Motivation

- Pattern databases (PDB) for optimal planning:
 - Based on pattern collections (single PDBs don’t scale)
 - Combining PDBs: e.g., canonical PDBs, cost partitioning
 - Pattern selection: e.g., hill climbing, genetic optimization
Motivation

- Pattern databases (PDB) for optimal planning:
 - Based on pattern collections (single PDBs don’t scale)
 - Combining PDBs: e.g., canonical PDBs, cost partitioning
 - Pattern selection: e.g., hill climbing, genetic optimization
- This work: pattern selection (fixed combination: SCP)
 - Observation: existing algorithms relatively slow
Motivation

- Pattern databases (PDB) for optimal planning:
 - Based on pattern collections (single PDBs don’t scale)
 - Combining PDBs: e.g., canonical PDBs, cost partitioning
 - Pattern selection: e.g., hill climbing, genetic optimization
- This work: pattern selection (fixed combination: SCP)
 - Observation: existing algorithms relatively slow
- Contribution: pattern selection based on the counterexample-guided abstraction refinement principle
 - Fast method
 - Only select useful patterns
 - Convergence
Outline

1. Disjoint Pattern Collections with CEGAR
2. Multiple CEGAR Runs
3. Experimental Results
Disjoint collection: compromise between single patterns and arbitrary collections
Schematic Algorithm

- **Disjoint** collection: compromise between single patterns and arbitrary collections
- Initialize pattern collection C with one pattern per goal
Disjoint collection: compromise between single patterns and arbitrary collections
Initialize pattern collection C with one pattern per goal
Repeat:
 - For each $P \in C$, compute abstract plan π_P
Disjoint Pattern Collections with CEGAR

Schematic Algorithm

- **Disjoint** collection: compromise between single patterns and arbitrary collections
- Initialize pattern collection \(C \) with one pattern per goal
- Repeat:
 - For each \(P \in C \), compute abstract plan \(\pi_P \)
 - For each \(P \in C \), look for flaws \(v \) of \(\pi_P \)
Schematic Algorithm

- **Disjoint** collection: compromise between single patterns and arbitrary collections
- Initialize pattern collection C with one pattern per goal
- Repeat:
 - For each $P \in C$, compute abstract plan π_P
 - For each $P \in C$, look for flaws v of π_P
 - Select flaw $\langle P, v \rangle$ and refine C by adding v to C: add v to P or merge P with P' containing v
Outline

1. Disjoint Pattern Collections with CEGAR
2. Multiple CEGAR Runs
3. Experimental Results
Multiple CEGAR

- Repeatedly use CEGAR and combine all patterns
Multiple CEGAR

- Repeatedly use CEGAR and combine all patterns
- **Diversification:**
 - Restrict each iteration to single goal: ⇒ single pattern
 - Randomly forbid variables for selection (blacklisting)
 - Keep track of progress (stagnation)
Outline

1. Disjoint Pattern Collections with CEGAR

2. Multiple CEGAR Runs

3. Experimental Results
Coverage (SCP Heuristic) on IPC Benchmarks

<table>
<thead>
<tr>
<th>Competitors</th>
<th>SYS2</th>
<th>HC (900s)</th>
<th>CPC (100s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>981</td>
<td>965.4</td>
<td>1033.5</td>
</tr>
<tr>
<td>Constr. t.</td>
<td>0.05</td>
<td>4.97</td>
<td>103.82</td>
</tr>
</tbody>
</table>
Coverage (SCP Heuristic) on IPC Benchmarks

<table>
<thead>
<tr>
<th>Competitors</th>
<th>SYS2</th>
<th>HC (900s)</th>
<th>CPC (100s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>981</td>
<td>965.4</td>
<td>1033.5</td>
</tr>
<tr>
<td>Constr. t.</td>
<td>0.05</td>
<td>4.97</td>
<td>103.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Single CEGAR</th>
<th>Coverage</th>
<th>Constr. t.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>946.6</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Experimental Results

Coverage (SCP Heuristic) on IPC Benchmarks

<table>
<thead>
<tr>
<th>Competitors</th>
<th>SYS2</th>
<th>HC (900s)</th>
<th>CPC (100s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>981</td>
<td>965.4</td>
<td>1033.5</td>
</tr>
<tr>
<td>Constr. t.</td>
<td>0.05</td>
<td>4.97</td>
<td>103.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Single CEGAR</th>
<th>Multiple CEGAR</th>
<th>+ bl + stag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>946.6</td>
<td>1063.2</td>
<td>1087.2</td>
</tr>
<tr>
<td>Constr. t.</td>
<td>0.48</td>
<td>51.81</td>
<td>39.65</td>
</tr>
</tbody>
</table>
Conclusions

- CEGAR for pattern selection: fast algorithm
- State-of-the-art pattern selection
 (for explicit PDBs & until IJCAI)
- Future work: interleave pattern selection with cost partitioning
Results

Competitors

<table>
<thead>
<tr>
<th></th>
<th>SYS</th>
<th>HC1</th>
<th>CPC1</th>
<th>HC9</th>
<th>CPC9</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cov.</td>
<td>981</td>
<td>946.4</td>
<td>1033.5</td>
<td>965.4</td>
<td>1021.1</td>
<td>839</td>
</tr>
<tr>
<td>C.t.</td>
<td>0.05</td>
<td>3.05</td>
<td>103.82</td>
<td>4.97</td>
<td>876.21</td>
<td>5.49</td>
</tr>
</tbody>
</table>

CEGAR

<table>
<thead>
<tr>
<th></th>
<th>single</th>
<th>multiple</th>
<th>sRCG</th>
<th>mRCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cov.</td>
<td>946.6</td>
<td>1087.2</td>
<td>758.8</td>
<td>1018.7</td>
</tr>
<tr>
<td>C.t.</td>
<td>0.48</td>
<td>39.65</td>
<td>0.07</td>
<td>10.07</td>
</tr>
</tbody>
</table>