
Merging Cartesian Abstractions for Classical Planning
Mauricio Salerno1,*, Raquel Fuentetaja1, David Speck2 and Jendrik Seipp3

1Universidad Carlos III de Madrid, Leganés, Madrid, Spain
2University of Basel, Basel, Switzerland

3Linköping University, Linköping, Sweden

Abstract. Building a single Cartesian abstraction is usually not
enough to obtain an informative heuristic for classical planning.
Therefore, state-of-the-art methods decompose the original task into
subtasks—for example, one per goal atom—and compute an abstrac-
tion for each individual subtask. However, building a single abstrac-
tion suffers from diminishing returns, while building multiple abstrac-
tions loses information about how to achieve the associated subtasks
jointly. We interpolate between these two extremes by first consid-
ering subtasks individually and then merging some of the resulting
abstractions. We introduce an efficient algorithm for merging pairs
of Cartesian abstractions using their refinement hierarchies and show
that it yields more informative abstractions in less time than a naive
approach. Furthermore, we prove that adding merged abstractions
can only improve a cost-partitioned heuristic based on saturated post-
hoc optimization and that for maximal heuristic values, we need to
keep the individual abstractions. Our experiments show that merging
abstractions drastically improves the resulting heuristics.

1 Introduction
In optimal classical planning, the objective is to identify the cheapest
sequence of actions that leads from an initial situation to a desired goal
situation. One of the main solution methods is A∗ search [11] with
an admissible heuristic [19], and a prominent approach to computing
such an admissible heuristic involves determining goal distances in
Cartesian abstractions [2, 28].

There are two primary paradigms for computing Cartesian abstrac-
tion heuristics in the literature. The first one focuses on refining a
single abstraction until resource limits are reached, at which point
the abstraction serves as the basis for a heuristic [30]. This approach
converges to the perfect heuristic, but suffers from diminishing returns
over time. The second paradigm involves identifying subtasks such
as reaching individual goal atoms or landmarks [29], computing an
abstraction for each subtask, and combining them using cost partition-
ing [16, 37, 21, 31, 5]. This approach yields state-of-the-art heuristics,
but it does not converge to the perfect heuristic, since cost partitioning
cannot recover all loss in heuristic accuracy that comes from splitting
a task into subtasks.

The only approach in the literature that can converge to the perfect
heuristic when starting from a set of Cartesian abstractions considers
the online setting. Eifler and Fickert [8] create one Cartesian abstrac-
tion per goal atom and refine one of them during the A∗ search when
the heuristic violates the Bellman equation (1957). If no refinement
fixes the heuristic error, they merge two abstractions by computing

∗ Corresponding Author. Email: msalerno@pa.uc3m.es

the synchronized product. We discuss this approach in more detail in
Section 7.

In contrast, for other classes of abstractions there are many ap-
proaches for generating increasingly more informative heuristics. For
example, pattern database (PDB) heuristics [4, 6] can be obtained
using genetic algorithms [7, 9], hill-climbing [12], systematic enu-
meration [20], or with cost partitioning [26, 22]. Furthermore, merge-
and-shrink heuristics [33] operate on the factored task representation,
gradually combining and coarsening abstractions using a variety of
strategies for both operations.

Based on these observations, it is natural to move beyond using
a fixed, predetermined set of Cartesian abstractions, and we make
the following contributions: first, we introduce a systematic approach
to generate Cartesian abstractions that gradually consider more goal
atoms jointly; second, we introduce an efficient algorithm to compute
the synchronized product of Cartesian abstractions using their refine-
ment hierarchies; third, we analyze theoretically how adding product
Cartesian abstractions affects three different cost partitioning tech-
niques: optimal cost partitioning [17], saturated post-hoc optimization
[20, 32] and saturated cost partitioning [31]; fourth, we empirically
evaluate our new approach on a large set of benchmarks from the Inter-
national Planning Competition (IPC) [36]. The results show that our
new approach yield more informative heuristics, which solve many
more tasks than state-of-the-art approaches for computing Cartesian
abstractions.

2 Background

A SAS+ planning task [1] with action costs is a tuple Π =
⟨V,O, I,G⟩. Each v ∈ V is a finite-domain variable with a finite do-
main D(v). A partial state s maps a subset of variables vars(s) ⊆ V
to a value in their domain. We call s a state if vars(s) = V . We
denote the set of all states in Π by S(Π). A pair ⟨v, d⟩ where v ∈ V
and d ∈ D(v) is called an atom, written as v 7→ d, and we of-
ten treat (partial) states as sets of atoms. Each operator o ∈ O is
a tuple ⟨pre(o), eff(o), cost(o)⟩, where pre(o) and eff(o) are partial
states defining the preconditions and effects of o, and cost(o) ∈ R+

0

is its cost. An operator o is applicable in state s if pre(o) ⊆ s,
and the successor state resulting from applying o in s is sJoK, with
sJoK[v] = eff(o)[v] if v ∈ vars(eff(o)), and sJoK[v] = s[v] otherwise.
State I is the initial state and G is a partial state describing the goal.
An atom v 7→ d ∈ G is a goal atom, and a state s such that G ⊆ s is
a goal state.

A transition system T = ⟨S,L, T, s0, S⋆⟩ is a directed labeled
graph with a finite set of states S, labels L, labeled transitions T ⊆

S × L × S, an initial state s0 ∈ S and a set of goal states S⋆ ⊆ S.
A path is a sequence of transitions, and a goal path leads from the
initial state to a goal state. The sequence of labels of a goal path
is called a plan. When a transition system T is combined with a
cost function cost : L → R, we have a weighted transition system
⟨T , cost⟩. For a weighted transition system, the cost of a plan is
the sum of the costs of its labels, and a plan is optimal if there is
no plan with a lower cost. A planning task Π induces a transition
system T , where the states S are the states S(Π) in the planning
task, the initial state is the same s0 = I, the set of labels L is the
set of operators O, the goal states are all states that contain the goal
S⋆ = {s ∈ S(Π) | G ⊆ s} and the transitions are defined by
T = {⟨s, o, s′⟩ | s, s′ ∈ S(Π), o ∈ O, pre(o) ⊆ s, s′ = sJoK}. A
plan is optimal for T iff it is optimal for Π.

An abstraction of a transition system T is a surjective function
α : S → Sα mapping concrete states to abstract states. The ab-
stract state space induced by α is the transition system T α =
⟨Sα,L, Tα, sα0 , S

α
⋆ ⟩, with sα0 = α(s0), Sα

⋆ = {α(s) | s ∈ S⋆}
and Tα = {⟨α(s), ℓ, α(s′)⟩ | (s, ℓ, s′) ∈ T}. Abstractions preserve
paths in the original transition system. Thus, for a cost function cost,
the abstraction heuristic hα(cost, s) = h∗

T α(cost, sα), which com-
putes the cost of an optimal goal path from sα = α(s) in the abstract
weighted transition system ⟨T α, cost⟩, is admissible.

A Cartesian abstraction is an abstraction in which all abstract states
are Cartesian sets. For a planning task with variables ⟨v1, . . . , vn⟩ a
Cartesian set has the form A1 × · · · ×An, where Ai ⊆ D(vi) for all
1 ≤ i ≤ n. The intersection of two Cartesian sets A1× · · · ×An and
B1×· · ·×Bn is a Cartesian set defined by (A1∩B1)×· · ·×(An∩Bn)
[30].

Counterexample-guided abstraction refinement (CEGAR) is a
method that incrementally computes more fine-grained Cartesian
abstractions of a transition system [30]. The process starts with a
coarse abstraction where an abstract plan is computed. If said plan
corresponds to a concrete plan, the procedure stops and no refine-
ments are done to the abstraction. Otherwise, if the abstract plan does
not correspond to a valid concrete plan, the reason is identified—this
reason is called a flaw. There are three types of flaws: an operator is
not applicable in the concrete plan; the concrete and abstract traces
diverge (abstract state does not correspond to concrete state); and the
final state is not a goal state in the concrete task. When a flaw is found,
the abstraction is refined by splitting the abstract state that caused the
flaw, guaranteeing that in future iterations the same flaw cannot occur
again. This procedure is repeated until a concrete plan is found or a
resource limit is reached.

Seipp and Helmert [30] note that building a single big Cartesian
abstraction suffers from diminishing returns. To tackle this issue, they
propose methods to create a set of diverse and small abstractions that
capture relevant information about different aspects of the problem.
One of these methods creates one Cartesian abstraction for each goal
atom ⟨v 7→ d⟩ ∈ G and, after refining each single-goal abstraction,
apply cost partitioning to get an admissible combination of the heuris-
tic values of all abstractions. Single-goal abstractions are created from
modified planning tasks, which are identical to the original one except
that the considered goal is the only goal atom.

The refinement hierarchy [30] constitutes a fundamental data struc-
ture within the Cartesian CEGAR framework as it serves multiple
purposes: it encodes the abstraction function; facilitates efficient on-
demand computation of transitions between abstract states [27]; main-
tains the history of refinements starting from the trivial abstraction;
and can be used to compute the set of abstract states. Formally, given
a planning task with variables V = ⟨v1, . . . , vm⟩, a refinement hi-

erarchy H = ⟨N,E⟩ is a binary tree where each node n ∈ N
represents a Cartesian set D(v1, n)× · · · × D(vm, n). Leaf nodes of
the tree represent states in an abstract transition system, while inner
nodes represent splits (refinements). Each inner node n ∈ N has
exactly two children a, b ∈ N with edges {⟨n, a⟩, ⟨n, b⟩} ⊆ E. For
each inner node n with children a and b, there exists a split variable
split_var(n) = vi ∈ V (indicating the partitioning of D(vi, n)) such
that D(vi, a),D(vi, b) ⊂ D(vi, n), D(vi, a) ∩ D(vi, b) = ∅, and
D(vi, a)∪D(vi, b) = D(vi, n). For all other variables vj ∈ V\{vi},
it holds that D(vj , a) = D(vj , b) = D(vj , n). We refer to the set of
all splits as Splits(H) = {⟨n, a, b⟩ | ⟨n, a⟩, ⟨n, b⟩ ∈ E}.

A cost partitioning over a sequence of admissible heuristics
H = ⟨h1, . . . , hn⟩ for a weighted transition system ⟨T , cost⟩ is
a sequence of cost functions C = ⟨cost1, . . . , costn⟩ such that∑n

i=1 costi(ℓ) ≤ cost(ℓ), for all ℓ ∈ L. The cost partitioning heuris-
tic is hC(s) =

∑n
i=1 hi(costi, s) [17]. Cost partitioning heuristics

preserve admissibility.
For a heuristic, a saturated cost function (scf) is the minimum cost

function that preserves all heuristic estimates. Formally, given an
admissible heuristic h for a weighted transition system ⟨T , cost⟩, a
saturated cost function satisfies that: (1) scf(ℓ) ≤ cost(ℓ) for all ℓ ∈ L,
and (2) h(scf, s) = h(cost, s) for all states s ∈ S. For abstraction
heuristics there is a unique minimum scf defined for each label ℓ ∈ L
as max

s
ℓ−→s′∈T

(h∗
T (cost, s)− h∗

T (cost, s′)) [31].
The saturated post-hoc optimization (SPhO) heuristic [20, 32] uses

saturated cost functions scfh for heuristics h ∈ H and solves the
following linear program to obtain a heuristic value for state s ∈ S in
a transition system with labels L:

maximize
∑
h∈H

h(cost, s) · ωh subject to

∑
h∈H

scfh(ℓ) · ωh ≤ cost(ℓ) for all ℓ ∈ L (1)

ωh ≥ 0 for all h ∈ H (2)

3 Multi-Goal Cartesian Abstractions

Today’s strongest heuristics based on Cartesian abstractions decom-
pose the input task into subtasks and build one abstraction per subtask,
dividing resources such as runtime among them equally. We focus on
the basic version, where there is a subtask for each goal atom, and
we call the resulting abstractions single-goal abstractions. Computing
all single-goal abstractions is fast in practice, even for large problems
[31]. This fast computation leaves room to further refine the individual
Cartesian abstractions by adding more information about the concrete
goal before combining them with cost partitioning. For this purpose,
we consider Cartesian abstractions with n goal atoms instead of a sin-
gle one [e.g., 31], and we call such abstractions n-goal abstractions or,
if the number of considered goal atoms does not matter, simply multi-
goal abstractions. A collectionA of multi-goal Cartesian abstractions
for a planning task Π is then defined asA = {αG1 , . . . , αGn}, where
each αGi is a Cartesian abstraction computed for a non-empty set of
goal atoms Gi ⊆ G.

Moving from single-goal to multi-goal abstractions opens up a large
design space for algorithms that generate collections of multi-goal
abstractions, and two natural questions arise: (1) which multi-goal
Cartesian abstractions to consider, and (2) how to efficiently generate
and refine multi-goal Cartesian abstractions.

Regarding question (1), the number of possible multi-goal Cartesian
abstractions for a planning task with n goal variables is 2n − 1,

making it infeasible to always consider all of them. Therefore, we
propose an incremental and systematic approach to include all multi-
goal abstractions up to a certain number of goals m (or up to a
certain time or memory limit). This is in line with previous work
on systematic collections of pattern database heuristic [20]. More
specifically, the idea is to start by creating and refining all 1-goal
abstractions. Then we consider 2-goal abstractions by combining all
pairs of 1-goal abstractions. In other words, for each pair of 1-goal
abstractions ⟨αGi , αGj ⟩, with Gi ̸= Gj and |Gi| = |Gj | = 1, we
create and refine the 2-goal abstraction αGi∪Gj . Afterwards, to create
3-goal abstractions, combinations of 2-goal and 1-goal abstractions
are considered. In general, to obtain i-goal abstractions, we consider
(i−1)-goal abstractions with 1-goal abstractions, iteratively increasing
i ∈ ⟨1, . . . ,m⟩ up to a given number of goal atoms m ≤ |G| or until
a resource limit is reached.

Regarding question (2), for two goal atoms x ∈ G and y ∈ G, the
most direct way to create a multi-goal abstraction for {x, y} is to
generate a planning task that is identical to the original except that
the only goal atoms are x and y. It is easy to extend this to subsets
of goal atoms: given two subsets X ⊆ G and Y ⊆ G of goal atoms,
we denote the multi-goal Cartesian abstraction generated in this way
by αXY . However, refining an abstraction αXY from scratch may
require redoing much of the work already done to refine αX and
αY . As we will show next, this problem of redundant work can be
alleviated by merging two already refined Cartesian abstractions, as
opposed to refining an abstraction from scratch.

4 Merging Cartesian Abstractions

In this section, we introduce an efficient method for merging two
Cartesian abstractions into a single Cartesian abstraction representing
the synchronized product of the corresponding transition systems.1

Definition 1 (Product Cartesian Transition System). Let Π be a plan-
ning task that induces the transition system T = ⟨S,L, T, s0, S⋆⟩,
and let αA, αB be two Cartesian abstractions that induce the ab-
stract transition systems T A = ⟨SA,L, TA, sA0 , S

A
∗ ⟩ and T B =

⟨SB ,L, TB , sB0 , S
B
∗ ⟩, respectively. We define the product of the

two (Cartesian) transitions systems T A × T B as T A×B =
⟨SA×B ,L, TA×B , sA×B

0 , SA×B
∗ ⟩ with the following components.

• The set of states SA×B contains all non-empty intersections of all
state pairs: SA×B = {a ∩ b | a ∈ SA, b ∈ SB , a ∩ b ̸= ∅}.

• Labels L remain unchanged.
• There is a transition with label ℓ between two states c = a ∩ b

and c′ = a′ ∩ b′ if both are not empty and there is a transition
labeled with ℓ in the corresponding transition systems between the
considered states: TA×B = {(c, ℓ, c′) | c = a ∩ b ̸= ∅, c′ =
a′ ∩ b′ ̸= ∅, (a, ℓ, a′) ∈ TA, (b, ℓ, b′) ∈ TB}.

• The initial state s0 is the intersection of the two individual initial
states: sA×B

0 = sA0 ∩ sB0 .
• The set of goal states contains all non-empty intersection of all

goal state pairs: SA×B
⋆ = {a ∩ b | a ∈ SA

⋆ , b ∈ SB
⋆ , a ∩ b ̸= ∅}.

The product transition system of two Cartesian abstractions αA and
αB is induced by the product Cartesian abstraction αA×B : S →
SA×B , where αA×B(s) = αA(s)∩αB(s). This stems from the fact
that, for any state c = a ∩ b ∈ SA×B and any concrete state s ∈ S
such that αA×B(s) = c, we have that αA(s) = a and αB(s) = b.

1 Eifler and Fickert [8] mention such a product in their work on online abstrac-
tion refinement but do not define it nor show how to compute it.

4.1 Product Refinement Hierarchy

Since practical implementations of Cartesian CEGAR need to main-
tain the refinement hierarchy of each considered abstraction, we create
a refinement hierarchy HA×B from two given refinement hierarchies
HA and HB , such that HA×B represents the product abstraction of
the two abstractions represented by HA and HB . Intuitively, we com-
pute the product refinement hierarchy by applying all relevant splits
done in one of the two hierarchies to the leaf nodes of the other. Let
HA = ⟨NA, EA⟩ and HB = ⟨NB , EB⟩ be the refinement hierar-
chies of Cartesian abstractions αA and αB . We define the set of splits
of HB affecting a leaf a of HA as:

Splits(HB , a) = {⟨b, bl, br⟩ ∈ Splits(HB) |a ∩ bl ̸= ∅, a ∩ br ̸= ∅}

Formally, we define the product of refinement hierarchies as follows.

Definition 2 (Product Refinement Hierarchy). Let HA =
⟨NA, EA⟩ and HB = ⟨NB , EB⟩ be the refinement hierarchies of
Cartesian abstractions αA and αB . Then, the product refinement
hierarchy is HA×B = ⟨NA×B , EA×B⟩, where
• NA×B = NA ∪ {a ∩ bl, a ∩ br | a ∈ Leaves(HA), ⟨b, bl, br⟩ ∈

Splits(HB , a)}, and
• EA×B = EA ∪ {⟨a ∩ b, a ∩ bl⟩, ⟨a ∩ b, a ∩ br⟩ | a ∈

Leaves(HA), ⟨b, bl, br⟩ ∈ Splits(HB , a)}.

Example 1 (Product Abstraction and Refinement Hierarchy).
Consider the following task: V = {x, y}, D(x) = {0, 1, 2},
D(y) = {0, 1}, O = {o1, o2, o3} with o1 = ⟨{x 7→ 0}, {x 7→ 1}⟩,
o2 = ⟨{x 7→ 0, y 7→ 0}, {x 7→ 2, y 7→ 1}⟩ and o3 = ⟨{x 7→
2}, {x 7→ 1}⟩, s0 = {x 7→ 0, y 7→ 0} and s⋆ = {x 7→ 1, y 7→ 1}.
Let αX and αY be the single-goal abstractions for x and y, re-
spectively. The transition system T X induced by αX has 2 states:
x1 = ⟨{0, 2}, {0, 1}⟩ and x2 = ⟨{1}, {0, 1}⟩. The one induced by
αY , T Y , has 2 states: y1 = {0, 1, 2}×{0} and y2 = {0, 1, 2}×{1}.
The product Cartesian transition system T X×Y induced by the prod-
uct abstraction αX×Y is depicted in Figure 1a. The product refinement
hierarchy HX×Y is shown in Figure 1b. It is the result of applying
the splits in HY (shown in Figure 1c) to the leaves of HX (white part
of Figure 1b).

Next, we prove that Definition 2 exactly captures the product of the
underlying abstractions.

Theorem 1. Let HA = ⟨NA, EA⟩ and H = ⟨NB , EB⟩ be two
refinement hierarchies of abstractions αA and αB inducing transition
systems T A and T B . Then, (i) HA×B obtained with Definition 2 is a
refinement hierarchy and (ii) its leaves are exactly the set of abstract
states in SA×B .

Proof. (i) HA×B is a binary tree by definition, and for any split
s = ⟨n, nl, nr⟩ ∈ Splits(HA×B) with split_var(n) = v, we have
to show that D(v, nl) ∩ D(v, nr) = ∅, D(v, nl) ∪ D(v, nr) =
D(v, n), and D(w, nl) = D(w, nr) = D(w, n) for all w ̸= v.
If s ∈ Splits(HA), then all conditions are satisfied since HA is a
refinement hierarchy. Otherwise, s = ⟨a∩ b, a∩ bl, a∩ br⟩, with a ∈
NA and ⟨b, bl, br⟩ ∈ Splits(HB , a). Since ⟨b, bl, br⟩ is a split of HB ,
we have thatD(v, bl)∩D(v, br) = ∅,D(v, bl)∪D(v, br) = D(v, b),
and D(w, bl) = D(w, br) = D(w, b) for all w ̸= v. Then, it follows
that a ∩ bl and a ∩ br only differ in the domains of split_var(b), and
all conditions on the split s = ⟨a ∩ b, a ∩ bl, a ∩ br⟩ are satisfied.
(ii) Let a ∈ SA and b ∈ SB . Then c = a∩ b is a leaf node of HA×B :
NA×B contains all non-empty intersections between nodes of HA

and HB , and since a and b are leaves of HA and HB , respectively,
then c has no children in HA×B by definition.

x1 × y1

⟨{0, 2}, {0}⟩

x2 × y1

⟨{1}, {0}⟩

o1, o3

x1 × y2

⟨{0, 2}, {1}⟩
o2

x2 × y2

⟨{1}, {1}⟩

o1, o3

(a) Product Cartesian transition system
T X×Y induced by αX×Y .

⟨{0, 1, 2}, {0, 1}⟩

⟨{0, 2}, {0, 1}⟩

⟨{0, 2}, {0}⟩ ⟨{0, 2}, {1}⟩

⟨{1}, {0, 1}⟩

⟨{1}, {0}⟩ ⟨{1}, {0, 1}⟩

x

y y

(b) Refinement hierarchy for αX in white. Changes for
product refinement hierarchy αX×Y in blue.

⟨{0, 1, 2}, {0, 1}⟩

⟨{0, 1, 2}, {0}⟩ ⟨{0, 1, 2}, {1}⟩
y

(c) Refinement hierarchy for αY .

Figure 1: Product Cartesian transition system and refinement hierarchies for the single goal abstractions and their product for Example 1.

Algorithm 1 Compute the product refinement hierarchy for the refine-
ment hierarchies HA and HB associated with two Cartesian abstrac-
tions.

1: function COMPUTEHIERARCHY(HA, HB)
2: for a ∈ Leaves(HA) do
3: ADDSPLITS(a, ROOT(HB))

return HA

4: function ADDSPLITS(a, b)
5: if b is not a leaf node then
6: bl, br ← children(b)
7: v ← split_var(b)
8: if D(v, a) ⊆ D(v, bl) then
9: ADDSPLITS(a, bl)

10: else if D(v, a) ⊆ D(v, br) then
11: ADDSPLITS(a, br)
12: else
13: split_var(a)← v
14: children(a)← ⟨a ∩ bl, a ∩ br⟩
15: ADDSPLITS(a ∩ bl, bl)
16: ADDSPLITS(a ∩ br, br)

Theorem 1 guarantees that the product Cartesian abstraction αA×B

inducing the product Cartesian transition system T A×B obtained by
Definition 1 is in fact a Cartesian abstraction of T , and that T A×B is
equal to one of the factors or more fine-grained than both.

Algorithm 1 shows how to efficiently create the product refinement
hierarchy from two given hierarchies according to Definition 2. It
takes as input two refinement hierarchies HA and HB representing ab-
stractions αA and αB with states SA and SB . For each leaf node a of
HA, i.e. for each state in SA of the abstraction αA, all refinements of
the abstraction αB are applied (lines 2–3). Function ADDSPLITS(a,b)
recursively applies to a all the splits affecting it from the subtree of
HB rooted at b. For that, it recursively calls ADDSPLITS(a,bl) and
ADDSPLITS(a,br), where bl, br are the children of b. If b is a leaf
node of HB (i.e., a state in SB), no further splits are performed, and
it means that a leaf node (abstract state in the product abstraction) has
been created. Otherwise, we get the left and right children of b, as
well as the variable v were the split was done (lines 6–7). IfD(v, a) is
a subset of either D(v, bl) or D(v, br), then the split done in b cannot
be applied in a, and the refinement continues down the appropriate
branch (lines 8–12). Otherwise, the split is applied, two new children
are added to a and the refinement continues for these new nodes (lines
13–16).

4.2 Refinement From Scratch vs. From the Product

We call an abstraction fully refined if its induced transition system has
an optimal concrete plan. The product of two Cartesian abstractions
is not necessarily a fully refined abstraction. Thus, after computing

the product, further refinements might be required to obtain a fully
refined abstraction. This raises the question whether there exists a
relation between multi-goal Cartesian abstractions obtained from the
product of abstractions (and then refined) and those obtained purely
from refinement (considering multiple goal atoms from the start).

Proposition 1. Let αA, αB be two Cartesian abstractions that induce
the abstract transition systems T A and T B , respectively. The prod-
uct T A×B can be obtained with Cartesian abstraction refinements
starting from the trivial abstraction.

This follows directly from Theorem 1, since Definition 2 defines a
refinement hierarchy whose leaf nodes are the states in SA×B .

Theorem 2. Let αA×B be a fully refined Cartesian abstraction ob-
tained from refining (if needed) the product abstraction of the Carte-
sian abstractions αA and αB . Then, there exists a sequence of re-
finements that, starting from the trivial abstraction, produces a fully
refined abstraction αAB such that |SAB | ≤ |SA×B |.

Proof. This follows directly from Proposition 1: αA×B can be ob-
tained with a sequence of refinements, and any other fully refined
abstraction computed within the Cartesian CEGAR framework can
be obtained via a sequence of refinements.

However, in practice, αA×B can be smaller or larger than αAB ,
since the optimal refinement strategy for obtaining a minimally-sized
abstraction is unknown. Our experiments show that αA×B is often
smaller than αAB , but we now show two examples where αA×B is
smaller than αAB , and vice versa.

Example 2 (Product Abstraction is Smaller). Consider again Ex-
ample 1. Assume the optimal abstract plan found for αX×Y (in Fig-
ure 1a) is o2, o3, which is a concrete plan. Then, there is no need
for any refinement. The from-scratch abstraction αXY is built by
starting with a single state that contains all values for all variables.
Assume that we start by splitting off the goal facts, generating 3 states:
s1 = ⟨{0, 2}, {0, 1}⟩, s2 = ⟨{1}, {0}⟩, and s3 = ⟨{1}, {1}⟩. All
optimal plans for this abstraction have length one (apply either o1 or

s6
⟨{0}, {0}⟩

s5
⟨{2}, {0, 1}⟩

s2
⟨{1}, {0}⟩

s3
⟨{1}, {1}⟩

s7
⟨{0}, {1}⟩

o1 o2

o3 o3

o1

Figure 2: Transition system induced by the abstraction αXY resulting
from refining from scratch for Example 2.

5

g2

0
init

1 2 3
g1

g2

4

g1

(a) Example task.

{0, 5}
{0}

{0, 1}

{1, 2}
{0}

{0, 1}

{3, 4}
{0}

{0, 1}

{0, 1, 2, 3, 4, 5}
{1}

{0, 1}

m01,m51

m10,m15

m14,m23

m41,m32

a3, a4

(b) Transition system induced by αG1 .

{0, 4}
{0, 1}
{0}

{1, 2}
{0, 1}
{0}

{3, 5}
{0, 1}
{0}

{0, 1, 2, 3, 4, 5}
{0, 1}
{1}

m01,m41

m10,m41

m15,m23

m51,m32

a3, a5

(c) Transition system induced by αG2 .
Figure 3: Visualization of task and transition systems induced by single goal abstractions for Example 3.

o3 to go from s1 to s3). Neither of them is a concrete plan, so αXY

needs to be refined. The next refinement step splits s1 for the values of
one variable, and there are two alternatives: choose either x or y. This
is decided by a flaw selection strategy [35, 23, 24]. If y is selected,
then, after refinement, the next abstraction would be exactly the prod-
uct abstraction. However, assume that x is selected, in which case the
next abstraction contains 4 states: the two states resulting from the
split, s4 = ⟨{0}, {0, 1}⟩ and s5 = ⟨{2}, {0, 1}⟩, and states s2 and
s3, which remain unchanged. Again, the optimal abstract plan, which
is now ⟨o1⟩, is not a concrete plan, so another refinement step is re-
quired. Assume it splits the state s4 for y, generating s6 = ⟨{0}, {0}⟩
and s7 = ⟨{0}, {1}⟩. By now, the refined abstraction has 5 states
(depicted in Figure 2), with optimal plan ⟨o2, o3⟩, which is a concrete
plan. Therefore, for this example, the refined-from-scratch abstraction
αXY has more states than the product abstraction αX×Y .

Example 3 (Refined-From-Scratch Abstraction is Smaller). Con-
sider now the example task shown in Figure 3a, where an agent situ-
ated at position 0 has to achieve g1 and g2. There are three variables
representing the position of the agent, and whether each goal g1 and g2
has been achieved: V = {pos, g1, g2}withD(pos) = {0, . . . , 5} and
D(gi) = {0, 1}. There are operators mij to move between adjacent
cells horizontally and vertically, and three operators to achieve goals:
a3 = ⟨{pos 7→ 3}, {g1 7→ 1 g2 7→ 1}⟩, a4 = ⟨{pos 7→ 4}, {g1 7→
1}⟩, and a5 = ⟨{pos 7→ 5}, {g2 7→ 1}⟩. The single goal abstractions,
αG1 and αG2 , are depicted in Figure 3. They separate the states in the
shortest path to each goal, paths 0-1-4-g1 and 0-2-5-g2, respectively.
It is easy to see that the product abstraction has 12 states, since it
separates the states on the two paths that achieve one goal before the
other: 0-1-4-g1-1-5-g2 and 0-1-5-g2-1-4-g1. It also represents the path
from 0 to 3 to achieve both goals, but positions 1 and 2 are mapped
to the same abstract state (⟨{1, 2}, {0}, {0}⟩). Thus, it needs to be
refined, resulting in an abstraction with 13 states, which contains the
optimal concrete path 0-1-2-3-g1g2. Figure 4 shows a possible refined
abstraction for the task with both goals. It does not separate the states
in the paths that achieve one goal before the other completely. Those
paths have to be refined only to have at least length 4, the length of the
optimal concrete path. Then, the minimum size of this abstraction is 9,
which is smaller than the size of the refined product abstraction. (Note
that, depending on the refinement strategy, it could also be larger.)
If the corridors are enlarged while maintaining the proportion, the
difference between the sizes of the two abstractions becomes larger.

5 Multi-Goal Abstractions and Cost Partitioning

After computing a set of Cartesian abstractions, we combine their
estimates within a cost partitioning heuristic [e.g., 17]. Since a product

{0}
{0}
{0}

{1}
{0}
{0}

{2}
{0}
{0}

{3}
{0}
{0}

{0, 1, 2, 3, 4, 5}
{1}
{1}

{4}
{0}
{0}

{0, 1, 2, 3, 4, 5}
{1}
{0}

{5}
{0}
{0}

{0, 1, 2, 3, 4, 5}
{0}
{1}

Figure 4: Transition system induced by the abstraction αG1G2 for the
task in Example 3. We omit transition labels for simplicity.

abstraction is more fine-grained than either of the factors (i.e., the
factors are abstractions of the product), one might wonder whether it
is beneficial to keep abstractions that were used to compute a product,
or if they can be dropped without affecting the heuristic values of
a cost partitioning heuristic. Under optimal cost partitioning (OCP)
[16], merged factors can be discarded.

Theorem 3. Let A = {α1, α2, . . . , αn} be a set of Cartesian ab-
stractions. For any αi and αj in A, let B = (A \ {αi, αj}) ∪ αi×j

be the set of abstractions where αi and αj have been replaced by
their fully refined product abstraction αi×j . Then hOCP

A ≤ hOCP
B .

Proof. This follows from Theorem 5 by Sievers et al. [34], who
show that merging two factors in a merge-and-shrink abstraction and
discarding the two merged factors can only benefit OCP, and the fact
that any further refinements for αi×j—until it is fully refined—can
only increase the heuristic value computed by OCP.

However, for saturated post-hoc optimization this does not hold
and discarding merged factors can lead to a decrease in the heuristic
value.

Theorem 4. There are sets of Cartesian abstractionsA and B, where
B is obtained by replacing two abstractions inA by their fully refined
product abstraction, such that hSPhO

B < hSPhO
A .

Proof. Consider the SPhO LP for the following example: V =
{x, y, z}, O = {o1, o2, o3} with o1 = ⟨{x 7→ 0}, {x 7→ 1}⟩,
o2 = ⟨{y 7→ 0}, {y 7→ 1}⟩ and o3 = ⟨{x 7→ 0, y 7→ 1}, {z 7→ 1}⟩.
s0 = {x 7→ 0, y 7→ 0, z 7→ 0} and s⋆ = {x 7→ 1, y 7→ 1, z 7→ 1}.
Let αX , αY and αZ be the single-goal abstractions for x, y and z,
respectively. Assume unit cost for all operators. The SPhO LP for the

single-goal abstractions and the initial state is

maximize 1 · wX + 1 · wY + 2 · wZ subject to

wX ≤ 1

wY + wZ ≤ 1

wZ ≤ 1

w ≥ 0 for all w ∈ {wX , wY , wZ},

and the optimal objective value is 3. Now consider a multi-goal ab-
straction αXY for x and y and assume that we replace αX by αXY .
The resulting LP will be the same, regardless of whether we obtain
αXY by merging αX and αY (yielding an abstraction with 4 states)
or by refining for the two goal atoms from scratch (yielding an ab-
straction with 3 states, regardless of the considered goal order). The
SPhO LP for the initial state becomes

maximize 2 · wXY + 1 · wY + 2 · wZ subject to

wXY ≤ 1

wXY + wY + wZ ≤ 1

wZ ≤ 1

w ≥ 0 for all w ∈ {wXY , wY , wZ},

and the optimal objective value decreases to 2. This value remains the
same if we also remove abstraction Y from the LP.

The final cost partitioning algorithm that we consider for this analy-
sis is saturated cost partitioning (SCP) [31]. SCP considers an ordered
sequence ω of heuristics and greedily assigns to each heuristic as
much cost as that heuristic needs to preserve its estimates, i.e., its
saturated cost function (scf), and saves the remaining costs for subse-
quent heuristics, until all heuristics have been served this way. Due to
its greedy nature, adding product abstractions to the set of heuristic
considered by saturated cost partitioning can decrease its estimate,
even when keeping all merged factors.

Theorem 5. There are sets of Cartesian abstraction heuristics A =
{α1, α2, . . . , αn}, B = A ∪ {αi×j}, and orders ωA, ωB over A
and B, such that αi×j is the fully refined product abstraction of two
abstractions αi and αj in A, and hSCP

ωB < hSCP
ωA .

Proof. Consider the example from the proof of Theorem 4, but with
operators o1 = ⟨{x 7→ 0}, {x 7→ 1}⟩, o2 = ⟨{x 7→ 1}, {x 7→
0, y 7→ 1}⟩ and o3 = ⟨{x 7→ 1, y 7→ 1}, {z 7→ 1}⟩. The saturated
cost functions (scf(o1), scf(o2), scf(o3)) for the single goal abstrac-
tions are ⟨1, 0, 0⟩ for αX , ⟨1, 1, 0⟩ for αY , and ⟨1, 1, 1⟩ for αZ . For
the order of single-goal abstractions ω = ⟨αZ , αY , αX⟩, abstraction
αZ uses all costs and the remaining costs for αY and αX are all zero.
The value of the SCP heuristic for s0 is 4, the length of the optimal
plan ⟨o1, o2, o1, o3⟩, which is also the optimal plan for αZ . Now add
abstraction αZX , and consider the order ω = ⟨αX , αY , αZ , αZX⟩.
With this order, αX uses the cost of o1 and αY uses the cost of o2.
So, the only remaining cost for αZ is that of o3, and the remaining
costs for αZX are all zero. Then, the value of the SCP heuristic for
s0 is 3, since plans for X only use o1 once.

Given this limitation of saturated cost partitioning for multi-goal
abstractions, we exclusively use saturated post-hoc optimization in
the experiments below and always keep all abstractions. We leave it
as future work to investigate how to decide which abstractions to keep
for SCP and how to guarantee that SCP can only benefit from adding
multi-goal abstractions.

6 Experiments

We implemented multi-goal abstractions in the Scorpion planner [31],
which extends Fast Downward [13]. As search algorithm, we use A∗

[11] with an offline saturated post-hoc optimization heuristic [15]
computed over single- and multi-goal abstractions constructed in
different ways.

To construct the multi-goal abstractions, we use two different ap-
proaches to compare the effectiveness of merging abstractions versus
building them from scratch: (1) h×

n : follows the process described
in Section 3 to merge and refine abstractions of up to n goal atoms;
(2) hR

n : refines multi-goal abstractions ordered by the number of goal
atoms, up to n goal atoms, starting from the trivial abstraction. As
baselines, we consider single-goal Cartesian abstractions (hR

1) and
the variant that creates a single abstraction for all goal atoms (hG).
Finally, to see how multi-goal abstractions can improve state-of-the-
art abstraction heuristics, we test a configuration where we compute
both Cartesian abstractions induced by goals and landmarks. Fact
landmarks are atoms that must be true at some point in any plan [14],
and we use the abstractions induced by landmarks as per Seipp and
Helmert [30], who generate landmarks of the delete relaxation of the
task [18]. hL

1 uses single-goal abstractions and hL
2 uses 2-goal abstrac-

tions (computed as for h×
2) along with landmark induced abstractions.

We evaluate the different configurations on all tasks of the optimal
tracks from the International Planning Competitions (IPC) from 1998
to 2018. All experiments were run on machines with an Intel Xeon
Gold 6130 processor at 2.10 GHz, with total time and memory limits
for each run of 30 minutes and 8 GiB. As is common practice, we
also limit the resources used to construct the abstractions by imposing
a cumulative limit of 10 million transitions across all abstractions for
each individual run. When we reach the transition limit, we compute
the cost partitioning over the constructed abstractions and start the A∗

search with the resulting heuristic. All benchmarks, code and data are
available online [25].

Table 1 shows overall coverage scores, as well as in how many do-
mains one configuration solves more tasks than another. As reported
in the literature [30], considering a single abstraction with all goal
atoms (hG) performs worse than decomposing the original task, build-
ing multiple abstractions, and combining them with cost partitioning
(e.g., hR

1). However, there are some tasks that hG solves that none
of the other configurations do, implying that some information about
the interaction between the goal atoms is lost when creating multiple
abstractions, even when considering multi-goal abstractions.

Moving to the performance of our proposed multi-goal abstractions,
we can observe that multi-goal abstractions are beneficial compared to
single-goal abstractions both when they are refined from scratch and
when they are merged using Algorithm 1. The effectiveness and im-
portance of merging abstractions is evident when considering that h×

n

solves more tasks than hR
n , for all n tested. This empirically confirms

our conjecture that refining a multi-goal abstraction from scratch,
which is the product of two abstractions, can introduce redundant
work and overhead that can be eliminated by directly merging the two
corresponding abstractions. To better understand the reason for the
difference in performance between from-scratch refinement hR

n and
merge and refine h×

n , consider Figure 5, which compares the number
of expanded nodes (5a), the size of the resulting abstractions (5b), and
the time taken to start the search between h×

2 and hR
2 (5c).

Figure 5a shows that h×
2 is more efficient in terms of the number

of expanded nodes, meaning that the abstractions obtained from the
product of abstractions (and then refined) are generally more informa-
tive than abstractions refined from scratch. This seems to indicate that

100 102 104 106 108

100

102

104

106

108

∅

∅

hR
2 (lower for 123 tasks)

h
× 2
(l
ow

er
fo
r
45
9
ta
sk
s)

(a) Expansions until last f -layer
between hR

2 and h×
2 .

100 102 104 106
100

102

104

106

∅

∅

hR
2 (lower for 530 tasks)

h
× 2
(l
ow

er
fo
r
64
0
ta
sk
s)

(b) States in multi-goal
abstractions for hR

2 and h×
2 .

10−1 100 101 102 103

10−1

100

101

102

103

0 ∅0

∅

hR
2 (lower for 697 tasks)

h
× 2
(l
ow

er
fo
r
10
94

ta
sk
s)

(c) Time for building abstractions
for hR

2 and h×
2 .

100 102 104 106 108

100

102

104

106

108

∅

∅

hR
1 (lower for 25 tasks)

h
× 2
(l
ow

er
fo
r
60
0
ta
sk
s)

(d) Expansions until last f -layer
between h×

2 and hR
1 .

Figure 5: Comparison between different configurations of hR
n and h×

n . Tasks unsolved within the resource limits are marked with ∅.

Refine Merge & Refine +Landmarks

hG hR
1 hR

2 hR
3 hR

4 h×
2 h×

3 h×
4 h×

∞ hL
1 hL

2

R
efi

ne

hG – 11 7 7 6 6 5 5 5 10 6

hR
1 14 – 0 1 0 0 0 0 0 1 3

hR
2 20 12 – 1 2 2 3 3 3 9 7

hR
3 22 14 5 – 3 6 6 6 6 10 10

hR
4 21 12 6 3 – 4 3 3 3 8 9

M
&

R

h×
2 25 19 14 12 11 – 3 3 3 11 6

h×
3 25 20 14 13 12 4 – 1 2 12 8

h×
4 25 20 14 13 12 3 0 – 1 12 8

h×
∞ 24 19 13 12 11 2 0 0 – 11 7

+L

hL
1 22 13 11 11 11 9 8 8 8 – 2

hL
2 24 19 16 14 15 9 11 11 11 11 –

C 844 853 868 875 875 888 889 888 887 1009 1026

Table 1: Coverage comparison for different sets of abstractions. The
cell (r, c) shows the number of domains in which r solves more tasks
than c. For each pair of algorithms we highlight the maximum of
entries (r, c) and (c, r) in bold. The last row shows the total num-
ber of solved tasks for each variation. hR

n refers to configurations
that refine multi-goal abstractions from scratch, while h×

n refers to
configurations that merge abstractions. hG refers to the configuration
that creates a single abstraction with all goal atoms. hL

1 and hL
2 refer

to the configurations that use single-goal and two-goal abstractions,
respectively, in conjunction with landmark induced abstractions.

information gained from refinements done for single-goal abstractions
is not necessarily obtained when refining a multi-goal abstraction from
scratch, where the goals are a superset of the single-goal abstraction,
and that this information is useful during search. Nevertheless, both
the size of the abstractions and the time needed to refine the abstrac-
tions are generally smaller for h×

2 . This is surprising at first glance:
intuitively, one expects larger abstractions to provide more informa-
tion during search, but by considering the product of abstractions, we
manage to find more informative and smaller abstractions under SPhO.
However, the improvement from increasing the number of goals con-
sidered for both h×

n and hR
n is limited, as shown in Table 1. This is

because the abstractions start to grow too fast, and we hit the transition
limit of 10 million transitions, which limits the amount of information
we can get from more abstractions. We experimented with raising this
limit and found that it does not readily improve performance, because

the computational cost of refining larger abstractions reduces the total
number of tasks solved.

Figure 5d shows the number of expanded nodes for h×
2 and hR

1 ,
showing that considering the 2-goal abstraction can greatly reduce
the number of expanded nodes, in some cases by several orders of
magnitude. The few cases where hR

1 expands fewer nodes are due to
the fact that we are using offline SPhO. Using online SPhO would
guarantee that h×

2 dominates hR
1 , but preliminary experiments showed

that the overhead of using online SPhO is too high, greatly reducing
coverage for all configurations.

Finally, hL
2 solves more tasks than hL

1 (Table 1), demonstrating that
the use of multi-goal abstractions is beneficial even when combined
with abstractions not induced by goal atoms, thereby improving the
current state of the art.

7 Online vs. Offline Refinement
Eifler and Fickert [8] improve Cartesian abstractions during search by
merging abstractions. In the online setting, the merge can occur at any
point. In contrast, we only consider merging abstractions that are fully
refined from the initial state. The different settings make it difficult to
empirically compare the approaches in a meaningful way. However,
Eifler and Fickert [8] report that merging abstractions is computa-
tionally expensive, while our approach balances merging effort with
heuristic accuracy. Furthermore, efficient merging of Cartesian ab-
stractions is crucial, which we explicitly address by using refinement
hierarchies as underlying data structures.

8 Conclusions
We introduced an efficient algorithm for computing multi-goal Carte-
sian abstractions. In addition, we showed that creating multi-goal
abstractions starting from the product of abstractions can significantly
speed up the refinement process compared to refining the multi-goal
abstraction from scratch. We showed that having additional abstrac-
tions can only increase the heuristic value for saturated post-hoc
optimization, but not for saturated cost partitioning. Our experiments
show that using multi-goal abstractions generates more informative
heuristics than using single-goal abstractions alone, which is reflected
in solving many more tasks.

As future work, we plan to go beyond the systematic generation
of multi-goal abstractions by exploring strategies for selecting which
abstractions to merge, similar to merging strategies for merge-and-
shrink heuristics [33]. In addition, we want to investigate ways to
guarantee that the use of multi-goal abstractions under saturated cost
partitioning can never decrease the heuristic value.

Acknowledgements

This work was partially supported by grant PID2021-127647NB-
C21 funded by MICIU/AEI/10.13039/501100011033 and by “ERDF
A way of making Europe”. Additionally, this work was partially
supported by the Swiss National Science Foundation (SNSF) as part
of the project “Unifying the Theory and Algorithms of Factored
State-Space Search” (UTA) and by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation. The computations were enabled by resources
provided by the National Academic Infrastructure for Supercomputing
in Sweden (NAISS) partially funded by the Swedish Research Council
through grant agreement no. 2022-06725.

References

[1] C. Bäckström and B. Nebel. Complexity results for SAS+ planning.
Computational Intelligence, 11(4):625–655, 1995.

[2] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian ab-
straction for model checking C programs. In T. Margaria and W. Yi,
editors, Proceedings of the 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2001),
volume 2031 of Lecture Notes in Computer Science, pages 268–283.
Springer-Verlag, 2001.

[3] R. E. Bellman. Dynamic Programming. Princeton University Press,
1957.

[4] J. C. Culberson and J. Schaeffer. Pattern databases. Computational
Intelligence, 14(3):318–334, 1998.

[5] D. Drexler, J. Seipp, and D. Speck. Subset-saturated transition cost
partitioning. In Goldman et al. [10], pages 131–139.

[6] S. Edelkamp. Planning with pattern databases. In A. Cesta and D. Bor-
rajo, editors, Proceedings of the Sixth European Conference on Planning
(ECP 2001), pages 84–90. AAAI Press, 2001.

[7] S. Edelkamp. Automated creation of pattern database search heuristics.
In S. Edelkamp and A. Lomuscio, editors, Proceedings of the 4th Work-
shop on Model Checking and Artificial Intelligence (MoChArt 2006),
pages 35–50, 2006.

[8] R. Eifler and M. Fickert. Online refinement of Cartesian abstraction
heuristics. In V. Bulitko and S. Storandt, editors, Proceedings of the 11th
Annual Symposium on Combinatorial Search (SoCS 2018), pages 46–54.
AAAI Press, 2018.

[9] S. Franco, Á. Torralba, L. H. S. Lelis, and M. Barley. On creating
complementary pattern databases. In C. Sierra, editor, Proceedings of
the 26th International Joint Conference on Artificial Intelligence (IJCAI
2017), pages 4302–4309. IJCAI, 2017.

[10] R. P. Goldman, S. Biundo, and M. Katz, editors. Proceedings of
the Thirty-First International Conference on Automated Planning and
Scheduling (ICAPS 2021), 2021. AAAI Press.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[12] P. Haslum, A. Botea, M. Helmert, B. Bonet, and S. Koenig. Domain-
independent construction of pattern database heuristics for cost-optimal
planning. In Proceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence (AAAI 2007), pages 1007–1012. AAAI Press, 2007.

[13] M. Helmert. The Fast Downward planning system. Journal of Artificial
Intelligence Research, 26:191–246, 2006.

[14] J. Hoffmann, J. Porteous, and L. Sebastia. Ordered landmarks in planning.
Journal of Artificial Intelligence Research, 22:215–278, 2004.

[15] P. Höft, D. Speck, and J. Seipp. Sensitivity analysis for saturated post-
hoc optimization in classical planning. In K. Gal, A. Nowé, G. J. Nalepa,
R. Fairstein, and R. Rădulescu, editors, Proceedings of the 26th European
Conference on Artificial Intelligence (ECAI 2023), pages 1044–1051.
IOS Press, 2023.

[16] M. Katz and C. Domshlak. Optimal additive composition of abstraction-
based admissible heuristics. In J. Rintanen, B. Nebel, J. C. Beck, and
E. Hansen, editors, Proceedings of the Eighteenth International Con-
ference on Automated Planning and Scheduling (ICAPS 2008), pages
174–181. AAAI Press, 2008.

[17] M. Katz and C. Domshlak. Optimal admissible composition of abstrac-
tion heuristics. Artificial Intelligence, 174(12–13):767–798, 2010.

[18] E. Keyder, S. Richter, and M. Helmert. Sound and complete landmarks
for and/or graphs. In H. Coelho, R. Studer, and M. Wooldridge, editors,

Proceedings of the 19th European Conference on Artificial Intelligence
(ECAI 2010), pages 335–340. IOS Press, 2010.

[19] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

[20] F. Pommerening, G. Röger, and M. Helmert. Getting the most out of
pattern databases for classical planning. In F. Rossi, editor, Proceedings
of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI 2013), pages 2357–2364. AAAI Press, 2013.

[21] F. Pommerening, M. Helmert, G. Röger, and J. Seipp. From non-negative
to general operator cost partitioning. In B. Bonet and S. Koenig, ed-
itors, Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI 2015), pages 3335–3341. AAAI Press, 2015.

[22] F. Pommerening, T. Keller, V. Halasi, J. Seipp, S. Sievers, and
M. Helmert. Dantzig-Wolfe decomposition for cost partitioning. In
Goldman et al. [10], pages 271–280.

[23] M. Pozo, Á. Torralba, and C. Linares López. When CEGAR meets
regression: A love story in optimal classical planning. In J. Dy and
S. Natarajan, editors, Proceedings of the Thirty-Eighth AAAI Conference
on Artificial Intelligence (AAAI 2024), pages 20238–20246. AAAI Press,
2024.

[24] M. Pozo, Á. Torralba, and C. Linares López. Gotta catch ’em all!
sequence flaws in CEGAR for classical planning. In U. Endriss and
F. S. Melo, editors, Proceedings of the 27th European Conference on
Artificial Intelligence (ECAI 2024), pages 4287–4294. IOS Press, 2024.

[25] M. Salerno, R. Fuentetaja, D. Speck, and J. Seipp. Code and data for
the ECAI 2025 paper “Merging Cartesian Abstractions for Classical
Planning”. https://doi.org/10.5281/zenodo.16311148, 2025.

[26] J. Seipp. Pattern selection for optimal classical planning with saturated
cost partitioning. In S. Kraus, editor, Proceedings of the 28th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2019), pages
5621–5627. IJCAI, 2019.

[27] J. Seipp. Efficiently computing transitions in Cartesian abstractions. In
S. Bernardini and C. Muise, editors, Proceedings of the Thirty-Fourth In-
ternational Conference on Automated Planning and Scheduling (ICAPS
2024), pages 509–513. AAAI Press, 2024.

[28] J. Seipp and M. Helmert. Counterexample-guided Cartesian abstraction
refinement. In D. Borrajo, S. Kambhampati, A. Oddi, and S. Fratini,
editors, Proceedings of the Twenty-Third International Conference on
Automated Planning and Scheduling (ICAPS 2013), pages 347–351.
AAAI Press, 2013.

[29] J. Seipp and M. Helmert. Diverse and additive Cartesian abstraction
heuristics. In S. Chien, A. Fern, W. Ruml, and M. Do, editors, Pro-
ceedings of the Twenty-Fourth International Conference on Automated
Planning and Scheduling (ICAPS 2014), pages 289–297. AAAI Press,
2014.

[30] J. Seipp and M. Helmert. Counterexample-guided Cartesian abstrac-
tion refinement for classical planning. Journal of Artificial Intelligence
Research, 62:535–577, 2018.

[31] J. Seipp, T. Keller, and M. Helmert. Saturated cost partitioning for
optimal classical planning. Journal of Artificial Intelligence Research,
67:129–167, 2020.

[32] J. Seipp, T. Keller, and M. Helmert. Saturated post-hoc optimization for
classical planning. In K. Leyton-Brown and Mausam, editors, Proceed-
ings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI
2021), pages 11947–11953. AAAI Press, 2021.

[33] S. Sievers and M. Helmert. Merge-and-shrink: A compositional theory
of transformations of factored transition systems. Journal of Artificial
Intelligence Research, 71:781–883, 2021.

[34] S. Sievers, F. Pommerening, T. Keller, and M. Helmert. Cost-partitioned
merge-and-shrink heuristics for optimal classical planning. In Proceed-
ings of the 29th International Joint Conference on Artificial Intelligence
(IJCAI 2020), pages 4152–4160. IJCAI, 2020.

[35] D. Speck and J. Seipp. New refinement strategies for Cartesian ab-
stractions. In S. Thiébaux and W. Yeoh, editors, Proceedings of the
Thirty-Second International Conference on Automated Planning and
Scheduling (ICAPS 2022), pages 348–352. AAAI Press, 2022.

[36] A. Taitler, R. Alford, J. Espasa, G. Behnke, D. Fišer, M. Gimelfarb,
F. Pommerening, S. Sanner, E. Scala, D. Schreiber, J. Segovia-Aguas,
and J. Seipp. The 2023 International Planning Competition. AI Magazine,
45(2):280–296, 2024. doi: 10.1002/aaai.12169.

[37] F. Yang, J. Culberson, R. Holte, U. Zahavi, and A. Felner. A general the-
ory of additive state space abstractions. Journal of Artificial Intelligence
Research, 32:631–662, 2008.

