Correlation Complexity of Classical Planning Domains

Jendrik Seipp Florian Pommerening Gabriele Röger
Malte Helmert
University of Basel
June 13, 2016

Motivation

How complex must a heuristic be to guide
a forward search directly to the goal?

- What does "guide directly to the goal" mean? \rightarrow descending and dead-end avoiding
- How can we measure the complexity of a heuristic? \rightarrow dimension of potential heuristics

Related Concepts

Width

- (macro-)persistent Hamming width (Chen and Giménez, 2007; 2009)
- serialized iterated width
(Lipovetzky and Geffner, 2012; 2014)
comparisons to correlation complexity in the paper

Definition

Heuristic Properties

- alive state: reachable + solvable + non-goal
- descending: all alive states have an improving successor
- dead-end avoiding: all improving successors of alive states are solvable

Potential Heuristics

- features \mathcal{F} : conjunctions of facts
- weight function w : assigns numeric value to each feature
- heuristic value φ : sum of a state's feature weights
- dimension: size of largest feature

$$
\varphi(s)=\sum_{F \in \mathcal{F}} w(F)[s \models F]
$$

Correlation Complexity

Definition

- correlation complexity of a planning task: minimum dimension of a descending, dead-end avoiding potential heuristic for the task
- correlation complexity of a planning domain: maximal correlation complexity of all tasks in the domain

Results

Domains with Correlation Complexity 2

- Blocksworld-no-arm
- Gripper
- Spanner
- VisitAll

Example

Gripper has Correlation Complexity 2

Weight Function

$$
\begin{aligned}
& w(\mathrm{r}-\mathrm{in}-\mathrm{B})=1 \\
& w(\mathrm{~b}-\mathrm{in}-\mathrm{A})=8 \\
& w(\mathrm{~b}-\mathrm{in}-\mathrm{G})=4 \\
& w(\mathrm{r}-\mathrm{in}-\mathrm{B} \wedge \mathrm{~b}-\mathrm{in}-\mathrm{G})=-2
\end{aligned}
$$

Pick-in-A

$$
w(\mathrm{r}-\mathrm{in}-\mathrm{B})=1, w(\mathrm{~b}-\mathrm{in}-\mathrm{A})=8, w(\mathrm{~b}-\mathrm{in}-\mathrm{G})=4, w(\mathrm{r}-\mathrm{in}-\mathrm{B} \wedge \mathrm{~b}-\mathrm{in}-\mathrm{G})=-2
$$

B

$$
\begin{array}{ll}
\text { adds: } & \text { b-in-G } \\
\text { removes: } & \text { b-in-A } \\
\text { difference: } & +4-8=-4
\end{array}
$$

Move-to-B

$$
w(\mathrm{r}-\mathrm{in}-\mathrm{B})=1, w(\mathrm{~b}-\mathrm{in}-\mathrm{A})=8, w(\mathrm{~b}-\mathrm{in}-\mathrm{G})=4, w(\mathrm{r}-\mathrm{in}-\mathrm{B} \wedge \mathrm{~b}-\mathrm{in}-\mathrm{G})=-2
$$

Drop-in-B

$$
w(\mathrm{r}-\mathrm{in}-\mathrm{B})=1, w(\mathrm{~b}-\mathrm{in}-\mathrm{A})=8, w(\mathrm{~b}-\mathrm{in}-\mathrm{G})=4, w(\mathrm{r}-\mathrm{in}-\mathrm{B} \wedge \mathrm{~b}-\mathrm{in}-\mathrm{G})=-2
$$

Move-to-A

$$
w(\mathrm{r}-\mathrm{in}-\mathrm{B})=1, w(\mathrm{~b}-\mathrm{in}-\mathrm{A})=8, w(\mathrm{~b}-\mathrm{in}-\mathrm{G})=4, w(\mathrm{r}-\mathrm{in}-\mathrm{B} \wedge \mathrm{~b}-\mathrm{in}-\mathrm{G})=-2
$$

adds:
removes: \quad-in-B
difference: -1

Example Task with Correlation Complexity 3

- 3-bit Gray code:

Conclusion and Future Work

- New measure for the complexity of classical planning tasks.
- Measures how interrelated the task's variables are.
- All studied benchmark domains have correlation complexity 2.
- Find good features and weights automatically.

