Correlation Complexity of Classical Planning Domains

Jendrik Seipp

Motivation

How complex must a heuristic be to guide a forward search directly to the goal?

- What does "guide directly to the goal" mean? \rightarrow descending and dead-end avoiding
- How can we measure the complexity of a heuristic?
\rightarrow dimension of potential heuristics

Related Concepts

- (macro-)persistent Hamming width (Chen and Giménez, 2007; 2009)
- serialized iterated width (Lipovetzky and Geffner, 2012; 2014)
comparisons to correlation complexity in the paper

Heuristic Properties

- alive state: reachable + solvable + non-goal
- descending: all alive states have an improving successor
- dead-end avoiding: all improving successors of alive states are solvable

Potential Heuristics

$$
\varphi(s)=\sum_{F \in \mathcal{F}} w(F)[s \models F]
$$

- features \mathcal{F} : conjunctions of facts
- weight function w : assigns numeric value to each feature
- heuristic value φ : sum of a state's feature weights
- dimension: size of largest feature

Correlation Complexity

- correlation complexity of a planning task: minimum dimension of a descending, dead-end avoiding potential heuristic for the task
- correlation complexity of a planning domain: maximal correlation complexity of all tasks in the domain

Domains with Correlation Complexity 2

- Blocksworld-no-arm
- Gripper
- Spanner
- VisitAll

Gripper has Correlation Complexity 2

Weight Function

$$
\begin{aligned}
& w(r-i n-B)=1 \\
& w(b-i n-A)=8 \\
& w(b-i n-G)=4 \\
& w(r-i n-B \wedge b-i n-G)=-2
\end{aligned}
$$

Example Task with Correlation Complexity 3

- 3-bit Gray code:

Conclusion and Future Work

- All studied benchmark domains have correlation complexity 2.
- Find good features and weights automatically.

