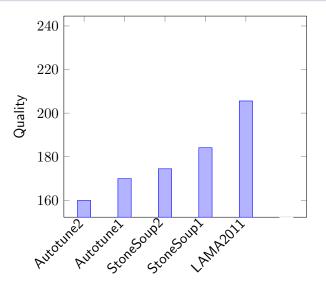
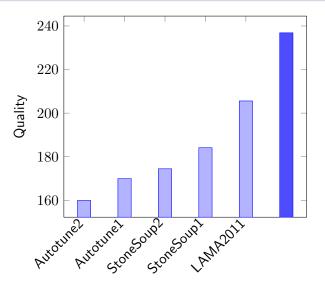
Learning Portfolios of Automatically Tuned Planners


Jendrik Seipp 1 Manuel Braun 1 Johannes Garimort 1 Malte Helmert 2

¹Albert-Ludwigs-Universität Freiburg, Germany


²Universität Basel, Switzerland

June 2012

IPC 2011 – Sequential Satisficing Track Results

IPC 2011 – Sequential Satisficing Track Results

Motivation

- Tuned planners:
 - Tune for complete benchmark set
 - Commit to single planner
- Portfolio planners:
 - Manually select planners
 - Calculate times greedily
- Our approach:
 - Tune one planner for each domain in training set automatically
 - Evaluate multiple portfolio generation methods

- Domain Tuning
- Portfolio Learning

Domain Tuning

- Training set of 21 former IPC domains (1998-2006)
- Tune Fast Downward with ParamILS for each domain

- Heuristics: h^{FF} , h^{add} , h^{cg} , h^{cea} , h^{LM}
- Searches: eager, lazy
- Type of landmarks, cost-handling, preferred operators
- Numerous combination options and conditional parameters $\rightarrow 2.99 \cdot 10^{13}$ configurations

- Preferred operators (19/21)
- Lazy search (20x), eager search (1x)
- Most configurations use one (10x) or two (9x) heuristics
- h^{FF} (12x), h^{LM} (11x), h^{cg} (6x), h^{cea} (4x), h^{add} (1x)

Tuning Results

	60V0K260	Planners				
coverage		optical-t	pathways	pipes-t	tpp	
Domains	optical-t (48)	21	0	3	0	
	pathways (30)	22	30	29	30	
	pipes-t (50)	26	39	42	38	
	tpp (30)	24	30	30	30	

Portfolio Learning

- Input: planners, results on training set, total time limit
- Output: {depot: 18s, gripper: 65s, ... }

- Hill-climbing in the portfolio space
- Start: {depot: 0, gripper: 0, ...}
- Successors:

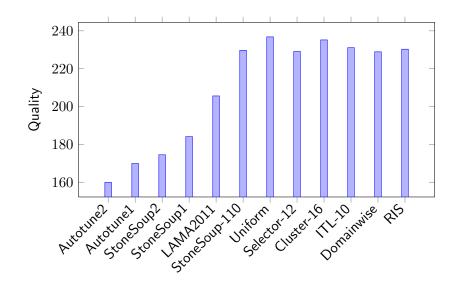
{depot: g, gripper: 0, ...}, {depot: 0, gripper: g, ...}, ...

• Choose best and repeat

- Run all planners for same amout of time
- Result: {depot: 85, gripper: 85, \dots }

- Brute force
- \bullet For all subset sizes $\{1,\ldots,21\}$ compute best portfolio with equal time shares

- Find k clusters with k-means
- Cluster by quality
- From each cluster choose best planner
- Give all planners equal time shares


- Iteratively increase the portfolio time limit
- Get problems that can be solved in that limit
- Find best planner for these problems
- Give it the needed time
- Repeat until no more problems solvable or time limit exceeded

- Iteratively retrieve domain with highest improvement potential
- Give the fastest improving planner the needed time
- Continue until total time limit reached or no more domains can be improved

Randomized Iterative Search

- Use any existing portfolio as initialization (e.g. uniform)
- Successors:
 - Swap time slice between planners
 - Collect time from all planners and give it to single one
- Commit to first successor improving score
- Run until score stagnates long enough

Portfolio Results 30 minutes

Different timeouts 1, 3, 5, 15 minutes

- Uniform portfolio outperforms LAMA even in 3 min setting
- Other portfolios are even better
- Less planners in portfolio when less time is available
- No portfolio dominates others for all timeouts
- Cluster and Increasing Time Limit among best performers
- Randomized Iterative Search prone to overfitting

- Promising initial results for optimal configurations
- Adaptively select next configuration
- Use more heterogeneous planners
- Apply automatic portfolio diversification in other areas

- Tuning for domains is effective
- Tuned planners yield very good results in portfolio