Counterexample-Guided Abstraction Refinement for Pattern Selection in Optimal Classical Planning

Alexander Rovner Silvan Sievers Malte Helmert

University of Basel, Switzerland

July 14, 2019

Motivation

- Pattern databases (PDB) for optimal planning:
 - Based on pattern collections (single PDBs don't scale)
 - Combining PDBs: e.g., canonical PDBs, cost partitioning
 - Pattern selection: e.g., hill climbing, genetic optimization

Motivation

- Pattern databases (PDB) for optimal planning:
 - Based on pattern collections (single PDBs don't scale)
 - Combining PDBs: e.g., canonical PDBs, cost partitioning
 - Pattern selection: e.g., hill climbing, genetic optimization
- This work: pattern selection (fixed combination: SCP)
 - Observation: existing algorithms relatively slow

Motivation

- Pattern databases (PDB) for optimal planning:
 - Based on pattern collections (single PDBs don't scale)
 - Combining PDBs: e.g., canonical PDBs, cost partitioning
 - Pattern selection: e.g., hill climbing, genetic optimization
- This work: pattern selection (fixed combination: SCP)
 - Observation: existing algorithms relatively slow
- Contribution: pattern selection based on the counterexample-guided abstraction refinement principle
 - Fast method
 - Only select useful patterns
 - Convergence

Outline

Disjoint Pattern Collections with CEGAR ○● Multiple CEGAR Runs

Experimental Results

Schematic Algorithm

 Disjoint collection: compromise between single patterns and arbitrary collections

- Disjoint collection: compromise between single patterns and arbitrary collections
- Initialize pattern collection C with one pattern per goal

- Disjoint collection: compromise between single patterns and arbitrary collections
- Initialize pattern collection C with one pattern per goal
- Repeat:
 - For each $P \in C$, compute abstract plan π_P

- Disjoint collection: compromise between single patterns and arbitrary collections
- Initialize pattern collection C with one pattern per goal
- Repeat:
 - For each $P \in C$, compute abstract plan π_P
 - For each $P \in C$, look for flaws v of π_P

- Disjoint collection: compromise between single patterns and arbitrary collections
- Initialize pattern collection C with one pattern per goal
- Repeat:
 - For each $P \in C$, compute abstract plan π_P
 - For each $P \in C$, look for flaws v of π_P
 - Select flaw (P, v) and refine C by adding v to C: add v to P or merge P with P' containing v

Outline

Disjoint Pattern Collections with CEGAR

Multiple CEGAR Runs

Experimental Results

Multiple CEGAR

• Repeatedly use CEGAR and combine all patterns

Multiple CEGAR

- Repeatedly use CEGAR and combine all patterns
- Diversification:
 - Restrict each iteration to single goal: ⇒ single pattern
 - Randomly forbid variables for selection (blacklisting)
 - Keep track of progress (stagnation)

Outline

Coverage (SCP Heuristic) on IPC Benchmarks

Competitors				
	SYS2	HC (900s)	CPC (100s)	
Coverage	981	965.4	1033.5	
Constr. t.	0.05	4.97	103.82	

_

C

Experimental Results

Coverage (SCP Heuristic) on IPC Benchmarks

	Competitors				
		SYS2	HC (900s)	CPC (100s)	
	Coverage	981	965.4	1033.5	
	Constr. t.	0.05	4.97	103.82	
	Single	e CEGAF	۲		
Covera	ge	946.	6		
Constr.	t.	0.4	8		

-

Experimental Results

Coverage (SCP Heuristic) on IPC Benchmarks

Competitors					
	SYS2	HC (900s)	CPC (1	00s)	
Coverage	981	965.4	10)33.5	
Constr. t.	0.05	4.97	10)3.82	
Single	e CEGAF	R Multiple	CEGAR	+ bl + stag	
Coverage	946.6	6	1063.2	1087.2	
Constr. t.	0.48	B	51.81	39.65	

Conclusions

- CEGAR for pattern selection: fast algorithm
- State-of-the-art pattern selection (for explicit PDBs & until IJCAI)
- Future work: interleave pattern selection with cost partitioning

Competitors						
	SYS	HC1	CPC1	HC9	CPC9	G
Cov. C.t.	981 0.05	946.4 3.05	1033.5 103.82	965.4 4.97	1021.1 876.21	839 5.49

	CE			
	single	multiple	sRCG	mRCG
Cov.	946.6	1087.2	758.8	1018.7
C.t.	0.48	39.65	0.07	10.07