the goal?

- What does "guide directly to the goal" mean?
- How can we measure the complexity of a heuristic?

Heuristic Properties

- alive state: reachable + solvable + non-goal
- descending: all alive states have an improving successor
- dead-end avoiding: all improving successors of alive states are solvable

Main Question

How complex must a heuristic be to guide a forward search directly to the goal?

- What does "guide directly to the goal" mean? \rightarrow descending and dead-end avoiding
- How can we measure the complexity of a heuristic?

Main Question

How complex must a heuristic be to guide a forward search directly to the goal?

- What does "guide directly to the goal" mean? \rightarrow descending and dead-end avoiding
- How can we measure the complexity of a heuristic?

Potential Heuristics

States factored into facts

Features: conjunction of facts

Weights for features

$$
w(\stackrel{\bullet}{A})=8 ; w(\underset{\square}{\square})=1 ; w(\boldsymbol{\square})=4
$$

Heuristic value

$$
\frac{\mathrm{B} \cdot}{(-8+1+4=21}
$$

Potential Heuristics

States factored into facts

Features: conjunction of facts

Weights for features

$$
w\left(\frac{\bullet}{\mathrm{~A}}\right)=8 ; w(\underset{\mathrm{~B}}{\square})=1 ; w(\square)=4 ; w(\underset{\mathrm{~B}}{\square})=-2
$$

Heuristic value

$\left.\frac{\mathrm{B}}{\bullet}\right)=8+8+1+4-2=19$

Potential Heuristics

States factored into facts

Features: conjunction of facts

Weights for features

Heuristic value

Dimension: number of facts in largest feature

Main Question

How complex must a heuristic be to guide a forward search directly to the goal?

- What does "guide directly to the goal" mean?
\rightarrow descending and dead-end avoiding
- How can we measure the complexity of a heuristic?

Main Question

How complex must a heuristic be to guide a forward search directly to the goal?

- What does "guide directly to the goal" mean?
\rightarrow descending and dead-end avoiding
- How can we measure the complexity of a heuristic? \rightarrow dimension of potential heuristics

Correlation Complexity

> Definition (correlation complexity of a planning task) minimum dimension of a descending, dead-end avoiding potential heuristic for the task

Definition (correlation complexity of a planning domain)

 maximal correlation complexity of all tasks in the domain
Correlation Complexity of Some Domains

Correlation Complexity 2

- Blocksworld without an arm
- Gripper
- Spanner
- VisitAll

Correlation Complexity 3

Construction based on 3-bit Gray code

Conclusion and Future Work

- New measure for the complexity of classical planning tasks.
- Measures how interrelated the task's variables are.
- All studied benchmark domains have correlation complexity 2.
- Next: find good features and weights automatically.

Extra Slides

Gripper has Correlation Complexity 2

Weight Function

$$
\begin{aligned}
& w(\mathrm{r}-\mathrm{in}-\mathrm{B})=1 \\
& w(\mathrm{~b}-\mathrm{in}-\mathrm{A})=8 \\
& w(\mathrm{~b}-\mathrm{in}-\mathrm{G})=4 \\
& w(\mathrm{r}-\mathrm{in}-\mathrm{B} \wedge \mathrm{~b}-\mathrm{in}-\mathrm{G})=-2
\end{aligned}
$$

Pick-up-in-A

$$
w(\mathrm{r}-\mathrm{in}-\mathrm{B})=1, w(\mathrm{~b}-\mathrm{in}-\mathrm{A})=8, w(\mathrm{~b}-\mathrm{in}-\mathrm{G})=4, w(\mathrm{r}-\mathrm{in}-\mathrm{B} \wedge \mathrm{~b}-\mathrm{in}-\mathrm{G})=-2
$$

B
adds: b-in-G
removes: b-in-A
difference: $\quad+4-8=-4$

Move-to-B

$$
w(\mathrm{r}-\mathrm{in}-\mathrm{B})=1, w(\mathrm{~b}-\mathrm{in}-\mathrm{A})=8, w(\mathrm{~b}-\mathrm{in}-\mathrm{G})=4, w(\mathrm{r}-\mathrm{in}-\mathrm{B} \wedge \mathrm{~b}-\mathrm{in}-\mathrm{G})=-2
$$

Drop-in-B

$$
w(\mathrm{r}-\mathrm{in}-\mathrm{B})=1, w(\mathrm{~b}-\mathrm{in}-\mathrm{A})=8, w(\mathrm{~b}-\mathrm{in}-\mathrm{G})=4, w(\mathrm{r}-\mathrm{in}-\mathrm{B} \wedge \mathrm{~b}-\mathrm{in}-\mathrm{G})=-2
$$

Move-to-A

$$
w(\mathrm{r}-\mathrm{in}-\mathrm{B})=1, w(\mathrm{~b}-\mathrm{in}-\mathrm{A})=8, w(\mathrm{~b}-\mathrm{in}-\mathrm{G})=4, w(\mathrm{r}-\mathrm{in}-\mathrm{B} \wedge \mathrm{~b}-\mathrm{in}-\mathrm{G})=-2
$$

adds:
removes: $\quad r-i n-B$
difference: $\quad-1$

Example Task with Correlation Complexity 3

- 3-bit Gray code:

